TGNet: Learning to Rank Nodes in Temporal Graphs. Qi Song 1 Bo Zong 2 Yinghui Wu 1,3 Lu-An Tang 2 Hui Zhang 2 Guofei Jiang 2 Haifeng Chen 2

Size: px
Start display at page:

Download "TGNet: Learning to Rank Nodes in Temporal Graphs. Qi Song 1 Bo Zong 2 Yinghui Wu 1,3 Lu-An Tang 2 Hui Zhang 2 Guofei Jiang 2 Haifeng Chen 2"

Transcription

1 TGNet: Learning to Rank Nodes in Temporal Graphs Qi Song 1 Bo Zong 2 Yinghui Wu 1,3 Lu-An Tang 2 Hui Zhang 2 Guofei Jiang 2 Haifeng Chen

2 Node Ranking in temporal graphs Temporal graphs have been widely applied to model dynamic networks. Automated systems Computer networks Citation networks Anomaly detection Attack detection Author ranking Ranking models are desired to suggest and maintain the nodes with high priority in dynamic graphs. The node ranks can be influenced by rich context from heterogeneous node information, network structures, and temporal perspectives.

3 Alert ranking in a heterogeneous system alert network. A fraction of a real-world heterogeneous temporal information network from data center monitoring. (host) (host) h 1 h 2 (service) "Database" h 2 (host) (service) "Network" h 2 (host) (service) "Network" Temporal context: suggests the impact of historical or future events to current decisions. l 1 l 2 a 1 a 2 (alert) (alert) 03:33 am Log 'l1' at 3:33 am, Host 'h1' with service "Database" & content 'login failure'... l 3 l 4 a 3 a 4 (alert) (alert) l 5 l' 5 l 6 a 5 a 6 a 7 l 7 (alert) (alert) (alert) G 09:44 am 1 G 09:45 am 2 G 3 Log 'l3' at 9:44 am, Host 'h2' with service "Network" &content'connectionfailed' Alert 'a5' at 9:45 am, relevant to log l and log,reason: 5 l' 5 'Unusual small # of logs' Structural context: captures the features in the neighborhood of nodes at each snapshot. Node attributes: encodes the input information of a node.

4 Challenges Learning to rank nodes in temporal graphs is more challenging than its counterpart over static graphs: Context learning: structural and temporal context can be used to differentiate the roles that different nodes play in node ranking. Automated approach to learn context features for node ranking. Context dynamics: context features bear constant changes over time. Effective models that can capture context evolution over time. Label sparsity: labels provided by users are sparse and cover a small fraction of nodes Effective learning that can be generalized from sparsely labeled data. Time cost: fast learning and ranking upon the arrival of new nodes. Effective optimization and provable performance guarantees.

5 Learning to rank nodes in temporal graphs Input: training data, consists of a temporal graph - and labeled data., a ranking function space /, and an error function 0(2) that measures the ranking error. Output: an optimal function 4 / such that the ranking error 0(4,,) is minimized. Pipeline: User-ranked nodes! ",! $! ",! %! &,! % Node ranking! (! *! + TGNet Model Learning w Model Inference

6 Overview of TGNet Model Four components: Initialization layer: projects input feature vector into hidden state space; Structural propagation layer: exchanges neighborhood information in a snapshot; Temporal propagation layer: propagates temporal influence between snapshots; Output layer: transforms hidden states to ranking scores. Input feature Vector Hidden State Vector Ranking score (2)Structural Propogation (4)Output (L) (3)Temporal (0) (1) (L) Propagation (0) (1)Initialization Snapshot: G i-1 G i G i+1

7 TGNet: Initialization Layer When a node first occurs: ($,&)! " = / tanh(-$. 0 1 " + 3 $. ) Hidden state vector Input feature vector Parameter Input feature Vector Hidden State Vector Ranking score 1 " - / $.! " ($,&) (4)Output (2)Structural Propogation (L) (3)Temporal (0) (1) (L) (0) (1)Initialization Propagation Snapshot: G i-1 G i G i+1

8 TGNet: Structural propagation layer For all nodes within a snapshot: iteratively performing local information propagation (for L times)! ($,&'() " = tanh( / 4 ($,&) 0,"! ($,&) 0 ) Hidden state vector Structural influence factor Input feature Vector Hidden State Vector Ranking score (0) ($,&) 4 0," (L) (4)Output (2)Structural Propogation (3)Temporal (0) (1) (L) (0) (1)Initialization Propagation (L)! " ($,&'() Snapshot: G i-1 G i G i+1! 0 ($,&)

9 For nodes exist in two continuous snapshots: TGNet: Temporal propagation layer! " ($%&,() = +",,-,, -./! " ($,0) Hidden state vector Temporal influence factor Input feature Vector Hidden State Vector Ranking score G i G i+1 (4)Output (2)Structural Propogation (L) (0) (1) (L) (0) (1)Initialization (3)Temporal Propagation + ",,-,, -./ Snapshot: G i-1 G i G i+1! " ($,0)! " ($%&,()

10 TGNet: Output layer For nodes in the last snapshot they appear: +!" # = σ(' ()*, - (.,0) # + 3 ()* ) Ranking value Hidden state vector Parameter Input feature Vector Hidden State Vector Ranking score (4)Output + ' ()* (2)Structural Propogation (L) (0) (1) (L) (0) (1)Initialization (3)Temporal Propagation - # (.,0)!" # Snapshot: G i-1 G i G i+1

