Data Knowledge and Optimization. Patrick De Causmaecker CODeS-imec Department of Computer Science KU Leuven/ KULAK

Size: px
Start display at page:

Download "Data Knowledge and Optimization. Patrick De Causmaecker CODeS-imec Department of Computer Science KU Leuven/ KULAK"

Transcription

1 Data Knowledge and Optimization Patrick De Causmaecker CODeS-imec Department of Computer Science KU Leuven/ KULAK

2 Whishes from West-Flanders, Belgium

3 10 rules for success in supply chain mngmnt & logistics systems (Ratliff, 2013) 1. Objectives - quantified, measurable 2. Models - faithful, essential 3. Variability - explicitly considered 4. Data - accurate, timely, and comprehensive 5. Integration - fully automated data transfer 6. Delivery - support execution, management and control 7. Algorithms - exploit individual problem structure 8. People - expertise in models, data, and optimization 9. Process - support optimization, continuously improve 10.ROI - provable, cost of technology, people and operations

4 10 rules for success in supply chain management & logistics systems 1. Objectives - quantified, measurable 2. Models - faithful, essential 3. Variability - explicitly considered 4. Data - accurate, timely, and comprehensive 5. Knowledge of (domain) experts 6. Integration - fully automated data transfer 7. Delivery - support execution, management and control 8. Algorithms - exploit individual problem structure 9. People - expertise in models, data, and optimization 10.Process - support optimization, continuously improve 11.ROI - provable, cost of technology, people and operations

5 Subjects Machine learning and optimization -> computing Configuration, tuning, construction Bayesian optimization Formal languages Large graphs, classification, pattern mining Matrix factorization Adaptive algorithms and hyperheuristics Algorithm selection (on line learning) (*) Algorithm design (*)

6 Characterization of neighborhood behaviours in a multi-neighborhood local search algorithm Nguyen Dang, Patrick De Causmaecker KU Leuven, Belgium CODeS, ITEC-iMinds

7 Context A multi-neighborhood local search for the Swap-body Vehicle Routing problem Authors: Jan Christiaens, Tony Wauters, Túlio Toffolo, Sam Van Malderen Winner of the Verolog Solver Challenge

8 A multi-neighborhood local search for the Swap-body Vehicle Routing problem Neighborhood types (18) Cheapest insertion Swap Intra-route 2-opt Inter-route 2-opt Change swap location Merge routes Split to sub-routes Ruin recreate Remove route Remove sub-route Remove sub-route with cheapest insertion Remove chains EachSequenceCheapestInsert Convert to route Convert to sub-route Add sub-route Ejection chain P 8

9 A multi-neighborhood local search for the Swap-body Vehicle Routing problem Neighborhoods (42) Cheapest insertion (11) Swap (1) Intra-route 2-opt (1) Inter-route 2-opt (1) Change swap location (1) Merge routes (1) Split to sub-routes (1) Ruin recreate (2) Remove route (1) Remove sub-route (1) Remove sub-route with cheapest insertion (1) Remove chains (8) EachSequenceCheapestInsert (3) Convert to route (1) Convert to sub-route (1) Add sub-route (1) Ejection chain (6) 9

10 A multi-neighborhood local search for the Swap-body Vehicle Routing problem An Iterated Local Search algorithm s* = Late Acceptance Hill Climbing(s 0 ) while (time <= time-limit) s = Perturbate(s*) s = Late Acceptance Hill Climbing(s) if (f(s ) < f(s*)) s* = s 10

11 A multi-neighborhood local search for the Swap-body Vehicle Routing problem Late Acceptance Hill Climbing s = s* = s0 while (#iteration-without-improvement <= itwi) s = neighbor(s) if f(s ) <= f(s) or f(s ) <= f(solution-of-listsize-step-before) s = s Update s* Neighborhood N 1 with weight w 1 Neighborhood N 2 with weight w 2 Neighborhood N 3 with weight w 3. w 1 + w w n = 1 A 11

