Machine Learning (CSMML16) (Autumn term, ) Xia Hong

Size: px
Start display at page:

Download "Machine Learning (CSMML16) (Autumn term, ) Xia Hong"

Transcription

1 Machine Learning (CSMML16) (Autumn term, 28-29) Xia Hong 1

2 Useful books: 1. C. M. Bishop: Pattern Recognition and Machine Learning (2007) Springer. 2. S. Haykin: Neural Networks (1999) Prentice Hall. 3. R. O. Duda and P. E. Hart: Pattern Classification and Scene Analysis (1973) J. Wiley 2

3 Introduction Why study machine learning? The problem of searching for patterns in data is fundamental one and has a long and successful history. For example, extensive astronomical observations has led to Kepler to discover the empirical laws of planetary motion in the 16th century. The field of pattern recognition is concerned with the automatic discovery of regularities via the use of computer of these regularities to take actions such as classifying the data into different categories. We are entering the era of big data. This calls for automated methods of data analysis, which is what machine learning provides. 3

4 Over the last two decades there has been dramatic growth in practical applications for machine learning, e.g. in computer vision, signal processing, facial and speech recognition, and internet search engine, web security, biomedical data processing (DNA data), industrial condition monitoring and control systems, etc. Example: Handwritten digits recognition. If each digit corresponds to a image, so it can be represented a vector x comprising 784 real numbers. The goal is to build a machine that takes x and reproduce the identity of the digit 0,...,9 as the output. 4

5 A machine learning approach is to use a large number of N digits {x 1,..., x N }, called a training set to tune the parameters of a model. The categories of the training data set are known, by hand-labeling. The category of a digit is called target vector {t}. The result of machine learning algorithm can be expressed as a function {y(x)}, where y is the model output that aimed at {t}. The training or learning phase is to find the exact form of {y(x)}. 5

6 Once the model is trained it can then used to identify new digit images, which are said to comprise a test set. The ability to categorize correctly on fresh data set that has been used in the training phase is known as generalization, which is a central goal in pattern recognition. Applications in which training set comprises examples of the input vector and along with their target vectors are known as supervised problems. Cases such as digit recognition aims to assign each input vector to one of a finite number of discrete categories, are called classification problems. If the desired output consists of one or more continuous variables, then task is called regression. 6

7 An example of regression problem would be the prediction of the yield in a chemical manufactory process in which the inputs are concentration of reactants, the temperature and the pressure. In other pattern recognition problems, the training data set consists of only a set of input vector x without any corresponding target value. Then it is called unsupervised problems. Examples of unsupervised problems may be: to discover groups of similar patterns in the data, where it is called clustering, or to determine the distribution of data within the data space, known as density estimation, or to project data from a high-dimensional space to 2-D or 3-D for the purpose of visualization, known as dimensionality reduction. 7

8 In many practical applications, the original input variables are typically pre-processed, so that the pattern recognition problems is easier to solve. The pre-processing stage is sometimes also called feature selection. Example: A lumber mill producing assorted hardwoods wants to automate the process of sorting finished lumber according to the species of trees. Optical sensing is used to distinguish birch lumber from ash lumber. A camera takes a pictures of the lumber and passes to on to a feature extractor. lumber picture transducer feature extractor classifier decision Figure: A pattern classification system 8

9 The feature extractor reduces the data by measuring certain properties that distinguish pictures of birch lumber from pictures of ash lumber. These features are then passed to a classifier that evaluates the evidence presented and makes a final decision about the lumber type. Suppose that somebody at the lumber mill tells us that birth is often lighter colored than ash. Then brightness becomes an obvious feature. We might attempt to classify the lumber merely by seeing whether or not the average brightness x exceeds some critical value. Suppose that we obtain the following histogram based on these data samples. 9

10 number of samples Ash x brightness x Birch Figure: Histogram for the brightness feature. The histogram bears out the statement that birch is usually lighter than ash, but it is clear that this single criterion is not infallible. No matter how we choose x 0, we cannot reliably separate birch from ash by brightness alone. The second feature is based on the observation that ash typically has a more prominent grain pattern than birch. It is reasonable to assume that we can obtain a measure of this feature from the magnitude and frequency of occurrence of light-to-dark transitions in the picture. 10

11 The feature extractor has thus reduced each picture to a point or a feature vector x in a two dimensional space, where, x = [x 1, x 2 ] T where x 1 denotes the brightness, x 2 denotes the grain prominence. Our problem now is to partition the feature space into two regions for birth and ash. Suppose that we measure the feature vectors for our training data samples and obtain the following scatter diagram. This plot suggests the rule for classifying the data: Classify the lumber as ash if its feature vector falls above the line AB, and as birch otherwise. 11

12 grain prominence x 2 Ash Birch 00 11B A brightness x 1 Figure: Scatter diagram for the feature vector. In order to make sure that this rule performs well, we obtain more samples and adjust the position of line AB in order to minimize the probability of error. This also shows that pattern recognition problem has a statistical nature. 12