11 Influence modeling Edge-centric: parameters are associated to edges; Can not deal with context changes, daunting for users to choose edge types. Node-centric (influence network): The influence between two nodes is conditioned by their contexts; The node context is determined by its hidden state. ((,*) & ' = 6,-./012(345 7 ((,*) ' 8 9 ((,*) 8 9 ((,*) 8 ' ((,*) + ; 4( ) ((,*) < 9,' Structural influence = ',5>,5 >?@ = A(3 6 5( 7 Temporal influence Inference cost: O( $ ) Neighbor sampling: randomly sample a subset of the neighbors of each node. 8 ' ((,*) / ((,*) ( ' / + ; 5( ) = ',5>,5 >?@

12 Parameter learning Objective function: Parameters ( Θ, * =, -,. & 0 Θ, 1, (Θ) (Θ, %) Loss function: measure the error made by Θ 0 Θ, 1, 2 = 1 ( :;. :; - ) L 7 regularization: penalize model complexity 6 5 Θ = = 7 Graph smoothness: penalize high dissimilarity between a node and its Θ, % =, >?5, C (>,D) (>,D) - C. -,. A B 7 Gradient Descent Iteratively compute error resulting from current Θ and update Θ by their gradients. Learning cost: O( % & )

13 Experiment Setting Dataset Dataset System log data (SLD) ISCX Intrusion detection data (IDS) Microsoft academic graph (MAG) Amazon co-purchasing network (APC) #Snapshots # of nodes # of edges # of Training pairs SLD 19.4K 61.4K 258.1K 20K IDS 66.7K 5.7M 11.5M 100K MAG 12K 2.5M 16.2M 100K APC 1.5K 2.1M 9.5M 100K Baseline: TGNet_BA, TGNet_IN Supervised PageRank (SPR) Dynamic PageRank (DPR) SVMRank Alert fusion for intrusion detection (LRT) Network anomaly detection (BGCM) Metric: Top-k version of Normalized Discounted Cumulative Gain (NDCG@k) k is determined by domain experts

14 Experiment Results Accuracy comparison BGCM LRT SVMRank SPR DPR TGNet_BA TGNet_IN TGNet SLD IDS MAG APC Accuracy varying parameters TGNet TGNet_IN TGNet_BA 1 SPR SVMRank LRT NDCG@k TGNet TGNet_IN TGNet_BA NDCG@k TGNet TGNet_IN TGNet_BA NDCG@k % 40% 60% 80% 100% Varying d h (number of hidden state dimension): TGNet achieves good accuracy with small d h. Varying L (# of structural propagation iteration): prediction performance tends to converge when L is small. Varying labeled data size: TGNet needs the least amount of labeled data to achieve the highest accuracy.

15 Experiment Results Learning cost Case study Time(minutes) TGNET(GPU) TGNet(CPU) TGNet(CPU)_opt SPR 1. Critical alert 'a 1 ' starts at 12:18:41, ends at 12:18:42, with reason 'Excessive number of login failure message', relevant to log "l 3,l 4 ". 2. Ignore alert 'a 2 ' starts at 12:18:42, ends at 12:18:42, with reason Number of service started message below threshold, relevant to log "l 5 ". h 1 SQL (host) Server (service) (host) 0.63 SQL Server h 1 h 1 (host) (service) 0.71 SQL Server (service) SQL Server Agent (service) 0 10k 20k 30k 40k 50k 60k Varying graph size on synthetic SLD: training is 10 times faster than SPR l 1 :SAP DB connection error l 2 :SAP DB connection error l 3 :Login failure 0.89 l 4 :Login failure l 5 :Service Started :18:38 a 1 (alert) 12:18:41 12:18:42 a 1 (alert) a 2 (alert)

16 Conclusion TGNet: a novel graph neural network network Explicitly tackles challenges in node ranking for temporal graphs; Influence network: boost the capability of modeling context dynamics; Graph smoothness: cope with label sparsity; End-to-end learning algorithm with optimization techniques. Sponsored by:

17 Thank you!

TriRank: Review-aware Explainable Recommendation by Modeling Aspects

TriRank: Review-aware Explainable Recommendation by Modeling Aspects TriRank: Review-aware Explainable Recommendation by Modeling Aspects Xiangnan He, Tao Chen, Min-Yen Kan, Xiao Chen National University of Singapore Presented by Xiangnan He CIKM 15, Melbourne, Australia

More information

Mining Web Data. Lijun Zhang

Mining Web Data. Lijun Zhang Mining Web Data Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Web Crawling and Resource Discovery Search Engine Indexing and Query Processing Ranking Algorithms Recommender Systems

More information

Sentiment Classification of Food Reviews

Sentiment Classification of Food Reviews Sentiment Classification of Food Reviews Hua Feng Department of Electrical Engineering Stanford University Stanford, CA 94305 fengh15@stanford.edu Ruixi Lin Department of Electrical Engineering Stanford

More information

Query Independent Scholarly Article Ranking

Query Independent Scholarly Article Ranking Query Independent Scholarly Article Ranking Shuai Ma, Chen Gong, Renjun Hu, Dongsheng Luo, Chunming Hu, Jinpeng Huai SKLSDE Lab, Beihang University, China Beijing Advanced Innovation Center for Big Data

More information

Machine Learning Classifiers and Boosting

Machine Learning Classifiers and Boosting Machine Learning Classifiers and Boosting Reading Ch 18.6-18.12, 20.1-20.3.2 Outline Different types of learning problems Different types of learning algorithms Supervised learning Decision trees Naïve

