Improving Retrieval of IOPs from Ocean Color Remote Sensing Through Explicit Consideration of the Volume Scattering Function

Size: px
Start display at page:

Download "Improving Retrieval of IOPs from Ocean Color Remote Sensing Through Explicit Consideration of the Volume Scattering Function"

Transcription

1 Improving Retrieval of IOPs from Ocean Color Remote Sensing Through Explicit Consideration of the Volume Scattering Function PI: Mike Twardowski Co-I: Jim Sullivan Contributors: Alberto Tonizzo, Nicole Stockley, Scott Freeman, Matt Slivkoff

2 Summary of Project Objectives VSF shape analysis IOP-AOP closure analysis with almost fully parameterized, high quality data sets Performance assessment of inversion algorithms with explicit consideration of the VSF 3-Y project initiated Sep 2015

3 VSF measurements Sequoia LISST 0.01 to 13.2 deg 32 log-space increments MASCOT 10 to 170 deg 10 degincrements

4 ~14K 1-m binned MASCOT+LISST VSFs from 10 different data sets OCVAL NY Bight 11/2007 RADYO Scripps 01/2008 OCVAL NY bight 07/2008 RADYO SB Channel 09/2008 SORTIE Ligurian Sea 10/2008 RADYO Hawaii 09/2009 ORIENT E. Sound 09/2013 NIH HAB Lake Erie 08/2014 SABOR N. Atlantic 08/2014 PACE N. Sea 04/2015 Data merged and binned to 1 m Reassessing LISST data from 2013-

5 VSF shape analysis: next steps Clean up LISST data, shift, refine protocol to concatenate with MASCOT Analytically parameterize full VSF shape Classification for water types Present at OS2016 Publish

6 Closure assessment: data sets NASA SORTIE project [Radiometry: McClean/Lewis/Trees Hyperpros] Ligurian Sea (adjacent to BUOSSOLE) Hawaii (adjacent to MOBY site) San Diego, 10 mi offshore NASA OC validation: NY Bight [Radiometry: Hooker SubOps] May 2007 Nov 2007 Jul 2008

7 Data input into RTE Hydrolight Interface is focused on ac9/s (c and a) and b b data Scattering error for absorption data c acceptance issues Choose phase function to test (e.g., FF or measured) Discretization of PF hardcoded for Petzold angles, had to be rewritten Measured phase function cannot vary with depth Standard water values in HL are not current Bottom line: You cannot feed HL fully spectrally, angularly, depth resolved total VSF and total absorption Kattawar Monte Carlo code Zege RayXP code Others?

8 absorption spectra with different scattering corrections NY Bight 11/2007 stn 6 Surface 1-m ave FF phase function measured phase function Absorption correction matters HL FF vs measured PF matters Magnitude is not terrible Spectral shape is not terrible, too steep blue-green

9 absorption spectra with different scattering corrections NY Bight 11/2007 stn 8 Surface 1-m ave FF phase function measured phase function

10 absorption spectra with different scatt corr Hawaii 03/2007 very clear Surface 1-m ave FF phase function measured phase function

11 absorption spectra with different scatt corr San Diego 01/2008 clear Surface 1-m ave FF phase function measured phase function

12 absorption spectra with different scattering corrections Ligurian Sea 10/2008 clear water Surface 1-m ave FF phase function measured phase function

13 Data set summary: OCVAL 11/2007 Correction RMSE Pct. Diff MT % BL % MT % Data are not considered in the fitting

14 Data set summary: Hawaii 03/2007 Correction RMSE Pct. Diff MT % MT % BL % Data are not considered in the fitting

15 Data set summary: Ligurian Sea 10/2008 Correction RMSE Pct. Diff RZ % MT % MT % BL % Data are not considered in the fitting

16 Data set summary: San Diego 01/2008 Correction RMSE Pct. Diff RZ % BL % MT % MT % Data are not considered in the fitting

17 Closure assessments: next steps Continue vetting input IOP and radiometry data, input uncertainties Bootstrapping: to better understand where residual biases in the data are coming from, i.e., in summary plots where slopes deviate from 1 or regression is displaced adjusting VSF by +/-2%, 5%, and 10% adjusting apg by +/-0.002, +/-0.005, and +/ /m (cal assessment) adjusting apg by +/-2%, +/-5% (scatter correction assessment) Assess with other RTE models Parameterize overall uncertainties Publish Thank you

18 end

19 Considerations for PACE Also have extensive multi-angle DOLP data that has been analyzed to different degrees for some pubs In terms of polarimetry angles, resolving as far into the forward as possible would be useful Generically, more information content likely in linear polarization (DOLP) information than multi-angle backscatter Thank you

2017 Summer Course Optical Oceanography and Ocean Color Remote Sensing. Overview of HydroLight and EcoLight

2017 Summer Course Optical Oceanography and Ocean Color Remote Sensing. Overview of HydroLight and EcoLight 2017 Summer Course Optical Oceanography and Ocean Color Remote Sensing Curtis Mobley Overview of HydroLight and EcoLight Darling Marine Center, University of Maine July 2017 Copyright 2017 by Curtis D.