13 Often preprocessing is necessary in practical applications to speed up computations. For example, if the goal is real time face recognition in a high-resolution video stream, directly handing the raw data may be infeasible for machine learning algorithms. The feature selection that are fast to compute that are also preserves useful discriminatory information enabling faces to be distinguished from non-faces. Machine learning is closely related to and often overlaps with statistics, the study of the collection, analysis, interpretation, presentation, and organization of data. It has strong ties to mathematical optimization, which delivers methods, theory and application domains to the field. 13

14 Preliminaries: Calculus, linear algebra, and probability theory are required. Orgianization of the course: / sisxh/ teaching /CSMML16/Machine Learning Lecture Notes.htm Matlab (are used in numerical simulations) If you have no Matlab experience, please follow the link lab/ms /matlab/matlab.html to quick start Matlab and follow the codes provided. 14

2. Basic Task of Pattern Classification

2. Basic Task of Pattern Classification 2. Basic Task of Pattern Classification Definition of the Task Informal Definition: Telling things apart 3 Definition: http://www.webopedia.com/term/p/pattern_recognition.html pattern recognition Last

More information

Pre-Requisites: CS2510. NU Core Designations: AD

Pre-Requisites: CS2510. NU Core Designations: AD DS4100: Data Collection, Integration and Analysis Teaches how to collect data from multiple sources and integrate them into consistent data sets. Explains how to use semi-automated and automated classification

More information

Rapid growth of massive datasets

Rapid growth of massive datasets Overview Rapid growth of massive datasets E.g., Online activity, Science, Sensor networks Data Distributed Clusters are Pervasive Data Distributed Computing Mature Methods for Common Problems e.g., classification,

More information

Clustering and Visualisation of Data

Clustering and Visualisation of Data Clustering and Visualisation of Data Hiroshi Shimodaira January-March 28 Cluster analysis aims to partition a data set into meaningful or useful groups, based on distances between data points. In some

More information

Enhancing Forecasting Performance of Naïve-Bayes Classifiers with Discretization Techniques

Enhancing Forecasting Performance of Naïve-Bayes Classifiers with Discretization Techniques 24 Enhancing Forecasting Performance of Naïve-Bayes Classifiers with Discretization Techniques Enhancing Forecasting Performance of Naïve-Bayes Classifiers with Discretization Techniques Ruxandra PETRE

More information

Nearest Neighbor Classification

Nearest Neighbor Classification Nearest Neighbor Classification Charles Elkan elkan@cs.ucsd.edu October 9, 2007 The nearest-neighbor method is perhaps the simplest of all algorithms for predicting the class of a test example. The training

More information

Data Preprocessing. Data Preprocessing

Data Preprocessing. Data Preprocessing Data Preprocessing Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville ranka@cise.ufl.edu Data Preprocessing What preprocessing step can or should

More information

A Visualization Tool to Improve the Performance of a Classifier Based on Hidden Markov Models

A Visualization Tool to Improve the Performance of a Classifier Based on Hidden Markov Models A Visualization Tool to Improve the Performance of a Classifier Based on Hidden Markov Models Gleidson Pegoretti da Silva, Masaki Nakagawa Department of Computer and Information Sciences Tokyo University

More information

Feature Extraction in Wireless Personal and Local Area Networks

Feature Extraction in Wireless Personal and Local Area Networks Feature Extraction in Wireless Personal and Local Area Networks 29. October 2003, Singapore Institut für Praktische Informatik Johannes Kepler Universität Linz, Austria rene@soft.uni-linz.ac.at < 1 > Content

More information

(Refer Slide Time: 0:51)

(Refer Slide Time: 0:51) Introduction to Remote Sensing Dr. Arun K Saraf Department of Earth Sciences Indian Institute of Technology Roorkee Lecture 16 Image Classification Techniques Hello everyone welcome to 16th lecture in

More information

Introduction to Digital Image Processing

Introduction to Digital Image Processing Fall 2005 Image Enhancement in the Spatial Domain: Histograms, Arithmetic/Logic Operators, Basics of Spatial Filtering, Smoothing Spatial Filters Tuesday, February 7 2006, Overview (1): Before We Begin

More information

University of Florida CISE department Gator Engineering. Data Preprocessing. Dr. Sanjay Ranka

University of Florida CISE department Gator Engineering. Data Preprocessing. Dr. Sanjay Ranka Data Preprocessing Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville ranka@cise.ufl.edu Data Preprocessing What preprocessing step can or should

More information

Several pattern recognition approaches for region-based image analysis

Several pattern recognition approaches for region-based image analysis Several pattern recognition approaches for region-based image analysis Tudor Barbu Institute of Computer Science, Iaşi, Romania Abstract The objective of this paper is to describe some pattern recognition

More information

Chapter 1, Introduction

Chapter 1, Introduction CSI 4352, Introduction to Data Mining Chapter 1, Introduction Young-Rae Cho Associate Professor Department of Computer Science Baylor University What is Data Mining? Definition Knowledge Discovery from