More information

Effective Latent Space Graph-based Re-ranking Model with Global Consistency

Effective Latent Space Graph-based Re-ranking Model with Global Consistency Effective Latent Space Graph-based Re-ranking Model with Global Consistency Feb. 12, 2009 1 Outline Introduction Related work Methodology Graph-based re-ranking model Learning a latent space graph A case

More information

Mining Web Data. Lijun Zhang

Mining Web Data. Lijun Zhang Mining Web Data Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Web Crawling and Resource Discovery Search Engine Indexing and Query Processing Ranking Algorithms Recommender Systems

More information

A Network Intrusion Detection System Architecture Based on Snort and. Computational Intelligence

A Network Intrusion Detection System Architecture Based on Snort and. Computational Intelligence 2nd International Conference on Electronics, Network and Computer Engineering (ICENCE 206) A Network Intrusion Detection System Architecture Based on Snort and Computational Intelligence Tao Liu, a, Da

More information

CS224W: Social and Information Network Analysis Project Report: Edge Detection in Review Networks

CS224W: Social and Information Network Analysis Project Report: Edge Detection in Review Networks CS224W: Social and Information Network Analysis Project Report: Edge Detection in Review Networks Archana Sulebele, Usha Prabhu, William Yang (Group 29) Keywords: Link Prediction, Review Networks, Adamic/Adar,

More information

Recommender Systems. Collaborative Filtering & Content-Based Recommending

Recommender Systems. Collaborative Filtering & Content-Based Recommending Recommender Systems Collaborative Filtering & Content-Based Recommending 1 Recommender Systems Systems for recommending items (e.g. books, movies, CD s, web pages, newsgroup messages) to users based on

More information

Revolver: Vertex-centric Graph Partitioning Using Reinforcement Learning

Revolver: Vertex-centric Graph Partitioning Using Reinforcement Learning Revolver: Vertex-centric Graph Partitioning Using Reinforcement Learning Mohammad Hasanzadeh Mofrad 1, Rami Melhem 1 and Mohammad Hammoud 2 1 University of Pittsburgh 2 Carnegie Mellon University Qatar

More information

A Dendrogram. Bioinformatics (Lec 17)

A Dendrogram. Bioinformatics (Lec 17) A Dendrogram 3/15/05 1 Hierarchical Clustering [Johnson, SC, 1967] Given n points in R d, compute the distance between every pair of points While (not done) Pick closest pair of points s i and s j and

More information

An Unsupervised Approach for Combining Scores of Outlier Detection Techniques, Based on Similarity Measures

An Unsupervised Approach for Combining Scores of Outlier Detection Techniques, Based on Similarity Measures An Unsupervised Approach for Combining Scores of Outlier Detection Techniques, Based on Similarity Measures José Ramón Pasillas-Díaz, Sylvie Ratté Presenter: Christoforos Leventis 1 Basic concepts Outlier

More information

Influence Maximization in Location-Based Social Networks Ivan Suarez, Sudarshan Seshadri, Patrick Cho CS224W Final Project Report

Influence Maximization in Location-Based Social Networks Ivan Suarez, Sudarshan Seshadri, Patrick Cho CS224W Final Project Report Influence Maximization in Location-Based Social Networks Ivan Suarez, Sudarshan Seshadri, Patrick Cho CS224W Final Project Report Abstract The goal of influence maximization has led to research into different

More information

Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011

Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011 Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011 1. Introduction Reddit is one of the most popular online social news websites with millions

More information

Ensemble methods in machine learning. Example. Neural networks. Neural networks

Ensemble methods in machine learning. Example. Neural networks. Neural networks Ensemble methods in machine learning Bootstrap aggregating (bagging) train an ensemble of models based on randomly resampled versions of the training set, then take a majority vote Example What if you

More information

Akarsh Pokkunuru EECS Department Contractive Auto-Encoders: Explicit Invariance During Feature Extraction

Akarsh Pokkunuru EECS Department Contractive Auto-Encoders: Explicit Invariance During Feature Extraction Akarsh Pokkunuru EECS Department 03-16-2017 Contractive Auto-Encoders: Explicit Invariance During Feature Extraction 1 AGENDA Introduction to Auto-encoders Types of Auto-encoders Analysis of different

More information

Semi-supervised Data Representation via Affinity Graph Learning

Semi-supervised Data Representation via Affinity Graph Learning 1 Semi-supervised Data Representation via Affinity Graph Learning Weiya Ren 1 1 College of Information System and Management, National University of Defense Technology, Changsha, Hunan, P.R China, 410073

More information

Liangjie Hong*, Dawei Yin*, Jian Guo, Brian D. Davison*

Liangjie Hong*, Dawei Yin*, Jian Guo, Brian D. Davison* Tracking Trends: Incorporating Term Volume into Temporal Topic Models Liangjie Hong*, Dawei Yin*, Jian Guo, Brian D. Davison* Dept. of Computer Science and Engineering, Lehigh University, Bethlehem, PA,

More information

Predictive Indexing for Fast Search

Predictive Indexing for Fast Search Predictive Indexing for Fast Search Sharad Goel, John Langford and Alex Strehl Yahoo! Research, New York Modern Massive Data Sets (MMDS) June 25, 2008 Goel, Langford & Strehl (Yahoo! Research) Predictive

More information

Demystifying movie ratings 224W Project Report. Amritha Raghunath Vignesh Ganapathi Subramanian