More information

Retrieval of optical and microphysical properties of ocean constituents using polarimetric remote sensing

Retrieval of optical and microphysical properties of ocean constituents using polarimetric remote sensing Retrieval of optical and microphysical properties of ocean constituents using polarimetric remote sensing Presented by: Amir Ibrahim Optical Remote Sensing Laboratory, The City College of the City University

More information

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements Dick K.P. Yue Center for Ocean Engineering

More information

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Introduction to Remote Sensing

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Introduction to Remote Sensing 2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing Introduction to Remote Sensing Curtis Mobley Delivered at the Darling Marine Center, University of Maine July 2017 Copyright 2017

More information

Curt Mobley from my summer course lecture

Curt Mobley from my summer course lecture This is a placeholder for the web book section on polarization Polari zation Curt Mobley from my summer course lecture from Ken Voss PhD Dissertation Fun with Polarization (1) Using polarization

More information

Analysis of the In-Water and Sky Radiance Distribution Data Acquired During the Radyo Project

Analysis of the In-Water and Sky Radiance Distribution Data Acquired During the Radyo Project DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Analysis of the In-Water and Sky Radiance Distribution Data Acquired During the Radyo Project Kenneth J. Voss Physics Department,

More information

Analysis of the In-Water and Sky Radiance Distribution Data Acquired During the Radyo Project

Analysis of the In-Water and Sky Radiance Distribution Data Acquired During the Radyo Project DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Analysis of the In-Water and Sky Radiance Distribution Data Acquired During the Radyo Project Kenneth J. Voss Physics Department,

More information

Exploring Techniques for Improving Retrievals of Bio-optical Properties of Coastal Waters

Exploring Techniques for Improving Retrievals of Bio-optical Properties of Coastal Waters DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Exploring Techniques for Improving Retrievals of Bio-optical Properties of Coastal Waters Samir Ahmed Department of Electrical

More information

Uncertainties in the Products of Ocean-Colour Remote Sensing

Uncertainties in the Products of Ocean-Colour Remote Sensing Chapter 3 Uncertainties in the Products of Ocean-Colour Remote Sensing Emmanuel Boss and Stephane Maritorena Data products retrieved from the inversion of in situ or remotely sensed oceancolour data are

More information

Development of datasets and algorithms for hyperspectral IOP products from the PACE ocean color measurements

Development of datasets and algorithms for hyperspectral IOP products from the PACE ocean color measurements Development of datasets and algorithms for hyperspectral IOP products from the PACE ocean color measurements Principal Investigator: Co-Investigators: Collaborator: ZhongPing Lee Michael Ondrusek NOAA/NESDIS/STAR

More information

Phase function effects on oceanic light fields

Phase function effects on oceanic light fields Phase function effects on oceanic light fields Curtis D. Mobley, Lydia K. Sundman, and Emmanuel Boss Numerical simulations show that underwater radiances, irradiances, and reflectances are sensitive to

More information

Development of datasets and algorithms for hyperspectral IOP products from the PACE ocean color measurements

Development of datasets and algorithms for hyperspectral IOP products from the PACE ocean color measurements Development of datasets and algorithms for hyperspectral IOP products from the PACE ocean color measurements Principal Inves.gator: Co- Inves.gators: Collaborator: ZhongPing Lee Michael Ondrusek NOAA/NESDIS/STAR

More information

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements Dick K.P. Yue Center for Ocean Engineering

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean A Direct Simulation-Based Study of Radiance in a Dynamic Ocean Dick K.P. Yue Center for Ocean Engineering Massachusetts Institute of Technology Room 5-321, 77 Massachusetts Ave, Cambridge, MA 02139 phone:

More information

Continued Development of the Look-up-table (LUT) Methodology For Interpretation of Remotely Sensed Ocean Color Data

Continued Development of the Look-up-table (LUT) Methodology For Interpretation of Remotely Sensed Ocean Color Data Continued Development of the Look-up-table (LUT) Methodology For Interpretation of Remotely Sensed Ocean Color Data Curtis D. Mobley Sequoia Scientific, Inc. 2700 Richards Road, Suite 107 Bellevue, WA

More information

SENSITIVITY ANALYSIS OF SEMI-ANALYTICAL MODELS OF DIFFUSE ATTENTUATION OF DOWNWELLING IRRADIANCE IN LAKE BALATON

SENSITIVITY ANALYSIS OF SEMI-ANALYTICAL MODELS OF DIFFUSE ATTENTUATION OF DOWNWELLING IRRADIANCE IN LAKE BALATON SENSITIVITY ANALYSIS OF SEMI-ANALYTICAL MODELS OF DIFFUSE ATTENTUATION OF DOWNWELLING IRRADIANCE IN LAKE BALATON Van der Zande D. (1), Blaas M. (2), Nechad B. (1) (1) Royal Belgian Institute of Natural

More information

CLEAR VISION ON TURBID WATER: THE NAIVASHA LAKE

CLEAR VISION ON TURBID WATER: THE NAIVASHA LAKE CLEAR VISION ON TURBID WATER: THE NAIVASHA LAKE M.S. Salama S.SALAMA@UTWNTE.NL June 13-14, 2013 Outlines Study Area The problem Objectives Field data Hydro optical models Empirical: CDOM, Chl-a and KD