12 Research question Groups of similar neighborhoods? 1. Help algorithm designers to understand the behaviour of these neighbourhoods better 2. Characterize each neighborhood behaviours as a feature vector (based on information collected from different algorithm runs) 3. Clustering neighborhoods N 12

13 Observables For each neighborhood instance combination Probability improve, worsen or nothing Magnitudes of improvement and worsening Running time (for tie-breaking) Collect statistics during testrun Mustafa Mısır, B., Stephanus Daniel Handoko, and Hoong Chuin Lau. "OSCAR: Online Selection of Algorithm Portfolios with Case Study on Memetic Algorithms." Learning and Intelligent Optimization:

14 Characterize neighborhood s behaviours Merge route Cheapest insertion 2 r nothing r worsen r improve A Remove route Cheapest insertion 25 X-axis: quality of the current solution 14

15 Solution quality regions and visits interval i 1 interval i intervals upper bound lower bound easy to reach, easy to escape easy to reach, hard to escape hard to reach 15

16 Feature Step 3: characterize each neighborhood as a feature vector Aggregate collected information into regions Probability of improvement (I), worsening (W), doing nothing (SN) on region f: r improve f = ni k / niters k k f k f r worsen f = nw k / niters k k f k f r nothing f = 1 - r improve f - r worsen f 16

17 Feature vectors Per region Probabilities by size Ammounts by a ranking procedure Kolde, R., Laur, S., Adler, P., & Vilo, J. (2012). Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics, 28(4),

18 Clustering neighborhoods on similarity Neighbourhood characteristics #instances #regions #observables elements High-dimensional low-sample size (42 individuals, 150 dimensions) 18

19 Clustering neighborhoods High-dimensional low-sample size clustering method: HDDC (Berge et al 2012) Apply isometric log-transformation (Aitchison 1986) on r improve, r worsen, r nothing (compositional data) before clustering Bergé, L., Bouveyron, C., & Girard, S. (2012). HDclassif: An R package for model-based clustering and discriminant analysis of high-dimensional data. Aitchison, J. (1986). The statistical analysis of compositional data. 19

20 Clustering neighborhoods Clustering result: 9 clusters Ejection-chain 3, 4, 5; Remove-chain 1, 2, 3, 6, 7, 8; Remove-sub-route-with-cheapest-insertion; Swap; Inter-route-two-opt Cheapest-insertion 10, 15, 20, 25, 35, 50; Each-sequence-cheapest-insertion (2,5), (4,4), (5,2); Removechain 4 Cheapest-insertion 1, 2, 3, 4, 5 Change-swap-location; Merge-route Add-sub-route; Convert-to-sub-route Ejection-chain 10, 15, 35; Remove-chain 5; Intra-route-two-opt Ruin-recreate 2, 3 Convert-to-route; Remove-sub-route; Remove-route; Split-to-sub-route 20

21 Run a number of algorithm runs on each problem instance Collect log files (accumulable statistics on neighborhoods behaviours) Automated parameter tuning with k (<<42) parameters Characterize and cluster neighborhoods into k (<<42) groups 21

22 Apply to algorithm tuning Three scenarios: Original (42 weight parameters) Basic (28 weight parameters) Clustered (9 weight parameters): all neighborhoods in a cluster have the same weight 22

23 Apply to algorithm tuning original vs clustered : p = basic vs clustered : p =

24 Apply to algorithm tuning Original vs original with identical weights: p = Basic vs basic with identical weights: p = Clustered vs cluster with identical weights: p =

25 Thank you Dang, Nguyen Thi Thanh; De Causmaecker, Patrick. Characterization of neighborhood behaviours in a multineighborhood local search algorithm, Lecture Notes In Computer Science, Springer, Learning and Intelligent OptimizatioN Conference, Italy, 29/5-1/ Data Science meets Optimization o EURO Working Group (workshop)

26 Online Algorithm Selection Learning when to use which Algorithm Hans Degroote KU Leuven campus KULAK (Belgium) Supervised by Patrick De Causmaecker Joined work with Bernd Bischl (LMU Munich) Lars Kotthoff (Univeristy of British Colombia)