Demystifying movie ratings 224W Project Report. Amritha Raghunath Vignesh Ganapathi Subramanian Demystifying movie ratings 224W Project Report Amritha Raghunath (amrithar@stanford.edu) Vignesh Ganapathi Subramanian (vigansub@stanford.edu) 9 December, 2014 Introduction The past decade or so has seen

More information

Dropout. Sargur N. Srihari This is part of lecture slides on Deep Learning:

Dropout. Sargur N. Srihari This is part of lecture slides on Deep Learning: Dropout Sargur N. srihari@buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Regularization Strategies 1. Parameter Norm Penalties 2. Norm Penalties

More information

Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting

Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting Yaguang Li Joint work with Rose Yu, Cyrus Shahabi, Yan Liu Page 1 Introduction Traffic congesting is wasteful of time,

More information

Machine Learning 13. week

Machine Learning 13. week Machine Learning 13. week Deep Learning Convolutional Neural Network Recurrent Neural Network 1 Why Deep Learning is so Popular? 1. Increase in the amount of data Thanks to the Internet, huge amount of

More information

Meta-path based Multi-Network Collective Link Prediction

Meta-path based Multi-Network Collective Link Prediction Meta-path based Multi-Network Collective Link Prediction Jiawei Zhang 1,2, Philip S. Yu 1, Zhi-Hua Zhou 2 University of Illinois at Chicago 2, Nanjing University 2 Traditional social link prediction in

More information

LSTM for Language Translation and Image Captioning. Tel Aviv University Deep Learning Seminar Oran Gafni & Noa Yedidia

LSTM for Language Translation and Image Captioning. Tel Aviv University Deep Learning Seminar Oran Gafni & Noa Yedidia 1 LSTM for Language Translation and Image Captioning Tel Aviv University Deep Learning Seminar Oran Gafni & Noa Yedidia 2 Part I LSTM for Language Translation Motivation Background (RNNs, LSTMs) Model

More information

Neural Network Learning. Today s Lecture. Continuation of Neural Networks. Artificial Neural Networks. Lecture 24: Learning 3. Victor R.

Neural Network Learning. Today s Lecture. Continuation of Neural Networks. Artificial Neural Networks. Lecture 24: Learning 3. Victor R. Lecture 24: Learning 3 Victor R. Lesser CMPSCI 683 Fall 2010 Today s Lecture Continuation of Neural Networks Artificial Neural Networks Compose of nodes/units connected by links Each link has a numeric

More information

Build a system health check for Db2 using IBM Machine Learning for z/os

Build a system health check for Db2 using IBM Machine Learning for z/os Build a system health check for Db2 using IBM Machine Learning for z/os Jonathan Sloan Senior Analytics Architect, IBM Analytics Agenda A brief machine learning overview The Db2 ITOA model solutions template

More information

Learning to Match. Jun Xu, Zhengdong Lu, Tianqi Chen, Hang Li

Learning to Match. Jun Xu, Zhengdong Lu, Tianqi Chen, Hang Li Learning to Match Jun Xu, Zhengdong Lu, Tianqi Chen, Hang Li 1. Introduction The main tasks in many applications can be formalized as matching between heterogeneous objects, including search, recommendation,

More information

CS229 Final Project: Predicting Expected Response Times

CS229 Final Project: Predicting Expected  Response Times CS229 Final Project: Predicting Expected Email Response Times Laura Cruz-Albrecht (lcruzalb), Kevin Khieu (kkhieu) December 15, 2017 1 Introduction Each day, countless emails are sent out, yet the time

More information

Deep Learning Applications

Deep Learning Applications October 20, 2017 Overview Supervised Learning Feedforward neural network Convolution neural network Recurrent neural network Recursive neural network (Recursive neural tensor network) Unsupervised Learning

More information

Predict the Likelihood of Responding to Direct Mail Campaign in Consumer Lending Industry

Predict the Likelihood of Responding to Direct Mail Campaign in Consumer Lending Industry Predict the Likelihood of Responding to Direct Mail Campaign in Consumer Lending Industry Jincheng Cao, SCPD Jincheng@stanford.edu 1. INTRODUCTION When running a direct mail campaign, it s common practice

More information

CS535 Big Data Fall 2017 Colorado State University 10/10/2017 Sangmi Lee Pallickara Week 8- A.

CS535 Big Data Fall 2017 Colorado State University   10/10/2017 Sangmi Lee Pallickara Week 8- A. CS535 Big Data - Fall 2017 Week 8-A-1 CS535 BIG DATA FAQs Term project proposal New deadline: Tomorrow PA1 demo PART 1. BATCH COMPUTING MODELS FOR BIG DATA ANALYTICS 5. ADVANCED DATA ANALYTICS WITH APACHE

More information

Supervised Link Prediction with Path Scores

Supervised Link Prediction with Path Scores Supervised Link Prediction with Path Scores Wanzi Zhou Stanford University wanziz@stanford.edu Yangxin Zhong Stanford University yangxin@stanford.edu Yang Yuan Stanford University yyuan16@stanford.edu

More information

Learning Social Graph Topologies using Generative Adversarial Neural Networks

Learning Social Graph Topologies using Generative Adversarial Neural Networks Learning Social Graph Topologies using Generative Adversarial Neural Networks Sahar Tavakoli 1, Alireza Hajibagheri 1, and Gita Sukthankar 1 1 University of Central Florida, Orlando, Florida sahar@knights.ucf.edu,alireza@eecs.ucf.edu,gitars@eecs.ucf.edu