More information

Lecture 1a Overview of Radiometry

Lecture 1a Overview of Radiometry Lecture 1a Overview of Radiometry Curtis Mobley Vice President for Science Senior Scientist Sequoia Scientific, Inc. Bellevue, Washington 98005 USA curtis.mobley@sequoiasci.com IOCCG Course Villefranche-sur-Mer,

More information

REMOTE SENSING OF VERTICAL IOP STRUCTURE

REMOTE SENSING OF VERTICAL IOP STRUCTURE REMOTE SENSING OF VERTICAL IOP STRUCTURE W. Scott Pegau College of Oceanic and Atmospheric Sciences Ocean. Admin. Bldg. 104 Oregon State University Corvallis, OR 97331-5503 Phone: (541) 737-5229 fax: (541)

More information

Lecture 6 Introduction to Scattering

Lecture 6 Introduction to Scattering Lecture 6 Introduction to Scattering Collin Roesler http://www.whoi.edu/cms/images/mediarelations/turbid_high_316298.jpg 12 July 2017 Scattering Theory B = scatterance b= scattering coefficient (m -1 )

More information

MERIS Case 1 Validation ->

MERIS Case 1 Validation -> MAVT meeting 20-24 March 2006 MERIS Case 1 Validation -> Performance of the NN case 2 water algorithm for case 1 water Presenter: Roland Doerffer GKSS Forschungszentrum, Institute for Coastal Research

More information

Analysis of Hyperspectral Data for Coastal Bathymetry and Water Quality

Analysis of Hyperspectral Data for Coastal Bathymetry and Water Quality Analysis of Hyperspectral Data for Coastal Bathymetry and Water Quality William Philpot Cornell University 453 Hollister Hall, Ithaca, NY 14853 phone: (607) 255-0801 fax: (607) 255-9004 e-mail: wdp2@cornell.edu

More information

Calibration Techniques for NASA s Remote Sensing Ocean Color Sensors

Calibration Techniques for NASA s Remote Sensing Ocean Color Sensors Calibration Techniques for NASA s Remote Sensing Ocean Color Sensors Gerhard Meister, Gene Eplee, Bryan Franz, Sean Bailey, Chuck McClain NASA Code 614.2 Ocean Biology Processing Group October 21st, 2010

More information

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement Lian Shen Department of Mechanical Engineering

More information

The variation of the polarized downwelling radiance distribution with depth in the coastal and clear ocean

The variation of the polarized downwelling radiance distribution with depth in the coastal and clear ocean JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2011jc007320, 2011 The variation of the polarized downwelling radiance distribution with depth in the coastal and clear ocean Purushottam Bhandari,

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean 1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. A Direct Simulation-Based Study of Radiance in a Dynamic Ocean LONG-TERM GOALS Dick K.P. Yue Center for Ocean Engineering

More information

Biological Response to the Dynamic Spectral-Polarized Underwater Light Field

Biological Response to the Dynamic Spectral-Polarized Underwater Light Field DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Biological Response to the Dynamic Spectral-Polarized Underwater Light Field Molly E. Cummings Section of Integrative Biology

More information

Shallow-water Remote Sensing: Lecture 1: Overview

Shallow-water Remote Sensing: Lecture 1: Overview Shallow-water Remote Sensing: Lecture 1: Overview Curtis Mobley Vice President for Science and Senior Scientist Sequoia Scientific, Inc. Bellevue, WA 98005 curtis.mobley@sequoiasci.com IOCCG Course Villefranche-sur-Mer,

More information

Polarized Downwelling Radiance Distribution Camera System

Polarized Downwelling Radiance Distribution Camera System Polarized Downwelling Radiance Distribution Camera System Kenneth J. Voss Physics Department, University of Miami Coral Gables, Fl. 33124 phone: (305) 284-2323 ext 2 fax: (305) 284-4222 email: voss@physics.miami.edu

More information

The influence of coherent waves on the remotely sensed reflectance

The influence of coherent waves on the remotely sensed reflectance The influence of coherent waves on the remotely sensed reflectance J. Ronald V. Zaneveld and Emmanuel Boss College of Ocean and Atmospheric Sciences, Oregon State University, Corvallis OR 97330 zaneveld@oce.orst.edu,

More information

Improved Global Ocean Color using POLYMER Algorithm

Improved Global Ocean Color using POLYMER Algorithm Improved Global Ocean Color using POLYMER Algorithm François Steinmetz 1 Didier Ramon 1 Pierre-Yves Deschamps 1 Jacques Stum 2 1 Hygeos 2 CLS June 29, 2010 ESA Living Planet Symposium, Bergen, Norway c

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean A Direct Simulation-Based Study of Radiance in a Dynamic Ocean Lian Shen Department of Civil Engineering Johns Hopkins University Baltimore, MD 21218 phone: (410) 516-5033 fax: (410) 516-7473 email: LianShen@jhu.edu