27 Overview Algorithm portfolios When are algorithm selection/portfolios useful (+ quantification) The algorithm selection problem The online algorithm selection problem o Exploration vs exploitation trade-off Empirical validation

28 Algorithm selection A portfolio of complementary algorithms exists Computational resources are limited AND Competitions Operational problems (production schedule for the day, delivery schedule for the day ) Sub-problem that needs to be solved often If much time or cores are available: use a parallel portfolio

29 Satzilla SAT competition: o Many algorithms competing and improving over time Idea of Satzilla: on line selection from a portfolio from previous competitions o o Result: dominated the competition (as long as ) Reason: highly complementary set of solvers Xu, Lin, et al. "SATzilla: portfolio-based algorithm selection for SAT." Journal of Artificial

30 SAT competition 2013 potential-visualisation Single Best Solver: solves 231/300 instances Virtual Best Solver: solves 288/300 instances

31 Algorithm selection: off line version Learn a selector λ from training data o Supervised learning (Nearest neighbours, ) o Regression o... Use the selector as part of the new solver

32 Regression-based classification Select for each instance the algorithm predicted to be best

33 Algorithm selection: on-line version Core idea: update selection mapping as new data comes in o E.g. learn a better selection mapping over time

34 Online algorithm selection: methodology How to define the strategy? Main challenge: online data is incomplete 1. Supervised learning methods cannot deal well with incomplete data 2. Exploration vs. Exploitation trade-off

35 Online data is incomplete Offline data a 1 a 2 a 3 Best i a 1 i a 1 i a 3 i a 2 Online data a 1 a 2 a 3 Best i 5 50????? i 6? 70???? i 7 80????? i 8?? 120???

36 Online algorithm selection based on regression models

37 Exploration vs. Exploitation trade-off New data is collected only for instances on which the algorithm is predicted to be best o If an algorithm is incorrectly predicted to be bad, this is hard to correct

38 Exploration vs. exploitation: multi-armed bandits GOOD: 5 BAD: 3 GOOD: 1 BAD: 2 GOOD: 2 BAD: 2

39 Exploration vs. Exploitation: methods ε-greedy o select random algorithm with probability ε o Select predicted best otherwise UCB: upper confidence bound o o Calculate the variance on each prediction Select the algorithm with highest value for: mean+variance*λ

40 UCB

41 Experiments: the ASLIB benchmark 21 algorithm selection scenario Each scenario contains: o o Complete performance information of all algorithms on all instances Feature values for all feature-instance combinations Scenario sizes vary o 2-31 algorithms o instances

42 Empirical results summary RQ1: Does processing the online data result in better performance? o Yes: online processing of the data leads to better performance on almost all scenarios RQ2: Does explicitly taking the exploration vs. exploitation trade-off into account improve performance? o No: exploration strategies do not perform well Exploration strategies do not even learn better models than the greedy strategy

43 Empirical results discussion Why does the exploration not help? o Bad exploration strategies o o Large amount of initial training data available Greedy performs a kind of exploration of its own Collects online data for any algorithm that is predicted best on some instances

44 Hans Degroote Conclusions Before developing a new algorithm, check if the existing algorithms are complementary o o Many computational resources => Parallel portfolio Limited computational resources => Algorithm selection The potential of a portfolio can be quantified by comparing the Single Best Solver and the Virtual Best Solver on benchmark data An algorithm selection method can be improved while in use, by processing the online generated data

45 Hans Degroote Current/Future work Apply online algorithm selection to an OR problem (GAP) o With unlimited instance generation instead of benchmark data Test more clever exploration methods o From bandit literature Test alternative regression models o o Updatable models Gaussian processes

46 Hans Degroote KU Leuven campus KULAK (Belgium) Supervised by Patrick De Causmaecker

Data Science meets Optimization. ODS 2017 EURO Plenary Patrick De Causmaecker EWG/DSO EURO Working Group CODeS KU Leuven/ KULAK