More information

MULTIVARIATE ANALYSES WITH fmri DATA

MULTIVARIATE ANALYSES WITH fmri DATA MULTIVARIATE ANALYSES WITH fmri DATA Sudhir Shankar Raman Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering University of Zurich & ETH Zurich Motivation Modelling Concepts Learning

More information

Unsupervised learning

Unsupervised learning Unsupervised learning Enrique Muñoz Ballester Dipartimento di Informatica via Bramante 65, 26013 Crema (CR), Italy enrique.munoz@unimi.it Enrique Muñoz Ballester 2017 1 Download slides data and scripts:

More information

Random Forest A. Fornaser

Random Forest A. Fornaser Random Forest A. Fornaser alberto.fornaser@unitn.it Sources Lecture 15: decision trees, information theory and random forests, Dr. Richard E. Turner Trees and Random Forests, Adele Cutler, Utah State University

More information

Recognizing and Predicting Context by Learning from User Behavior

Recognizing and Predicting Context by Learning from User Behavior Recognizing and Predicting Context by Learning from User Behavior 15. September 2003, Jakarta Institut für Praktische Informatik Johannes Kepler Universität Linz, Austria rene@soft.uni-linz.ac.at < 1 >

More information

FAST AND RELIABLE RECOGNITION OF HUMAN MOTION FROM MOTION TRAJECTORIES USING WAVELET ANALYSIS

FAST AND RELIABLE RECOGNITION OF HUMAN MOTION FROM MOTION TRAJECTORIES USING WAVELET ANALYSIS FAST AND RELIABLE RECOGNITION OF HUMAN MOTION FROM MOTION TRAJECTORIES USING WAVELET ANALYSIS Shu-Fai WONG 1 and Kwan-Yee Kenneth WONG 1 1 Department of Computer Science and Information Systems, The University

More information

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Detection and Classification Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Problem I. Strategies II. Features for training III. Using spatial information? IV. Reducing dimensionality

More information

M. Sc. (Artificial Intelligence and Machine Learning)

M. Sc. (Artificial Intelligence and Machine Learning) Course Name: Advanced Python Course Code: MSCAI 122 This course will introduce students to advanced python implementations and the latest Machine Learning and Deep learning libraries, Scikit-Learn and

More information

Application of Clustering Techniques to Energy Data to Enhance Analysts Productivity

Application of Clustering Techniques to Energy Data to Enhance Analysts Productivity Application of Clustering Techniques to Energy Data to Enhance Analysts Productivity Wendy Foslien, Honeywell Labs Valerie Guralnik, Honeywell Labs Steve Harp, Honeywell Labs William Koran, Honeywell Atrium

More information

Contents. Preface to the Second Edition

Contents. Preface to the Second Edition Preface to the Second Edition v 1 Introduction 1 1.1 What Is Data Mining?....................... 4 1.2 Motivating Challenges....................... 5 1.3 The Origins of Data Mining....................

More information

Intro to Artificial Intelligence

Intro to Artificial Intelligence Intro to Artificial Intelligence Ahmed Sallam { Lecture 5: Machine Learning ://. } ://.. 2 Review Probabilistic inference Enumeration Approximate inference 3 Today What is machine learning? Supervised

More information

CP467 Image Processing and Pattern Recognition

CP467 Image Processing and Pattern Recognition CP467 Image Processing and Pattern Recognition Instructor: Hongbing Fan Introduction About DIP & PR About this course Lecture 1: an overview of DIP DIP&PR show What is Digital Image? We use digital image

More information

Introduction to machine learning, pattern recognition and statistical data modelling Coryn Bailer-Jones

Introduction to machine learning, pattern recognition and statistical data modelling Coryn Bailer-Jones Introduction to machine learning, pattern recognition and statistical data modelling Coryn Bailer-Jones What is machine learning? Data interpretation describing relationship between predictors and responses

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Unsupervised learning Until now, we have assumed our training samples are labeled by their category membership. Methods that use labeled samples are said to be supervised. However,

More information

INTRODUCTION TO BIG DATA, DATA MINING, AND MACHINE LEARNING

INTRODUCTION TO BIG DATA, DATA MINING, AND MACHINE LEARNING CS 7265 BIG DATA ANALYTICS INTRODUCTION TO BIG DATA, DATA MINING, AND MACHINE LEARNING * Some contents are adapted from Dr. Hung Huang and Dr. Chengkai Li at UT Arlington Mingon Kang, PhD Computer Science,

More information

Lecture 3: Linear Classification

Lecture 3: Linear Classification Lecture 3: Linear Classification Roger Grosse 1 Introduction Last week, we saw an example of a learning task called regression. There, the goal was to predict a scalar-valued target from a set of features.