More information

Inversion of R rs to IOPs: where we are & where we (might) want to go

Inversion of R rs to IOPs: where we are & where we (might) want to go Inversion of R rs to IOPs: where we are & where we might want to go Jeremy Werdell NASA Goddard Space Flight Center PACE Science Team Meeting 14-16 Jan 2015 purpose of this presentation 1 provide an opportunity

More information

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement Lian Shen Department of Mechanical Engineering

More information

Continued Development of the Look-up-table (LUT) Methodology For Interpretation of Remotely Sensed Ocean Color Data

Continued Development of the Look-up-table (LUT) Methodology For Interpretation of Remotely Sensed Ocean Color Data Continued Development of the Look-up-table (LUT) Methodology For Interpretation of Remotely Sensed Ocean Color Data W. Paul Bissett Florida Environmental Research Institute 10500 University Center Dr.,

More information

Monte-Carlo modeling used to simulate propagation of photons in a medium

Monte-Carlo modeling used to simulate propagation of photons in a medium Monte-Carlo modeling used to simulate propagation of photons in a medium Nils Haëntjens Ocean Optics Class 2017 based on lectures from Emmanuel Boss and Edouard Leymarie What is Monte Carlo Modeling? Monte

More information

Ocean Optics Inversion Algorithm

Ocean Optics Inversion Algorithm Ocean Optics Inversion Algorithm N. J. McCormick 1 and Eric Rehm 2 1 University of Washington Department of Mechanical Engineering Seattle, WA 98195-26 mccor@u.washington.edu 2 University of Washington

More information

Algorithm Comparison for Shallow-Water Remote Sensing

Algorithm Comparison for Shallow-Water Remote Sensing DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Algorithm Comparison for Shallow-Water Remote Sensing Curtis D. Mobley Sequoia Scientific, Inc. 2700 Richards Road, Suite

More information

Hyperspectral Remote Sensing

Hyperspectral Remote Sensing Hyperspectral Remote Sensing Multi-spectral: Several comparatively wide spectral bands Hyperspectral: Many (could be hundreds) very narrow spectral bands GEOG 4110/5100 30 AVIRIS: Airborne Visible/Infrared

More information

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Apparent Optical Properties and the BRDF

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Apparent Optical Properties and the BRDF 2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing Curtis Mobley Apparent Optical Properties and the BRDF Delivered at the Darling Marine Center, University of Maine July 2017 Copyright

More information

Evaluation of Satellite Ocean Color Data Using SIMBADA Radiometers

Evaluation of Satellite Ocean Color Data Using SIMBADA Radiometers Evaluation of Satellite Ocean Color Data Using SIMBADA Radiometers Robert Frouin Scripps Institution of Oceanography, la Jolla, California OCR-VC Workshop, 21 October 2010, Ispra, Italy The SIMBADA Project

More information

IOCS San Francisco 2015 Uncertainty algorithms for MERIS / OLCI case 2 water products

IOCS San Francisco 2015 Uncertainty algorithms for MERIS / OLCI case 2 water products IOCS San Francisco 2015 Uncertainty algorithms for MERIS / OLCI case 2 water products Roland Doerffer Brockmann Consult The problem of optically complex water high variability of optical properties of

More information

Polarized Downwelling Radiance Distribution Camera System

Polarized Downwelling Radiance Distribution Camera System Polarized Downwelling Radiance Distribution Camera System Kenneth J. Voss Physics Department, University of Miami Coral Gables, Fl. 33124 phone: (305) 284-2323 ext 2 fax: (305) 284-4222 email: voss@physics.miami.edu

More information

HYDROLIGHT 5.2 ECOLIGHT 5.2

HYDROLIGHT 5.2 ECOLIGHT 5.2 HYDROLIGHT 5.2 ECOLIGHT 5.2 technical documentation Curtis D. Mobley Lydia K. Sundman Sequoia Scientific, Inc. First Printing, October 2013 Update Note This version of the the HydroLight-EcoLight Technical

More information

Estimating oceanic primary production using. vertical irradiance and chlorophyll profiles. from ocean gliders in the North Atlantic

Estimating oceanic primary production using. vertical irradiance and chlorophyll profiles. from ocean gliders in the North Atlantic Estimating oceanic primary production using vertical irradiance and chlorophyll profiles from ocean gliders in the North Atlantic Victoria S. Hemsley* 1,2, Timothy J. Smyth 3, Adrian P. Martin 2, Eleanor

More information

Outline Radiometry of Underwater Image Formation

Outline Radiometry of Underwater Image Formation Outline - Introduction - Features and Feature Matching - Geometry of Image Formation - Calibration - Structure from Motion - Dense Stereo - Radiometry of Underwater Image Formation - Conclusion 1 pool

More information

Multi-sensors vicarious calibration activities at CNES

Multi-sensors vicarious calibration activities at CNES Multi-sensors vicarious calibration activities at CNES Patrice Henry, Bertrand Fougnie June 11, 2013 CNES background in image quality monitoring of operational Earth observation systems Since the launch

More information

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Visibility and Lidar Remote Sensing

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Visibility and Lidar Remote Sensing 2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing Curtis Mobley Visibility and Lidar Remote Sensing Delivered at the Darling Marine Center, University of Maine July 2017 Copyright