Data Science meets Optimization. ODS 2017 EURO Plenary Patrick De Causmaecker EWG/DSO EURO Working Group CODeS KU Leuven/ KULAK Data Science meets Optimization ODS 2017 EURO Plenary Patrick De Causmaecker EWG/DSO EURO Working Group CODeS KU Leuven/ KULAK ODS 2017, Sorrento www.fourthparadigm.com Copyright 2009 Microsoft Corporation

More information

An Empirical Study of Per-Instance Algorithm Scheduling

An Empirical Study of Per-Instance Algorithm Scheduling An Empirical Study of Per-Instance Algorithm Scheduling Marius Lindauer, Rolf-David Bergdoll, and Frank Hutter University of Freiburg Abstract. Algorithm selection is a prominent approach to improve a

More information

Outline of the module

Outline of the module Evolutionary and Heuristic Optimisation (ITNPD8) Lecture 2: Heuristics and Metaheuristics Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ Computing Science and Mathematics, School of Natural Sciences University

More information

A Hyper-heuristic based on Random Gradient, Greedy and Dominance

A Hyper-heuristic based on Random Gradient, Greedy and Dominance A Hyper-heuristic based on Random Gradient, Greedy and Dominance Ender Özcan and Ahmed Kheiri University of Nottingham, School of Computer Science Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK

More information

An introduction to multi-armed bandits

An introduction to multi-armed bandits An introduction to multi-armed bandits Henry WJ Reeve (Manchester) (henry.reeve@manchester.ac.uk) A joint work with Joe Mellor (Edinburgh) & Professor Gavin Brown (Manchester) Plan 1. An introduction to

More information

Lecture 25: Review I

Lecture 25: Review I Lecture 25: Review I Reading: Up to chapter 5 in ISLR. STATS 202: Data mining and analysis Jonathan Taylor 1 / 18 Unsupervised learning In unsupervised learning, all the variables are on equal standing,

More information

Artificial Intelligence. Programming Styles

Artificial Intelligence. Programming Styles Artificial Intelligence Intro to Machine Learning Programming Styles Standard CS: Explicitly program computer to do something Early AI: Derive a problem description (state) and use general algorithms to

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Data Mining by I. H. Witten and E. Frank 7 Engineering the input and output Attribute selection Scheme-independent, scheme-specific Attribute discretization Unsupervised, supervised, error-

More information

CS570: Introduction to Data Mining

CS570: Introduction to Data Mining CS570: Introduction to Data Mining Classification Advanced Reading: Chapter 8 & 9 Han, Chapters 4 & 5 Tan Anca Doloc-Mihu, Ph.D. Slides courtesy of Li Xiong, Ph.D., 2011 Han, Kamber & Pei. Data Mining.

More information

An Empirical Study of Hoeffding Racing for Model Selection in k-nearest Neighbor Classification

An Empirical Study of Hoeffding Racing for Model Selection in k-nearest Neighbor Classification An Empirical Study of Hoeffding Racing for Model Selection in k-nearest Neighbor Classification Flora Yu-Hui Yeh and Marcus Gallagher School of Information Technology and Electrical Engineering University

More information

Supervised vs unsupervised clustering

Supervised vs unsupervised clustering Classification Supervised vs unsupervised clustering Cluster analysis: Classes are not known a- priori. Classification: Classes are defined a-priori Sometimes called supervised clustering Extract useful

More information

An Intelligent Hyper-heuristic Framework for CHeSC 2011

An Intelligent Hyper-heuristic Framework for CHeSC 2011 An Intelligent Hyper-heuristic Framework for CHeSC 2011 M. Mısır 1,2, K. Verbeeck 1,2, P. De Causmaecker 2, and G. Vanden Berghe 1,2 1 CODeS, KAHO Sint-Lieven {mustafa.misir,katja.verbeeck,greet.vandenberghe}@kahosl.be

More information

Algorithm Engineering Applied To Graph Clustering

Algorithm Engineering Applied To Graph Clustering Algorithm Engineering Applied To Graph Clustering Insights and Open Questions in Designing Experimental Evaluations Marco 1 Workshop on Communities in Networks 14. March, 2008 Louvain-la-Neuve Outline