More information

10703 Deep Reinforcement Learning and Control

10703 Deep Reinforcement Learning and Control 10703 Deep Reinforcement Learning and Control Russ Salakhutdinov Machine Learning Department rsalakhu@cs.cmu.edu Policy Gradient I Used Materials Disclaimer: Much of the material and slides for this lecture

More information

CS294-1 Assignment 2 Report

CS294-1 Assignment 2 Report CS294-1 Assignment 2 Report Keling Chen and Huasha Zhao February 24, 2012 1 Introduction The goal of this homework is to predict a users numeric rating for a book from the text of the user s review. The

More information

Graph Neural Network. learning algorithm and applications. Shujia Zhang

Graph Neural Network. learning algorithm and applications. Shujia Zhang Graph Neural Network learning algorithm and applications Shujia Zhang What is Deep Learning? Enable computers to mimic human behaviour Artificial Intelligence Machine Learning Subset of ML algorithms using

More information

Slides credited from Dr. David Silver & Hung-Yi Lee

Slides credited from Dr. David Silver & Hung-Yi Lee Slides credited from Dr. David Silver & Hung-Yi Lee Review Reinforcement Learning 2 Reinforcement Learning RL is a general purpose framework for decision making RL is for an agent with the capacity to

More information

Motivation. Problem: With our linear methods, we can train the weights but not the basis functions: Activator Trainable weight. Fixed basis function

Motivation. Problem: With our linear methods, we can train the weights but not the basis functions: Activator Trainable weight. Fixed basis function Neural Networks Motivation Problem: With our linear methods, we can train the weights but not the basis functions: Activator Trainable weight Fixed basis function Flashback: Linear regression Flashback:

More information

Deep Learning for Computer Vision II

Deep Learning for Computer Vision II IIIT Hyderabad Deep Learning for Computer Vision II C. V. Jawahar Paradigm Shift Feature Extraction (SIFT, HoG, ) Part Models / Encoding Classifier Sparrow Feature Learning Classifier Sparrow L 1 L 2 L

More information

arxiv: v1 [cs.db] 22 Mar 2018

arxiv: v1 [cs.db] 22 Mar 2018 Learning State Representations for Query Optimization with Deep Reinforcement Learning Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, S. Sathiya Keerthi + University of Washington, Microsoft, Criteo

More information

CS224W Project: Recommendation System Models in Product Rating Predictions

CS224W Project: Recommendation System Models in Product Rating Predictions CS224W Project: Recommendation System Models in Product Rating Predictions Xiaoye Liu xiaoye@stanford.edu Abstract A product recommender system based on product-review information and metadata history

More information

Lecture 20: Neural Networks for NLP. Zubin Pahuja

Lecture 20: Neural Networks for NLP. Zubin Pahuja Lecture 20: Neural Networks for NLP Zubin Pahuja zpahuja2@illinois.edu courses.engr.illinois.edu/cs447 CS447: Natural Language Processing 1 Today s Lecture Feed-forward neural networks as classifiers simple

More information

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013 ISSN:

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013 ISSN: Semi Automatic Annotation Exploitation Similarity of Pics in i Personal Photo Albums P. Subashree Kasi Thangam 1 and R. Rosy Angel 2 1 Assistant Professor, Department of Computer Science Engineering College,

More information

Using Machine Learning to Optimize Storage Systems

Using Machine Learning to Optimize Storage Systems Using Machine Learning to Optimize Storage Systems Dr. Kiran Gunnam 1 Outline 1. Overview 2. Building Flash Models using Logistic Regression. 3. Storage Object classification 4. Storage Allocation recommendation

More information

Seq2SQL: Generating Structured Queries from Natural Language Using Reinforcement Learning

Seq2SQL: Generating Structured Queries from Natural Language Using Reinforcement Learning Seq2SQL: Generating Structured Queries from Natural Language Using Reinforcement Learning V. Zhong, C. Xiong, R. Socher Salesforce Research arxiv: 1709.00103 Reviewed by : Bill Zhang University of Virginia

More information

Introduction to Objective Analysis

Introduction to Objective Analysis Chapter 4 Introduction to Objective Analysis Atmospheric data are routinely collected around the world but observation sites are located rather randomly from a spatial perspective. On the other hand, most

More information

Structured Learning. Jun Zhu

Structured Learning. Jun Zhu Structured Learning Jun Zhu Supervised learning Given a set of I.I.D. training samples Learn a prediction function b r a c e Supervised learning (cont d) Many different choices Logistic Regression Maximum

More information

COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 6: k-nn Cross-validation Regularization

COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 6: k-nn Cross-validation Regularization COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18 Lecture 6: k-nn Cross-validation Regularization LEARNING METHODS Lazy vs eager learning Eager learning generalizes training data before

More information

Scalable Influence Maximization in Social Networks under the Linear Threshold Model

Scalable Influence Maximization in Social Networks under the Linear Threshold Model Scalable Influence Maximization in Social Networks under the Linear Threshold Model Wei Chen Microsoft Research Asia Yifei Yuan Li Zhang In collaboration with University of Pennsylvania Microsoft Research

More information

Opening the Black Box Data Driven Visualizaion of Neural N

Opening the Black Box Data Driven Visualizaion of Neural N Opening the Black Box Data Driven Visualizaion of Neural Networks September 20, 2006 Aritificial Neural Networks Limitations of ANNs Use of Visualization (ANNs) mimic the processes found in biological