More information

Preliminary results of an algorithm to determine the total absorption coefficient of water Suresh Thayapurath* a a

Preliminary results of an algorithm to determine the total absorption coefficient of water Suresh Thayapurath* a a Preliminary results of an algorithm to determine the total absorption coefficient of water Suresh Thayapurath* a a, Madhubala Talaulikar, Erwin J.A. Desa 1, Aneesh Lotlikar 2 a National Institute of Oceanography

More information

Increased Underwater Optical Imaging Performance via Multiple Autonomous Underwater Vehicles

Increased Underwater Optical Imaging Performance via Multiple Autonomous Underwater Vehicles Increased Underwater Optical Imaging Performance via Multiple Autonomous Underwater Vehicles Jules S. Jaffe Scripps Institution of Oceanography University of California, San Diego La Jolla, CA 92093-0238

More information

Checking the values using backscatter data

Checking the values using backscatter data A Technique for using Backscatter Imagery to Calibrate your Multibeam sonar Harold Orlinsky Harold@Hypack.com Checking the values using backscatter data The collection of Backscatter is co located with

More information

Optimizing Machine Learning Algorithms for Hyperspectral Very Shallow Water (VSW) Products

Optimizing Machine Learning Algorithms for Hyperspectral Very Shallow Water (VSW) Products Optimizing Machine Learning Algorithms for Hyperspectral Very Shallow Water (VSW) Products W. Paul Bissett Florida Environmental Research Institute 10500 University Center Dr. Suite 140 Tampa, FL 33612

More information

Supplement of Sea-surface dimethylsulfide (DMS) concentration from satellite data at global and regional scales

Supplement of Sea-surface dimethylsulfide (DMS) concentration from satellite data at global and regional scales Supplement of Biogeosciences, 15, 3497 3519, 2018 https://doi.org/10.5194/bg-15-3497-2018-supplement Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Supplement

More information

RADIANCE IN THE OCEAN: EFFECTS OF WAVE SLOPE AND RAMAN SCATTERING NEAR THE SURFACE AND AT DEPTHS THROUGH THE ASYMPTOTIC REGION

RADIANCE IN THE OCEAN: EFFECTS OF WAVE SLOPE AND RAMAN SCATTERING NEAR THE SURFACE AND AT DEPTHS THROUGH THE ASYMPTOTIC REGION RADIANCE IN THE OCEAN: EFFECTS OF WAVE SLOPE AND RAMAN SCATTERING NEAR THE SURFACE AND AT DEPTHS THROUGH THE ASYMPTOTIC REGION A Thesis by JULIE MARIE SLANKER Submitted to the Office of Graduate Studies

More information

A Look-up-Table Approach to Inverting Remotely Sensed Ocean Color Data

A Look-up-Table Approach to Inverting Remotely Sensed Ocean Color Data A Look-up-Table Approach to Inverting Remotely Sensed Ocean Color Data Curtis D. Mobley Sequoia Scientific, Inc. Westpark Technical Center 15317 NE 90th Street Redmond, WA 98052 phone: 425-867-2464 x 109

More information

Toward closure of upwelling radiance in coastal waters

Toward closure of upwelling radiance in coastal waters Toward closure of upwelling radiance in coastal waters Grace C. Chang, Tommy D. Dickey, Curtis D. Mobley, Emmanuel Boss, and W. Scott Pegau We present three methods for deriving water-leaving radiance

More information

Menghua Wang NOAA/NESDIS/STAR Camp Springs, MD 20746, USA

Menghua Wang NOAA/NESDIS/STAR Camp Springs, MD 20746, USA Ocean EDR Product Calibration and Validation Plan Progress Report: VIIRS Ocean Color Algorithm Evaluations and Data Processing and Analyses Define a VIIRS Proxy Data Stream Define the required in situ

More information

Diffuse reflection coefficient of a stratified sea

Diffuse reflection coefficient of a stratified sea Diffuse reflection coefficient of a stratified sea Vladimir I. Haltrin A differential equation of a Riccati type for the diffuse reflection coefficient of a stratified sea is proposed. For a homogeneous

More information

ACOUSTIC MODELING UNDERWATER. and SIMULATION. Paul C. Etter. CRC Press. Taylor & Francis Croup. Taylor & Francis Croup, CRC Press is an imprint of the

ACOUSTIC MODELING UNDERWATER. and SIMULATION. Paul C. Etter. CRC Press. Taylor & Francis Croup. Taylor & Francis Croup, CRC Press is an imprint of the UNDERWATER ACOUSTIC MODELING and SIMULATION Paul C. Etter CRC Press Taylor & Francis Croup Boca Raton London NewYork CRC Press is an imprint of the Taylor & Francis Croup, an informa business Contents

More information

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Monte Carlo Simulation

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Monte Carlo Simulation 2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing Curtis Mobley Monte Carlo Simulation Delivered at the Darling Marine Center, University of Maine July 2017 Copyright 2017 by Curtis

More information

Toward closure of the inherent optical properties

Toward closure of the inherent optical properties JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 100, NO. C7, PAGES 13,193-13,199, JULY 15, 1995 Toward closure of the inherent optical properties of natural waters W. Scott Pegau and J. Ronald V. Zaneveld College

More information

What is Monte Carlo Modeling*?