More information

Bioinformatics - Lecture 07

Bioinformatics - Lecture 07 Bioinformatics - Lecture 07 Bioinformatics Clusters and networks Martin Saturka http://www.bioplexity.org/lectures/ EBI version 0.4 Creative Commons Attribution-Share Alike 2.5 License Learning on profiles

More information

Machine Learning Techniques for Data Mining

Machine Learning Techniques for Data Mining Machine Learning Techniques for Data Mining Eibe Frank University of Waikato New Zealand 10/25/2000 1 PART VII Moving on: Engineering the input and output 10/25/2000 2 Applying a learner is not all Already

More information

Predictive Analytics: Demystifying Current and Emerging Methodologies. Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA

Predictive Analytics: Demystifying Current and Emerging Methodologies. Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA Predictive Analytics: Demystifying Current and Emerging Methodologies Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA May 18, 2017 About the Presenters Tom Kolde, FCAS, MAAA Consulting Actuary Chicago,

More information

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information

Outlier Ensembles. Charu C. Aggarwal IBM T J Watson Research Center Yorktown, NY Keynote, Outlier Detection and Description Workshop, 2013

Outlier Ensembles. Charu C. Aggarwal IBM T J Watson Research Center Yorktown, NY Keynote, Outlier Detection and Description Workshop, 2013 Charu C. Aggarwal IBM T J Watson Research Center Yorktown, NY 10598 Outlier Ensembles Keynote, Outlier Detection and Description Workshop, 2013 Based on the ACM SIGKDD Explorations Position Paper: Outlier

More information

CSE 158. Web Mining and Recommender Systems. Midterm recap

CSE 158. Web Mining and Recommender Systems. Midterm recap CSE 158 Web Mining and Recommender Systems Midterm recap Midterm on Wednesday! 5:10 pm 6:10 pm Closed book but I ll provide a similar level of basic info as in the last page of previous midterms CSE 158

More information

Chapter DM:II. II. Cluster Analysis

Chapter DM:II. II. Cluster Analysis Chapter DM:II II. Cluster Analysis Cluster Analysis Basics Hierarchical Cluster Analysis Iterative Cluster Analysis Density-Based Cluster Analysis Cluster Evaluation Constrained Cluster Analysis DM:II-1

More information

Clustering Algorithms for Data Stream

Clustering Algorithms for Data Stream Clustering Algorithms for Data Stream Karishma Nadhe 1, Prof. P. M. Chawan 2 1Student, Dept of CS & IT, VJTI Mumbai, Maharashtra, India 2Professor, Dept of CS & IT, VJTI Mumbai, Maharashtra, India Abstract:

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 22, 2016 Course Information Website: http://www.stat.ucdavis.edu/~chohsieh/teaching/ ECS289G_Fall2016/main.html My office: Mathematical Sciences

More information

node2vec: Scalable Feature Learning for Networks

node2vec: Scalable Feature Learning for Networks node2vec: Scalable Feature Learning for Networks A paper by Aditya Grover and Jure Leskovec, presented at Knowledge Discovery and Data Mining 16. 11/27/2018 Presented by: Dharvi Verma CS 848: Graph Database

More information

Machine Learning in Python. Rohith Mohan GradQuant Spring 2018

Machine Learning in Python. Rohith Mohan GradQuant Spring 2018 Machine Learning in Python Rohith Mohan GradQuant Spring 2018 What is Machine Learning? https://twitter.com/myusuf3/status/995425049170489344 Traditional Programming Data Computer Program Output Getting

More information

Fast or furious? - User analysis of SF Express Inc

Fast or furious? - User analysis of SF Express Inc CS 229 PROJECT, DEC. 2017 1 Fast or furious? - User analysis of SF Express Inc Gege Wen@gegewen, Yiyuan Zhang@yiyuan12, Kezhen Zhao@zkz I. MOTIVATION The motivation of this project is to predict the likelihood