More information

LEARNING A SPARSE DICTIONARY OF VIDEO STRUCTURE FOR ACTIVITY MODELING. Nandita M. Nayak, Amit K. Roy-Chowdhury. University of California, Riverside

LEARNING A SPARSE DICTIONARY OF VIDEO STRUCTURE FOR ACTIVITY MODELING. Nandita M. Nayak, Amit K. Roy-Chowdhury. University of California, Riverside LEARNING A SPARSE DICTIONARY OF VIDEO STRUCTURE FOR ACTIVITY MODELING Nandita M. Nayak, Amit K. Roy-Chowdhury University of California, Riverside ABSTRACT We present an approach which incorporates spatiotemporal

More information

An RSSI Gradient-based AP Localization Algorithm

An RSSI Gradient-based AP Localization Algorithm An RSSI Gradient-based AP Localization Algorithm Presenter: Cheng-Xuan, Wu Year: 2014, Volume: 11, Issue: 2 Pages: 100-108, DOI: 10.1109/CC.2014.6821742 Cited by: Papers (2) IEEE Journals & Magazines Outline

More information

Collaborative filtering models for recommendations systems

Collaborative filtering models for recommendations systems Collaborative filtering models for recommendations systems Nikhil Johri, Zahan Malkani, and Ying Wang Abstract Modern retailers frequently use recommendation systems to suggest products of interest to

More information

CS224W Final Report Emergence of Global Status Hierarchy in Social Networks

CS224W Final Report Emergence of Global Status Hierarchy in Social Networks CS224W Final Report Emergence of Global Status Hierarchy in Social Networks Group 0: Yue Chen, Jia Ji, Yizheng Liao December 0, 202 Introduction Social network analysis provides insights into a wide range

More information

CS381V Experiment Presentation. Chun-Chen Kuo

CS381V Experiment Presentation. Chun-Chen Kuo CS381V Experiment Presentation Chun-Chen Kuo The Paper Indoor Segmentation and Support Inference from RGBD Images. N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. ECCV 2012. 50 100 150 200 250 300 350

More information

Markov Random Fields and Gibbs Sampling for Image Denoising

Markov Random Fields and Gibbs Sampling for Image Denoising Markov Random Fields and Gibbs Sampling for Image Denoising Chang Yue Electrical Engineering Stanford University changyue@stanfoed.edu Abstract This project applies Gibbs Sampling based on different Markov

More information

Pseudo-Implicit Feedback for Alleviating Data Sparsity in Top-K Recommendation

Pseudo-Implicit Feedback for Alleviating Data Sparsity in Top-K Recommendation Pseudo-Implicit Feedback for Alleviating Data Sparsity in Top-K Recommendation Yun He, Haochen Chen, Ziwei Zhu, James Caverlee Department of Computer Science and Engineering, Texas A&M University Department

More information

Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models

Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models DB Tsai Steven Hillion Outline Introduction Linear / Nonlinear Classification Feature Engineering - Polynomial Expansion Big-data

More information

CS 8520: Artificial Intelligence. Machine Learning 2. Paula Matuszek Fall, CSC 8520 Fall Paula Matuszek

CS 8520: Artificial Intelligence. Machine Learning 2. Paula Matuszek Fall, CSC 8520 Fall Paula Matuszek CS 8520: Artificial Intelligence Machine Learning 2 Paula Matuszek Fall, 2015!1 Regression Classifiers We said earlier that the task of a supervised learning system can be viewed as learning a function

More information

DIAL: A Distributed Adaptive-Learning Routing Method in VDTNs

DIAL: A Distributed Adaptive-Learning Routing Method in VDTNs : A Distributed Adaptive-Learning Routing Method in VDTNs Bo Wu, Haiying Shen and Kang Chen Department of Electrical and Computer Engineering Clemson University, Clemson, South Carolina 29634 {bwu2, shenh,

More information

Constrained Convolutional Neural Networks for Weakly Supervised Segmentation. Deepak Pathak, Philipp Krähenbühl and Trevor Darrell

Constrained Convolutional Neural Networks for Weakly Supervised Segmentation. Deepak Pathak, Philipp Krähenbühl and Trevor Darrell Constrained Convolutional Neural Networks for Weakly Supervised Segmentation Deepak Pathak, Philipp Krähenbühl and Trevor Darrell 1 Multi-class Image Segmentation Assign a class label to each pixel in

More information

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 Preface to the Second Edition Preface to the First Edition vii xi 1 Introduction 1 2 Overview of Supervised Learning 9 2.1 Introduction... 9 2.2 Variable Types and Terminology... 9 2.3 Two Simple Approaches

More information

Efficient Iterative Semi-supervised Classification on Manifold

Efficient Iterative Semi-supervised Classification on Manifold . Efficient Iterative Semi-supervised Classification on Manifold... M. Farajtabar, H. R. Rabiee, A. Shaban, A. Soltani-Farani Sharif University of Technology, Tehran, Iran. Presented by Pooria Joulani

More information

Conflict Graphs for Parallel Stochastic Gradient Descent

Conflict Graphs for Parallel Stochastic Gradient Descent Conflict Graphs for Parallel Stochastic Gradient Descent Darshan Thaker*, Guneet Singh Dhillon* Abstract We present various methods for inducing a conflict graph in order to effectively parallelize Pegasos.