What is Monte Carlo Modeling*? What is Monte Carlo Modeling*? Monte Carlo Modeling is a statisitcal method used here to simulate radiative transfer by simulating photon (or more exactly light rays/beams) interaction with a medium. MC

More information

High-Resolution Ocean Wave Estimation

High-Resolution Ocean Wave Estimation DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. High-Resolution Ocean Wave Estimation David Walker SRI International 2100 Commonwealth Boulevard, Third Floor Ann Arbor,

More information

Effect of 3-D instrument casing shape on the self-shading of in-water upwelling irradiance

Effect of 3-D instrument casing shape on the self-shading of in-water upwelling irradiance Effect of 3-D instrument casing shape on the self-shading of in-water upwelling irradiance Jacek Piskozub Institute of Oceanology PAS, ul. Powstancow Warszawy 55, 81-712 Sopot, Poland piskozub@iopan.gda.pl

More information

Polarized light field under dynamic ocean surfaces: Numerical modeling compared with measurements

Polarized light field under dynamic ocean surfaces: Numerical modeling compared with measurements JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2011jc007278, 2011 Polarized light field under dynamic ocean surfaces: Numerical modeling compared with measurements Yu You, 1 George W. Kattawar,

More information

Seawater reflectance in the near-ir

Seawater reflectance in the near-ir Seawater reflectance in the near-ir Maéva DORON David DOXARAN Simon BELANGER Marcel BABIN Laboratoire d'océanographie de Villefranche Seawater Reflectance in the Near-IR Doron, Doxaran, Bélanger & Babin

More information

The most recent CMS-Wave code developed is Version 3.2. Several new capabilities and advanced features in this version include:

The most recent CMS-Wave code developed is Version 3.2. Several new capabilities and advanced features in this version include: B8. Using CMS-Wave The most recent CMS-Wave code developed is Version 3.2. Several new capabilities and advanced features in this version include: Full-plane wind-generation of waves Automatic wave run-up

More information

Uncertainties in ocean colour remote sensing

Uncertainties in ocean colour remote sensing ENMAP Summer School on Remote Sensing Data Analysis Uncertainties in ocean colour remote sensing Roland Doerffer Retired from Helmholtz Zentrum Geesthacht Institute of Coastal Research Now: Brockmann Consult

More information

Use of the Polarized Radiance Distribution Camera System in the RADYO Program

Use of the Polarized Radiance Distribution Camera System in the RADYO Program DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Use of the Polarized Radiance Distribution Camera System in the RADYO Program Kenneth J. Voss Physics Department, University

More information

Fifteenth ARM Science Team Meeting Proceedings, Daytona Beach, Florida, March 14-18, 2005

Fifteenth ARM Science Team Meeting Proceedings, Daytona Beach, Florida, March 14-18, 2005 Assessing the Impact of the Plane-Parallel Cloud Assumption used in Computing Shortwave Heating Rate Profiles for the Broadband Heating Rate Profile Project W. O Hirok Institute for Computational Earth

More information

Inverse Problems in Optical Remote Sensing of Coastal Waters

Inverse Problems in Optical Remote Sensing of Coastal Waters Inverse Problems in Optical Remote Sensing of Coastal Waters PI: Irina Dolina Institute of Applied Physics, Ul janova 6, Nizhny Novgorod, 69, Russia phone +7 (81)16-76 fax: +7 (81)6-976 email: dolina@hydro.appl.sci-nnov.ru

More information

Polarimetric imaging and retrieval of target polarization characteristics in underwater environment

Polarimetric imaging and retrieval of target polarization characteristics in underwater environment 626 Vol. 55, No. 3 / January 20 2016 / Applied Optics Research Article Polarimetric imaging and retrieval of target polarization characteristics in underwater environment YALONG GU, 1,2 CARLOS CARRIZO,

More information

Comparison of Full-resolution S-NPP CrIS Radiance with Radiative Transfer Model

Comparison of Full-resolution S-NPP CrIS Radiance with Radiative Transfer Model Comparison of Full-resolution S-NPP CrIS Radiance with Radiative Transfer Model Xu Liu NASA Langley Research Center W. Wu, S. Kizer, H. Li, D. K. Zhou, and A. M. Larar Acknowledgements Yong Han NOAA STAR

More information

Thin film solar cell simulations with FDTD

Thin film solar cell simulations with FDTD Thin film solar cell simulations with FDTD Matthew Mishrikey, Prof. Ch. Hafner (IFH) Dr. P. Losio (Oerlikon Solar) 5 th Workshop on Numerical Methods for Optical Nano Structures July 7 th, 2009 Problem

More information

Benthic effects on the polarization of light in shallow waters

Benthic effects on the polarization of light in shallow waters Benthic effects on the polarization of light in shallow waters Alexander A. Gilerson, 1, * Jan Stepinski, 1 Amir I. Ibrahim, 1 Yu You, 2,3 James M. Sullivan, 4,5 Michael S. Twardowski, 4 Heidi M. Dierssen,