More information

Data Mining 4. Cluster Analysis

Data Mining 4. Cluster Analysis Data Mining 4. Cluster Analysis 4.5 Spring 2010 Instructor: Dr. Masoud Yaghini Introduction DBSCAN Algorithm OPTICS Algorithm DENCLUE Algorithm References Outline Introduction Introduction Density-based

More information

ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS

ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ OUTLINE Optimisation problems Optimisation & search Two Examples The knapsack problem

More information

Multi-Level Algorithm Selection for ASP

Multi-Level Algorithm Selection for ASP Multi-Level Algorithm Selection for ASP Marco Maratea 1, Luca Pulina 2, and Francesco Ricca 3 1 DIBRIS, University of Genova 2 POLCOMING, University of Sassari 3 DeMaCS, University of Calabria 13th International

More information

K Nearest Neighbor Wrap Up K- Means Clustering. Slides adapted from Prof. Carpuat

K Nearest Neighbor Wrap Up K- Means Clustering. Slides adapted from Prof. Carpuat K Nearest Neighbor Wrap Up K- Means Clustering Slides adapted from Prof. Carpuat K Nearest Neighbor classification Classification is based on Test instance with Training Data K: number of neighbors that

More information

BRACE: A Paradigm For the Discretization of Continuously Valued Data

BRACE: A Paradigm For the Discretization of Continuously Valued Data Proceedings of the Seventh Florida Artificial Intelligence Research Symposium, pp. 7-2, 994 BRACE: A Paradigm For the Discretization of Continuously Valued Data Dan Ventura Tony R. Martinez Computer Science

More information

MODELLING DOCUMENT CATEGORIES BY EVOLUTIONARY LEARNING OF TEXT CENTROIDS

MODELLING DOCUMENT CATEGORIES BY EVOLUTIONARY LEARNING OF TEXT CENTROIDS MODELLING DOCUMENT CATEGORIES BY EVOLUTIONARY LEARNING OF TEXT CENTROIDS J.I. Serrano M.D. Del Castillo Instituto de Automática Industrial CSIC. Ctra. Campo Real km.0 200. La Poveda. Arganda del Rey. 28500

More information

Moving Beyond Linearity

Moving Beyond Linearity Moving Beyond Linearity Basic non-linear models one input feature: polynomial regression step functions splines smoothing splines local regression. more features: generalized additive models. Polynomial

More information

Exploratory data analysis for microarrays

Exploratory data analysis for microarrays Exploratory data analysis for microarrays Jörg Rahnenführer Computational Biology and Applied Algorithmics Max Planck Institute for Informatics D-66123 Saarbrücken Germany NGFN - Courses in Practical DNA

More information

CSE 573: Artificial Intelligence Autumn 2010

CSE 573: Artificial Intelligence Autumn 2010 CSE 573: Artificial Intelligence Autumn 2010 Lecture 16: Machine Learning Topics 12/7/2010 Luke Zettlemoyer Most slides over the course adapted from Dan Klein. 1 Announcements Syllabus revised Machine

More information

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS18 Lecture 2: Linear Regression Gradient Descent Non-linear basis functions LINEAR REGRESSION MOTIVATION Why Linear Regression? Simplest

More information

Stability of Feature Selection Algorithms

Stability of Feature Selection Algorithms Stability of Feature Selection Algorithms Alexandros Kalousis, Jullien Prados, Phong Nguyen Melanie Hilario Artificial Intelligence Group Department of Computer Science University of Geneva Stability of

More information

Behavioral Data Mining. Lecture 18 Clustering

Behavioral Data Mining. Lecture 18 Clustering Behavioral Data Mining Lecture 18 Clustering Outline Why? Cluster quality K-means Spectral clustering Generative Models Rationale Given a set {X i } for i = 1,,n, a clustering is a partition of the X i

More information

K-Nearest-Neighbours with a Novel Similarity Measure for Intrusion Detection

K-Nearest-Neighbours with a Novel Similarity Measure for Intrusion Detection K-Nearest-Neighbours with a Novel Similarity Measure for Intrusion Detection Zhenghui Ma School of Computer Science The University of Birmingham Edgbaston, B15 2TT Birmingham, UK Ata Kaban School of Computer

More information

Random Forest A. Fornaser

Random Forest A. Fornaser Random Forest A. Fornaser alberto.fornaser@unitn.it Sources Lecture 15: decision trees, information theory and random forests, Dr. Richard E. Turner Trees and Random Forests, Adele Cutler, Utah State University

More information

Case-Based Reasoning. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. Parametric / Non-parametric.