More information

Webpage: Volume 3, Issue VII, July 2015 ISSN

Webpage:   Volume 3, Issue VII, July 2015 ISSN Independent Component Analysis (ICA) Based Face Recognition System S.Narmatha 1, K.Mahesh 2 1 Research Scholar, 2 Associate Professor 1,2 Department of Computer Science and Engineering, Alagappa University,

More information

CHAPTER 4 STOCK PRICE PREDICTION USING MODIFIED K-NEAREST NEIGHBOR (MKNN) ALGORITHM

CHAPTER 4 STOCK PRICE PREDICTION USING MODIFIED K-NEAREST NEIGHBOR (MKNN) ALGORITHM CHAPTER 4 STOCK PRICE PREDICTION USING MODIFIED K-NEAREST NEIGHBOR (MKNN) ALGORITHM 4.1 Introduction Nowadays money investment in stock market gains major attention because of its dynamic nature. So the

More information

COMP 551 Applied Machine Learning Lecture 16: Deep Learning

COMP 551 Applied Machine Learning Lecture 16: Deep Learning COMP 551 Applied Machine Learning Lecture 16: Deep Learning Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted, all

More information

An Introduction to Pattern Recognition

An Introduction to Pattern Recognition An Introduction to Pattern Recognition Speaker : Wei lun Chao Advisor : Prof. Jian-jiun Ding DISP Lab Graduate Institute of Communication Engineering 1 Abstract Not a new research field Wide range included

More information

Data Mining Course Overview

Data Mining Course Overview Data Mining Course Overview 1 Data Mining Overview Understanding Data Classification: Decision Trees and Bayesian classifiers, ANN, SVM Association Rules Mining: APriori, FP-growth Clustering: Hierarchical

More information

1 st Grade Math Curriculum Crosswalk

1 st Grade Math Curriculum Crosswalk This document is designed to help North Carolina educators teach the. NCDPI staff are continually updating and improving these tools to better serve teachers. 1 st Grade Math Curriculum Crosswalk The following

More information

Chapter 10. Conclusion Discussion

Chapter 10. Conclusion Discussion Chapter 10 Conclusion 10.1 Discussion Question 1: Usually a dynamic system has delays and feedback. Can OMEGA handle systems with infinite delays, and with elastic delays? OMEGA handles those systems with

More information

Knowledge Discovery. Javier Béjar URL - Spring 2019 CS - MIA

Knowledge Discovery. Javier Béjar URL - Spring 2019 CS - MIA Knowledge Discovery Javier Béjar URL - Spring 2019 CS - MIA Knowledge Discovery (KDD) Knowledge Discovery in Databases (KDD) Practical application of the methodologies from machine learning/statistics

More information

CONCENTRATIONS: HIGH-PERFORMANCE COMPUTING & BIOINFORMATICS CYBER-SECURITY & NETWORKING

CONCENTRATIONS: HIGH-PERFORMANCE COMPUTING & BIOINFORMATICS CYBER-SECURITY & NETWORKING MAJOR: DEGREE: COMPUTER SCIENCE MASTER OF SCIENCE (M.S.) CONCENTRATIONS: HIGH-PERFORMANCE COMPUTING & BIOINFORMATICS CYBER-SECURITY & NETWORKING The Department of Computer Science offers a Master of Science

More information

DEVELOPMENT OF NEURAL NETWORK TRAINING METHODOLOGY FOR MODELING NONLINEAR SYSTEMS WITH APPLICATION TO THE PREDICTION OF THE REFRACTIVE INDEX

DEVELOPMENT OF NEURAL NETWORK TRAINING METHODOLOGY FOR MODELING NONLINEAR SYSTEMS WITH APPLICATION TO THE PREDICTION OF THE REFRACTIVE INDEX DEVELOPMENT OF NEURAL NETWORK TRAINING METHODOLOGY FOR MODELING NONLINEAR SYSTEMS WITH APPLICATION TO THE PREDICTION OF THE REFRACTIVE INDEX THESIS CHONDRODIMA EVANGELIA Supervisor: Dr. Alex Alexandridis,

More information

CHAPTER 4 DETECTION OF DISEASES IN PLANT LEAF USING IMAGE SEGMENTATION

CHAPTER 4 DETECTION OF DISEASES IN PLANT LEAF USING IMAGE SEGMENTATION CHAPTER 4 DETECTION OF DISEASES IN PLANT LEAF USING IMAGE SEGMENTATION 4.1. Introduction Indian economy is highly dependent of agricultural productivity. Therefore, in field of agriculture, detection of

More information

Introduction to Machine Learning. Xiaojin Zhu

Introduction to Machine Learning. Xiaojin Zhu Introduction to Machine Learning Xiaojin Zhu jerryzhu@cs.wisc.edu Read Chapter 1 of this book: Xiaojin Zhu and Andrew B. Goldberg. Introduction to Semi- Supervised Learning. http://www.morganclaypool.com/doi/abs/10.2200/s00196ed1v01y200906aim006

More information

Bioimage Informatics

Bioimage Informatics Bioimage Informatics Lecture 14, Spring 2012 Bioimage Data Analysis (IV) Image Segmentation (part 3) Lecture 14 March 07, 2012 1 Outline Review: intensity thresholding based image segmentation Morphological