More information

Three dimensional light environment: Coral reefs and seagrasses

Three dimensional light environment: Coral reefs and seagrasses Three dimensional light environment: Coral reefs and seagrasses 1) Three-dimensional radiative transfer modelling 2) Photobiology in submerged canopies 3) Sun glint correction of high spatial resolution

More information

VALIDATION OF MERIS REMOTE SENSING REFLECTANCE IN ATLANTIC CASE 1 WATERS WITH GROUND BASED IN-SITU MEASUREMENTS

VALIDATION OF MERIS REMOTE SENSING REFLECTANCE IN ATLANTIC CASE 1 WATERS WITH GROUND BASED IN-SITU MEASUREMENTS VALIDATION OF MERIS REMOTE SENSING REFLECTANCE IN ATLANTIC CASE 1 WATERS WITH GROUND BASED IN-SITU MEASUREMENTS Anja Theis(1), Bettina Schmitt(1), Steffen Gehnke(), Roland Doerffer(), Astrid Bracher(1)

More information

v SMS 11.1 Tutorial BOUSS2D Prerequisites Overview Tutorial Time minutes

v SMS 11.1 Tutorial BOUSS2D Prerequisites Overview Tutorial Time minutes v. 11.1 SMS 11.1 Tutorial BOUSS2D Objectives This lesson will teach you how to use the interface for BOUSS-2D and run the model for a sample application. As a phase-resolving nonlinear wave model, BOUSS-2D

More information

Do It Yourself 2. Representations of polarimetric information

Do It Yourself 2. Representations of polarimetric information Do It Yourself 2 Representations of polarimetric information The objectives of this second Do It Yourself concern the representation of the polarimetric properties of scatterers or media. 1. COLOR CODED

More information

EcoLight-S 1.0 Users Guide and Technical Documentation

EcoLight-S 1.0 Users Guide and Technical Documentation EcoLight-S 1.0 Users Guide and Technical Documentation Curtis D. Mobley Sequoia Scientific, Inc. 2700 Richards Road, Suite 109 Bellevue, WA 98005 curtis.mobley@sequoiasci.com 425-641-0944 x 109 First Printing,

More information

Monte-Carlo-Based Impulse Response Modeling for Underwater Wireless Optical Communication

Monte-Carlo-Based Impulse Response Modeling for Underwater Wireless Optical Communication Progress In Electromagnetics Research M, Vol. 54, 37 44, 27 Monte-Carlo-Based Impulse Response Modeling for Underwater Wireless Optical Communication Feibiao Dong *, Limei Xu, Dagang Jiang, and Tianhong

More information

Influence of the angular shape of the volume-scattering function and multiple scattering on remote sensing reflectance

Influence of the angular shape of the volume-scattering function and multiple scattering on remote sensing reflectance Influence of the angular shape of the volume-scattering function and multiple scattering on remote sensing reflectance Malik Chami, David McKee, Edouard Leymarie, and Gueorgui Khomenko Scattering phase

More information

TOA RADIANCE SIMULATOR FOR THE NEW HYPERSPECTRAL MISSIONS: STORE (SIMULATOR OF TOA RADIANCE)

TOA RADIANCE SIMULATOR FOR THE NEW HYPERSPECTRAL MISSIONS: STORE (SIMULATOR OF TOA RADIANCE) TOA RADIANCE SIMULATOR FOR THE NEW HYPERSPECTRAL MISSIONS: STORE (SIMULATOR OF TOA RADIANCE) Malvina Silvestri Istituto Nazionale di Geofisica e Vulcanologia In the frame of the Italian Space Agency (ASI)

More information

Quantitative Estimation of Variability in the Underwater Radiance Distribution (RADCAM)

Quantitative Estimation of Variability in the Underwater Radiance Distribution (RADCAM) DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Quantitative Estimation of Variability in the Underwater Radiance Distribution (RADCAM) Marlon R. Lewis and Ronnie Van

More information

Equipment in Support for Polarimetric Imaging

Equipment in Support for Polarimetric Imaging Equipment in Support for Polarimetric Imaging Howard Schultz Aerial Imaging and Remote Sensing Laboratory University of Massachusetts, Amherst Department of Computer Science Phone: (413) 545-3482, Fax:

More information

Atmospheric correction of hyperspectral ocean color sensors: application to HICO

Atmospheric correction of hyperspectral ocean color sensors: application to HICO Atmospheric correction of hyperspectral ocean color sensors: application to HICO Amir Ibrahim NASA GSFC / USRA Bryan Franz, Zia Ahmad, Kirk knobelspiesse (NASA GSFC), and Bo-Cai Gao (NRL) Remote sensing

More information

Preprocessed Input Data. Description MODIS

Preprocessed Input Data. Description MODIS Preprocessed Input Data Description MODIS The Moderate Resolution Imaging Spectroradiometer (MODIS) Surface Reflectance products provide an estimate of the surface spectral reflectance as it would be measured

More information

BOUSSOLE DATA PROCESSING

BOUSSOLE DATA PROCESSING BOUSSOLE DATA PROCESSING D. Antoine, B. Gentili, E. Leymarie V. Vellucci OUTLINE OUTLINE > Preprocessing conversion to physical units dark subtraction data reduction > Processing conversion to physical