More information

Personalized Web Search

Personalized Web Search Personalized Web Search Dhanraj Mavilodan (dhanrajm@stanford.edu), Kapil Jaisinghani (kjaising@stanford.edu), Radhika Bansal (radhika3@stanford.edu) Abstract: With the increase in the diversity of contents

More information

Exploiting ERP Systems in Enterprise Search

Exploiting ERP Systems in Enterprise Search Exploiting ERP Systems in Enterprise Search Diego Tosato Eurosystem S.p.a.,Via Newton 21, Villorba (Treviso), Italy diego.tosato@eurosystem.it Abstract. Enterprise resource planning (ERP) systems are the

More information

Supervised Learning in Neural Networks (Part 2)

Supervised Learning in Neural Networks (Part 2) Supervised Learning in Neural Networks (Part 2) Multilayer neural networks (back-propagation training algorithm) The input signals are propagated in a forward direction on a layer-bylayer basis. Learning

More information

NDoT: Nearest Neighbor Distance Based Outlier Detection Technique

NDoT: Nearest Neighbor Distance Based Outlier Detection Technique NDoT: Nearest Neighbor Distance Based Outlier Detection Technique Neminath Hubballi 1, Bidyut Kr. Patra 2, and Sukumar Nandi 1 1 Department of Computer Science & Engineering, Indian Institute of Technology

More information

Fraud Detection of Mobile Apps

Fraud Detection of Mobile Apps Fraud Detection of Mobile Apps Urmila Aware*, Prof. Amruta Deshmuk** *(Student, Dept of Computer Engineering, Flora Institute Of Technology Pune, Maharashtra, India **( Assistant Professor, Dept of Computer

More information

Online Social Networks and Media

Online Social Networks and Media Online Social Networks and Media Absorbing Random Walks Link Prediction Why does the Power Method work? If a matrix R is real and symmetric, it has real eigenvalues and eigenvectors: λ, w, λ 2, w 2,, (λ

More information

Review on Data Mining Techniques for Intrusion Detection System

Review on Data Mining Techniques for Intrusion Detection System Review on Data Mining Techniques for Intrusion Detection System Sandeep D 1, M. S. Chaudhari 2 Research Scholar, Dept. of Computer Science, P.B.C.E, Nagpur, India 1 HoD, Dept. of Computer Science, P.B.C.E,

More information

PERSONALIZED TAG RECOMMENDATION

PERSONALIZED TAG RECOMMENDATION PERSONALIZED TAG RECOMMENDATION Ziyu Guan, Xiaofei He, Jiajun Bu, Qiaozhu Mei, Chun Chen, Can Wang Zhejiang University, China Univ. of Illinois/Univ. of Michigan 1 Booming of Social Tagging Applications

More information

Machine Learning for User Behavior Anomaly Detection EUGENE NEYOLOV, HEAD OF R&D

Machine Learning for User Behavior Anomaly Detection EUGENE NEYOLOV, HEAD OF R&D Machine Learning for User Behavior Anomaly Detection EUGENE NEYOLOV, HEAD OF R&D 2 AUTHOR Eugene Neyolov HEAD OF R&D Security engineer and analyst leading applied research projects in security monitoring,

More information

ACM MM Dong Liu, Shuicheng Yan, Yong Rui and Hong-Jiang Zhang

ACM MM Dong Liu, Shuicheng Yan, Yong Rui and Hong-Jiang Zhang ACM MM 2010 Dong Liu, Shuicheng Yan, Yong Rui and Hong-Jiang Zhang Harbin Institute of Technology National University of Singapore Microsoft Corporation Proliferation of images and videos on the Internet

More information

R. R. Badre Associate Professor Department of Computer Engineering MIT Academy of Engineering, Pune, Maharashtra, India

R. R. Badre Associate Professor Department of Computer Engineering MIT Academy of Engineering, Pune, Maharashtra, India Volume 7, Issue 4, April 2017 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Web Service Ranking

More information

Massive Data Analysis

Massive Data Analysis Professor, Department of Electrical and Computer Engineering Tennessee Technological University February 25, 2015 Big Data This talk is based on the report [1]. The growth of big data is changing that

More information

Neural Episodic Control. Alexander pritzel et al (presented by Zura Isakadze)

Neural Episodic Control. Alexander pritzel et al (presented by Zura Isakadze) Neural Episodic Control Alexander pritzel et al. 2017 (presented by Zura Isakadze) Reinforcement Learning Image from reinforce.io RL Example - Atari Games Observed States Images. Internal state - RAM.

More information

arxiv: v1 [cs.si] 12 Jan 2019

arxiv: v1 [cs.si] 12 Jan 2019 Predicting Diffusion Reach Probabilities via Representation Learning on Social Networks Furkan Gursoy furkan.gursoy@boun.edu.tr Ahmet Onur Durahim onur.durahim@boun.edu.tr arxiv:1901.03829v1 [cs.si] 12

More information

PARALLELIZED IMPLEMENTATION OF LOGISTIC REGRESSION USING MPI

PARALLELIZED IMPLEMENTATION OF LOGISTIC REGRESSION USING MPI PARALLELIZED IMPLEMENTATION OF LOGISTIC REGRESSION USING MPI CSE 633 PARALLEL ALGORITHMS BY PAVAN G JOSHI What is machine learning? Machine learning is a type of artificial intelligence (AI) that provides

More information

Applying Supervised Learning

Applying Supervised Learning Applying Supervised Learning When to Consider Supervised Learning A supervised learning algorithm takes a known set of input data (the training set) and known responses to the data (output), and trains