More information

Emotion Classification

Emotion Classification Emotion Classification Shai Savir 038052395 Gil Sadeh 026511469 1. Abstract Automated facial expression recognition has received increased attention over the past two decades. Facial expressions convey

More information

Data Mining: Exploring Data. Lecture Notes for Chapter 3

Data Mining: Exploring Data. Lecture Notes for Chapter 3 Data Mining: Exploring Data Lecture Notes for Chapter 3 1 What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include

More information

Announcements. Recognition. Recognition. Recognition. Recognition. Homework 3 is due May 18, 11:59 PM Reading: Computer Vision I CSE 152 Lecture 14

Announcements. Recognition. Recognition. Recognition. Recognition. Homework 3 is due May 18, 11:59 PM Reading: Computer Vision I CSE 152 Lecture 14 Announcements Computer Vision I CSE 152 Lecture 14 Homework 3 is due May 18, 11:59 PM Reading: Chapter 15: Learning to Classify Chapter 16: Classifying Images Chapter 17: Detecting Objects in Images Given

More information

Data: a collection of numbers or facts that require further processing before they are meaningful

Data: a collection of numbers or facts that require further processing before they are meaningful Digital Image Classification Data vs. Information Data: a collection of numbers or facts that require further processing before they are meaningful Information: Derived knowledge from raw data. Something

More information

Optimization Methods for Machine Learning (OMML)

Optimization Methods for Machine Learning (OMML) Optimization Methods for Machine Learning (OMML) 2nd lecture Prof. L. Palagi References: 1. Bishop Pattern Recognition and Machine Learning, Springer, 2006 (Chap 1) 2. V. Cherlassky, F. Mulier - Learning

More information

A SURVEY OF IMAGE MINING TECHNIQUES AND APPLICATIONS

A SURVEY OF IMAGE MINING TECHNIQUES AND APPLICATIONS A SURVEY OF IMAGE MINING TECHNIQUES AND APPLICATIONS R. Vijayalatha Research Scholar, Manonmaniam Sundaranar University, Tirunelveli (India) ABSTRACT In the area of Data Mining, Image Mining technology

More information

(Refer Slide Time 00:17) Welcome to the course on Digital Image Processing. (Refer Slide Time 00:22)

(Refer Slide Time 00:17) Welcome to the course on Digital Image Processing. (Refer Slide Time 00:22) Digital Image Processing Prof. P. K. Biswas Department of Electronics and Electrical Communications Engineering Indian Institute of Technology, Kharagpur Module Number 01 Lecture Number 02 Application

More information

Online Pattern Recognition in Multivariate Data Streams using Unsupervised Learning

Online Pattern Recognition in Multivariate Data Streams using Unsupervised Learning Online Pattern Recognition in Multivariate Data Streams using Unsupervised Learning Devina Desai ddevina1@csee.umbc.edu Tim Oates oates@csee.umbc.edu Vishal Shanbhag vshan1@csee.umbc.edu Machine Learning

More information

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach Truth Course Outline Machine Learning Lecture 3 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Probability Density Estimation II 2.04.205 Discriminative Approaches (5 weeks)

More information

Adaptive Metric Nearest Neighbor Classification

Adaptive Metric Nearest Neighbor Classification Adaptive Metric Nearest Neighbor Classification Carlotta Domeniconi Jing Peng Dimitrios Gunopulos Computer Science Department Computer Science Department Computer Science Department University of California

More information

Texture Classification by Combining Local Binary Pattern Features and a Self-Organizing Map

Texture Classification by Combining Local Binary Pattern Features and a Self-Organizing Map Texture Classification by Combining Local Binary Pattern Features and a Self-Organizing Map Markus Turtinen, Topi Mäenpää, and Matti Pietikäinen Machine Vision Group, P.O.Box 4500, FIN-90014 University

More information

ICA as a preprocessing technique for classification

ICA as a preprocessing technique for classification ICA as a preprocessing technique for classification V.Sanchez-Poblador 1, E. Monte-Moreno 1, J. Solé-Casals 2 1 TALP Research Center Universitat Politècnica de Catalunya (Catalonia, Spain) enric@gps.tsc.upc.es

More information

Robust PDF Table Locator

Robust PDF Table Locator Robust PDF Table Locator December 17, 2016 1 Introduction Data scientists rely on an abundance of tabular data stored in easy-to-machine-read formats like.csv files. Unfortunately, most government records

More information

Data Mining: Exploring Data. Lecture Notes for Chapter 3. Introduction to Data Mining

Data Mining: Exploring Data. Lecture Notes for Chapter 3. Introduction to Data Mining Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining by Tan, Steinbach, Kumar What is data exploration? A preliminary exploration of the data to better understand its characteristics.