More information

CHAPTER 3. Preprocessing and Feature Extraction. Techniques

CHAPTER 3. Preprocessing and Feature Extraction. Techniques CHAPTER 3 Preprocessing and Feature Extraction Techniques CHAPTER 3 Preprocessing and Feature Extraction Techniques 3.1 Need for Preprocessing and Feature Extraction schemes for Pattern Recognition and

More information

Use of the Polarized Radiance Distribution Camera System in the RADYO Program

Use of the Polarized Radiance Distribution Camera System in the RADYO Program DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Use of the Polarized Radiance Distribution Camera System in the RADYO Program Kenneth J. Voss Physics Department, University

More information

Estimating land surface albedo from polar orbiting and geostationary satellites

Estimating land surface albedo from polar orbiting and geostationary satellites Estimating land surface albedo from polar orbiting and geostationary satellites Dongdong Wang Shunlin Liang Tao He Yuan Zhou Department of Geographical Sciences University of Maryland, College Park Nov

More information

The Results of Limiting MRU Updates In Multibeam Data by Pat Sanders, HYPACK, Inc.

The Results of Limiting MRU Updates In Multibeam Data by Pat Sanders, HYPACK, Inc. The Results of Limiting MRU Updates In Multibeam Data by Pat Sanders, HYPACK, Inc. Abstract: Some Motion Reference Units (MRUs) can deliver heave- pitch- roll data at rates up to 100Hz. This paper investigates

More information

PRISM geometric Cal/Val and DSM performance

PRISM geometric Cal/Val and DSM performance PRISM geometric Cal/Val and DSM performance Junichi Takaku RESTEC Takeo Tadono JAXA Nov. 2008 Contents PRISM geometric Cal/Val Interior orientation parameters Exterior orientation parameters Triangulation

More information

Chapter 3: Kinematics Locomotion. Ross Hatton and Howie Choset

Chapter 3: Kinematics Locomotion. Ross Hatton and Howie Choset Chapter 3: Kinematics Locomotion Ross Hatton and Howie Choset 1 (Fully/Under)Actuated Fully Actuated Control all of the DOFs of the system Controlling the joint angles completely specifies the configuration

More information

Neural Network uncertain/es. Roland Doerffer & Carsten Brockmann Brockmann Consult GmbH Germany

Neural Network uncertain/es. Roland Doerffer & Carsten Brockmann Brockmann Consult GmbH Germany Neural Network uncertain/es Roland Doerffer & Carsten Brockmann Brockmann Consult GmbH Germany Content General uncertain:es of Case 2 water remote sensing using inverse modelling Specific uncertain:es

More information

COMPARISON BETWEEN PSEUDO-SPECTRAL TIME DOMAIN AND DISCRETE DIPOLE APPROXIMATION SIMULATIONS FOR SINGLE-SCATTERING PROPERTIES OF PARTICLES.

COMPARISON BETWEEN PSEUDO-SPECTRAL TIME DOMAIN AND DISCRETE DIPOLE APPROXIMATION SIMULATIONS FOR SINGLE-SCATTERING PROPERTIES OF PARTICLES. COMPARISON BETWEEN PSEUDO-SPECTRAL TIME DOMAIN AND DISCRETE DIPOLE APPROXIMATION SIMULATIONS FOR SINGLE-SCATTERING PROPERTIES OF PARTICLES A Thesis by DEREK IAN PODOWITZ Submitted to the Office of Graduate

More information

SPECTRAL APPROACH TO CALCULATE SPECULAR REFLECTION OF LIGHT FROM WAVY WATER SURFACE

SPECTRAL APPROACH TO CALCULATE SPECULAR REFLECTION OF LIGHT FROM WAVY WATER SURFACE in Optics of Natural Waters (ONW 1), St. Petersburg, Russia, 1. SPECTRAL APPROACH TO CALCULATE SPECULAR REFLECTION OF LIGHT FROM WAVY WATER SURFACE V. I. Haltrin, W. E. McBride III, and R. A. Arnone Naval

More information

Inversion of irradiance and remote sensing reflectance in shallow water between 400 and 800 nm for calculations of water and bottom properties

Inversion of irradiance and remote sensing reflectance in shallow water between 400 and 800 nm for calculations of water and bottom properties Inversion of irradiance and remote sensing reflectance in shallow water between 400 and 800 nm for calculations of water and bottom properties Andreas Albert and Peter Gege What we believe to be a new

More information

In situ Validation of the Source of Thin Layers Detected by NOAA Airborne Fish Lidar

In situ Validation of the Source of Thin Layers Detected by NOAA Airborne Fish Lidar DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. In situ Validation of the Source of Thin Layers Detected by NOAA Airborne Fish Lidar Dr. Percy L. Donaghay Dr. James Sullivan

More information

Machine learning approach to retrieving physical variables from remotely sensed data

Machine learning approach to retrieving physical variables from remotely sensed data Machine learning approach to retrieving physical variables from remotely sensed data Fazlul Shahriar November 11, 2016 Introduction There is a growing wealth of remote sensing data from hundreds of space-based

More information