More information

Citation Prediction in Heterogeneous Bibliographic Networks

Citation Prediction in Heterogeneous Bibliographic Networks Citation Prediction in Heterogeneous Bibliographic Networks Xiao Yu Quanquan Gu Mianwei Zhou Jiawei Han University of Illinois at Urbana-Champaign {xiaoyu1, qgu3, zhou18, hanj}@illinois.edu Abstract To

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Image Data: Classification via Neural Networks Instructor: Yizhou Sun yzsun@ccs.neu.edu November 19, 2015 Methods to Learn Classification Clustering Frequent Pattern Mining

More information

Introduction Types of Social Network Analysis Social Networks in the Online Age Data Mining for Social Network Analysis Applications Conclusion

Introduction Types of Social Network Analysis Social Networks in the Online Age Data Mining for Social Network Analysis Applications Conclusion Introduction Types of Social Network Analysis Social Networks in the Online Age Data Mining for Social Network Analysis Applications Conclusion References Social Network Social Network Analysis Sociocentric

More information

Meta-path based Multi-Network Collective Link Prediction

Meta-path based Multi-Network Collective Link Prediction Meta-path based Multi-Network Collective Link Prediction Jiawei Zhang Big Data and Social Computing (BDSC) Lab University of Illinois at Chicago Chicago, IL, USA jzhan9@uic.edu Philip S. Yu Big Data and

More information

Bilevel Sparse Coding

Bilevel Sparse Coding Adobe Research 345 Park Ave, San Jose, CA Mar 15, 2013 Outline 1 2 The learning model The learning algorithm 3 4 Sparse Modeling Many types of sensory data, e.g., images and audio, are in high-dimensional

More information

A Model Based Neuron Detection Approach Using Sparse Location Priors

A Model Based Neuron Detection Approach Using Sparse Location Priors A Model Based Neuron Detection Approach Using Sparse Location Priors Electronic Imaging, Burlingame, CA 30 th January 2017 Soumendu Majee 1 Dong Hye Ye 1 Gregery T. Buzzard 2 Charles A. Bouman 1 1 Department

More information

For Monday. Read chapter 18, sections Homework:

For Monday. Read chapter 18, sections Homework: For Monday Read chapter 18, sections 10-12 The material in section 8 and 9 is interesting, but we won t take time to cover it this semester Homework: Chapter 18, exercise 25 a-b Program 4 Model Neuron

More information

Why do we need graph processing?

Why do we need graph processing? Why do we need graph processing? Community detection: suggest followers? Determine what products people will like Count how many people are in different communities (polling?) Graphs are Everywhere Group

More information

Clustering will not be satisfactory if:

Clustering will not be satisfactory if: Clustering will not be satisfactory if: -- in the input space the clusters are not linearly separable; -- the distance measure is not adequate; -- the assumptions limit the shape or the number of the clusters.

More information

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides Deep Learning in Visual Recognition Thanks Da Zhang for the slides Deep Learning is Everywhere 2 Roadmap Introduction Convolutional Neural Network Application Image Classification Object Detection Object

More information

291 Programming Assignment #3

291 Programming Assignment #3 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

RESTORING ARTIFACT-FREE MICROSCOPY IMAGE SEQUENCES. Robotics Institute Carnegie Mellon University 5000 Forbes Ave, Pittsburgh, PA 15213, USA

RESTORING ARTIFACT-FREE MICROSCOPY IMAGE SEQUENCES. Robotics Institute Carnegie Mellon University 5000 Forbes Ave, Pittsburgh, PA 15213, USA RESTORING ARTIFACT-FREE MICROSCOPY IMAGE SEQUENCES Zhaozheng Yin Takeo Kanade Robotics Institute Carnegie Mellon University 5000 Forbes Ave, Pittsburgh, PA 15213, USA ABSTRACT Phase contrast and differential

More information

Introduction to Data Mining

Introduction to Data Mining Introduction to Data Mining Lecture #11: Link Analysis 3 Seoul National University 1 In This Lecture WebSpam: definition and method of attacks TrustRank: how to combat WebSpam HITS algorithm: another algorithm

More information

House Price Prediction Using LSTM

House Price Prediction Using LSTM House Price Prediction Using LSTM Xiaochen Chen Lai Wei The Hong Kong University of Science and Technology Jiaxin Xu ABSTRACT In this paper, we use the house price data ranging from January 2004 to October

More information

Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network. Nathan Sun CIS601

Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network. Nathan Sun CIS601 Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network Nathan Sun CIS601 Introduction Face ID is complicated by alterations to an individual s appearance Beard,

More information

Scalable Network Analysis

Scalable Network Analysis Inderjit S. Dhillon University of Texas at Austin COMAD, Ahmedabad, India Dec 20, 2013 Outline Unstructured Data - Scale & Diversity Evolving Networks Machine Learning Problems arising in Networks Recommender

More information

Online Algorithm Comparison points

Online Algorithm Comparison points CS446: Machine Learning Spring 2017 Problem Set 3 Handed Out: February 15 th, 2017 Due: February 27 th, 2017 Feel free to talk to other members of the class in doing the homework. I am more concerned that

More information

Machine Learning With Python. Bin Chen Nov. 7, 2017 Research Computing Center

Machine Learning With Python. Bin Chen Nov. 7, 2017 Research Computing Center Machine Learning With Python Bin Chen Nov. 7, 2017 Research Computing Center Outline Introduction to Machine Learning (ML) Introduction to Neural Network (NN) Introduction to Deep Learning NN Introduction

More information