More information

Statistical Learning and Data Mining CS 363D/ SSC 358

Statistical Learning and Data Mining CS 363D/ SSC 358 Statistical Learning and Data Mining CS 363D/ SSC 358! Lecture: Introduction Pradeep Ravikumar pradeepr@cs.utexas.edu What is this course about (in 1 minute) Big Data Data Mining, Statistical Learning

More information

Data Mining: Exploring Data. Lecture Notes for Chapter 3

Data Mining: Exploring Data. Lecture Notes for Chapter 3 Data Mining: Exploring Data Lecture Notes for Chapter 3 Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler Look for accompanying R code on the course web site. Topics Exploratory Data Analysis

More information

Using Machine Learning to Optimize Storage Systems

Using Machine Learning to Optimize Storage Systems Using Machine Learning to Optimize Storage Systems Dr. Kiran Gunnam 1 Outline 1. Overview 2. Building Flash Models using Logistic Regression. 3. Storage Object classification 4. Storage Allocation recommendation

More information

Applying Supervised Learning

Applying Supervised Learning Applying Supervised Learning When to Consider Supervised Learning A supervised learning algorithm takes a known set of input data (the training set) and known responses to the data (output), and trains

More information

Data Mining: Exploring Data. Lecture Notes for Data Exploration Chapter. Introduction to Data Mining

Data Mining: Exploring Data. Lecture Notes for Data Exploration Chapter. Introduction to Data Mining Data Mining: Exploring Data Lecture Notes for Data Exploration Chapter Introduction to Data Mining by Tan, Steinbach, Karpatne, Kumar 02/03/2018 Introduction to Data Mining 1 What is data exploration?

More information

Data Mining. Part 2. Data Understanding and Preparation. 2.4 Data Transformation. Spring Instructor: Dr. Masoud Yaghini. Data Transformation

Data Mining. Part 2. Data Understanding and Preparation. 2.4 Data Transformation. Spring Instructor: Dr. Masoud Yaghini. Data Transformation Data Mining Part 2. Data Understanding and Preparation 2.4 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Normalization Attribute Construction Aggregation Attribute Subset Selection Discretization

More information

University of Florida CISE department Gator Engineering. Visualization

University of Florida CISE department Gator Engineering. Visualization Visualization Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida What is visualization? Visualization is the process of converting data (information) in to

More information

Weka ( )

Weka (  ) Weka ( http://www.cs.waikato.ac.nz/ml/weka/ ) The phases in which classifier s design can be divided are reflected in WEKA s Explorer structure: Data pre-processing (filtering) and representation Supervised

More information

Lecture 4 Image Enhancement in Spatial Domain

Lecture 4 Image Enhancement in Spatial Domain Digital Image Processing Lecture 4 Image Enhancement in Spatial Domain Fall 2010 2 domains Spatial Domain : (image plane) Techniques are based on direct manipulation of pixels in an image Frequency Domain

More information

Stat 342 Exam 3 Fall 2014

Stat 342 Exam 3 Fall 2014 Stat 34 Exam 3 Fall 04 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed There are questions on the following 6 pages. Do as many of them as you can

More information

Knowledge Discovery and Data Mining 1 (VO) ( )

Knowledge Discovery and Data Mining 1 (VO) ( ) Knowledge Discovery and Data Mining 1 (VO) (707.003) Data Matrices and Vector Space Model Denis Helic KTI, TU Graz Nov 6, 2014 Denis Helic (KTI, TU Graz) KDDM1 Nov 6, 2014 1 / 55 Big picture: KDDM Probability

More information

INTRODUCTION TO DATA MINING

INTRODUCTION TO DATA MINING INTRODUCTION TO DATA MINING 1 Chiara Renso KDDLab - ISTI CNR, Italy http://www-kdd.isti.cnr.it email: chiara.renso@isti.cnr.it Knowledge Discovery and Data Mining Laboratory, ISTI National Research Council,

More information

Data Mining: Exploring Data

Data Mining: Exploring Data Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining by Tan, Steinbach, Kumar But we start with a brief discussion of the Friedman article and the relationship between Data

More information

Framework for industrial visual surface inspections Olli Silvén and Matti Niskanen Machine Vision Group, Infotech Oulu, University of Oulu, Finland

Framework for industrial visual surface inspections Olli Silvén and Matti Niskanen Machine Vision Group, Infotech Oulu, University of Oulu, Finland Framework for industrial visual surface inspections Olli Silvén and Matti Niskanen Machine Vision Group, Infotech Oulu, University of Oulu, Finland ABSTRACT A key problem in using automatic visual surface

More information

Big Data Methods. Chapter 5: Machine learning. Big Data Methods, Chapter 5, Slide 1

Big Data Methods. Chapter 5: Machine learning. Big Data Methods, Chapter 5, Slide 1 Big Data Methods Chapter 5: Machine learning Big Data Methods, Chapter 5, Slide 1 5.1 Introduction to machine learning What is machine learning? Concerned with the study and development of algorithms that

More information

PATTERN CLASSIFICATION AND SCENE ANALYSIS

PATTERN CLASSIFICATION AND SCENE ANALYSIS PATTERN CLASSIFICATION AND SCENE ANALYSIS RICHARD O. DUDA PETER E. HART Stanford Research Institute, Menlo Park, California A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS New York Chichester Brisbane

More information

Discrete Optimization. Lecture Notes 2

Discrete Optimization. Lecture Notes 2 Discrete Optimization. Lecture Notes 2 Disjunctive Constraints Defining variables and formulating linear constraints can be straightforward or more sophisticated, depending on the problem structure. The

More information

COMP90049 Knowledge Technologies

COMP90049 Knowledge Technologies COMP90049 Knowledge Technologies Data Mining (Lecture Set 3) 2017 Rao Kotagiri Department of Computing and Information Systems The Melbourne School of Engineering Some of slides are derived from Prof Vipin

More information

COMPUTER VISION. Dr. Sukhendu Das Deptt. of Computer Science and Engg., IIT Madras, Chennai

COMPUTER VISION. Dr. Sukhendu Das Deptt. of Computer Science and Engg., IIT Madras, Chennai COMPUTER VISION Dr. Sukhendu Das Deptt. of Computer Science and Engg., IIT Madras, Chennai 600036. Email: sdas@iitm.ac.in URL: //www.cs.iitm.ernet.in/~sdas 1 INTRODUCTION 2 Human Vision System (HVS) Vs.

More information

An Exploration of Computer Vision Techniques for Bird Species Classification

An Exploration of Computer Vision Techniques for Bird Species Classification An Exploration of Computer Vision Techniques for Bird Species Classification Anne L. Alter, Karen M. Wang December 15, 2017 Abstract Bird classification, a fine-grained categorization task, is a complex

More information

1) Give decision trees to represent the following Boolean functions:

1) Give decision trees to represent the following Boolean functions: 1) Give decision trees to represent the following Boolean functions: 1) A B 2) A [B C] 3) A XOR B 4) [A B] [C Dl Answer: 1) A B 2) A [B C] 1 3) A XOR B = (A B) ( A B) 4) [A B] [C D] 2 2) Consider the following

More information

Data Mining. Jeff M. Phillips. January 7, 2019 CS 5140 / CS 6140

Data Mining. Jeff M. Phillips. January 7, 2019 CS 5140 / CS 6140 Data Mining CS 5140 / CS 6140 Jeff M. Phillips January 7, 2019 What is Data Mining? What is Data Mining? Finding structure in data? Machine learning on large data? Unsupervised learning? Large scale computational

More information

CSIS. Pattern Recognition. Prof. Sung-Hyuk Cha Fall of School of Computer Science & Information Systems. Artificial Intelligence CSIS

CSIS. Pattern Recognition. Prof. Sung-Hyuk Cha Fall of School of Computer Science & Information Systems. Artificial Intelligence CSIS Pattern Recognition Prof. Sung-Hyuk Cha Fall of 2002 School of Computer Science & Information Systems Artificial Intelligence 1 Perception Lena & Computer vision 2 Machine Vision Pattern Recognition Applications

More information

An Introduction to Machine Learning

An Introduction to Machine Learning TRIPODS Summer Boorcamp: Topology and Machine Learning August 6, 2018 General Set-up Introduction Set-up and Goal Suppose we have X 1,X 2,...,X n data samples. Can we predict properites about any given

More information

Machine Learning and Pervasive Computing

Machine Learning and Pervasive Computing Stephan Sigg Georg-August-University Goettingen, Computer Networks 17.12.2014 Overview and Structure 22.10.2014 Organisation 22.10.3014 Introduction (Def.: Machine learning, Supervised/Unsupervised, Examples)

More information

Polytechnic University of Tirana

Polytechnic University of Tirana 1 Polytechnic University of Tirana Department of Computer Engineering SIBORA THEODHOR ELINDA KAJO M ECE 2 Computer Vision OCR AND BEYOND THE PRESENTATION IS ORGANISED IN 3 PARTS : 3 Introduction, previous

More information

Data mining fundamentals

Data mining fundamentals Data mining fundamentals Elena Baralis Politecnico di Torino Data analysis Most companies own huge bases containing operational textual documents experiment results These bases are a potential source of

More information

A Fast Approximated k Median Algorithm

A Fast Approximated k Median Algorithm A Fast Approximated k Median Algorithm Eva Gómez Ballester, Luisa Micó, Jose Oncina Universidad de Alicante, Departamento de Lenguajes y Sistemas Informáticos {eva, mico,oncina}@dlsi.ua.es Abstract. The

More information

Datasets Size: Effect on Clustering Results

Datasets Size: Effect on Clustering Results 1 Datasets Size: Effect on Clustering Results Adeleke Ajiboye 1, Ruzaini Abdullah Arshah 2, Hongwu Qin 3 Faculty of Computer Systems and Software Engineering Universiti Malaysia Pahang 1 {ajibraheem@live.com}

More information

Chemometrics. Description of Pirouette Algorithms. Technical Note. Abstract

Chemometrics. Description of Pirouette Algorithms. Technical Note. Abstract 19-1214 Chemometrics Technical Note Description of Pirouette Algorithms Abstract This discussion introduces the three analysis realms available in Pirouette and briefly describes each of the algorithms

More information

Introduction to Data Mining and Data Analytics

Introduction to Data Mining and Data Analytics 1/28/2016 MIST.7060 Data Analytics 1 Introduction to Data Mining and Data Analytics What Are Data Mining and Data Analytics? Data mining is the process of discovering hidden patterns in data, where Patterns

More information

FEATURE EXTRACTION USING FUZZY RULE BASED SYSTEM

FEATURE EXTRACTION USING FUZZY RULE BASED SYSTEM International Journal of Computer Science and Applications, Vol. 5, No. 3, pp 1-8 Technomathematics Research Foundation FEATURE EXTRACTION USING FUZZY RULE BASED SYSTEM NARENDRA S. CHAUDHARI and AVISHEK

More information

Machine Learning with Python

Machine Learning with Python DEVNET-2163 Machine Learning with Python Dmitry Figol, SE WW Enterprise Sales @dmfigol Cisco Spark How Questions? Use Cisco Spark to communicate with the speaker after the session 1. Find this session

More information

A SOM-view of oilfield data: A novel vector field visualization for Self-Organizing Maps and its applications in the petroleum industry

A SOM-view of oilfield data: A novel vector field visualization for Self-Organizing Maps and its applications in the petroleum industry A SOM-view of oilfield data: A novel vector field visualization for Self-Organizing Maps and its applications in the petroleum industry Georg Pölzlbauer, Andreas Rauber (Department of Software Technology

More information

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010 INFORMATICS SEMINAR SEPT. 27 & OCT. 4, 2010 Introduction to Semi-Supervised Learning Review 2 Overview Citation X. Zhu and A.B. Goldberg, Introduction to Semi- Supervised Learning, Morgan & Claypool Publishers,

More information

ROTATION INVARIANT TRANSFORMS IN TEXTURE FEATURE EXTRACTION

ROTATION INVARIANT TRANSFORMS IN TEXTURE FEATURE EXTRACTION ROTATION INVARIANT TRANSFORMS IN TEXTURE FEATURE EXTRACTION GAVLASOVÁ ANDREA, MUDROVÁ MARTINA, PROCHÁZKA ALEŠ Prague Institute of Chemical Technology Department of Computing and Control Engineering Technická

More information

A Combined Method for On-Line Signature Verification

A Combined Method for On-Line Signature Verification BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 14, No 2 Sofia 2014 Print ISSN: 1311-9702; Online ISSN: 1314-4081 DOI: 10.2478/cait-2014-0022 A Combined Method for On-Line

More information

DATA MINING II - 1DL460

DATA MINING II - 1DL460 DATA MINING II - 1DL460 Spring 2016 A second course in data mining http://www.it.uu.se/edu/course/homepage/infoutv2/vt16 Kjell Orsborn Uppsala Database Laboratory Department of Information Technology,

More information

Contrast adjustment via Bayesian sequential partitioning

Contrast adjustment via Bayesian sequential partitioning Contrast adjustment via Bayesian sequential partitioning Zhiyu Wang, Shuo Xie, Bai Jiang Abstract Photographs taken in dim light have low color contrast. However, traditional methods for adjusting contrast

More information

Data Preprocessing. Why Data Preprocessing? MIT-652 Data Mining Applications. Chapter 3: Data Preprocessing. Multi-Dimensional Measure of Data Quality

Data Preprocessing. Why Data Preprocessing? MIT-652 Data Mining Applications. Chapter 3: Data Preprocessing. Multi-Dimensional Measure of Data Quality Why Data Preprocessing? Data in the real world is dirty incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data e.g., occupation = noisy: containing

More information

Improving the Efficiency of Fast Using Semantic Similarity Algorithm

Improving the Efficiency of Fast Using Semantic Similarity Algorithm International Journal of Scientific and Research Publications, Volume 4, Issue 1, January 2014 1 Improving the Efficiency of Fast Using Semantic Similarity Algorithm D.KARTHIKA 1, S. DIVAKAR 2 Final year

More information

Image retrieval based on bag of images

Image retrieval based on bag of images University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 2009 Image retrieval based on bag of images Jun Zhang University of Wollongong

More information

Data Mining & Feature Selection

Data Mining & Feature Selection دااگشنه رتبيت م عل م Data Mining & Feature Selection M.M. Pedram pedram@tmu.ac.ir Faculty of Engineering, Tarbiat Moallem University The 11 th Iranian Confernce on Fuzzy systems, 5-7 July, 2011 Contents

More information

A Comparative Study of Locality Preserving Projection and Principle Component Analysis on Classification Performance Using Logistic Regression

A Comparative Study of Locality Preserving Projection and Principle Component Analysis on Classification Performance Using Logistic Regression Journal of Data Analysis and Information Processing, 2016, 4, 55-63 Published Online May 2016 in SciRes. http://www.scirp.org/journal/jdaip http://dx.doi.org/10.4236/jdaip.2016.42005 A Comparative Study

More information