Case-Based Reasoning. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. Parametric / Non-parametric. CS 188: Artificial Intelligence Fall 2008 Lecture 25: Kernels and Clustering 12/2/2008 Dan Klein UC Berkeley Case-Based Reasoning Similarity for classification Case-based reasoning Predict an instance

More information

CS 188: Artificial Intelligence Fall 2008

CS 188: Artificial Intelligence Fall 2008 CS 188: Artificial Intelligence Fall 2008 Lecture 25: Kernels and Clustering 12/2/2008 Dan Klein UC Berkeley 1 1 Case-Based Reasoning Similarity for classification Case-based reasoning Predict an instance

More information

Decomposition and Local Search Based Methods for the Traveling Umpire Problem

Decomposition and Local Search Based Methods for the Traveling Umpire Problem Decomposition and Local Search Based Methods for the Traveling Umpire Problem Tony Wauters Sam Van Malderen Greet Vanden Berghe CODeS, Department of Computer Science, KU Leuven, Gebroeders De Smetstraat

More information

Predicting Popular Xbox games based on Search Queries of Users

Predicting Popular Xbox games based on Search Queries of Users 1 Predicting Popular Xbox games based on Search Queries of Users Chinmoy Mandayam and Saahil Shenoy I. INTRODUCTION This project is based on a completed Kaggle competition. Our goal is to predict which

More information

Data Mining Chapter 9: Descriptive Modeling Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 9: Descriptive Modeling Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 9: Descriptive Modeling Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Descriptive model A descriptive model presents the main features of the data

More information

CS178: Machine Learning and Data Mining. Complexity & Nearest Neighbor Methods

CS178: Machine Learning and Data Mining. Complexity & Nearest Neighbor Methods + CS78: Machine Learning and Data Mining Complexity & Nearest Neighbor Methods Prof. Erik Sudderth Some materials courtesy Alex Ihler & Sameer Singh Machine Learning Complexity and Overfitting Nearest

More information

Online Graph Exploration

Online Graph Exploration Distributed Computing Online Graph Exploration Semester thesis Simon Hungerbühler simonhu@ethz.ch Distributed Computing Group Computer Engineering and Networks Laboratory ETH Zürich Supervisors: Sebastian

More information

CS423: Data Mining. Introduction. Jakramate Bootkrajang. Department of Computer Science Chiang Mai University

CS423: Data Mining. Introduction. Jakramate Bootkrajang. Department of Computer Science Chiang Mai University CS423: Data Mining Introduction Jakramate Bootkrajang Department of Computer Science Chiang Mai University Jakramate Bootkrajang CS423: Data Mining 1 / 29 Quote of the day Never memorize something that

More information

An Iterated Multi-stage Selection Hyper-heuristic

An Iterated Multi-stage Selection Hyper-heuristic An Iterated Multi-stage Selection Hyper-heuristic Ahmed Kheiri 1a, Ender Özcana a University of Nottingham School of Computer Science Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK {psxak1,ender.ozcan}@nottingham.ac.uk

More information

a local optimum is encountered in such a way that further improvement steps become possible.

a local optimum is encountered in such a way that further improvement steps become possible. Dynamic Local Search I Key Idea: Modify the evaluation function whenever a local optimum is encountered in such a way that further improvement steps become possible. I Associate penalty weights (penalties)

More information

Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms

Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms Frank Hutter 1, Youssef Hamadi 2, Holger Hoos 1, and Kevin Leyton-Brown 1 1 University of British Columbia, Vancouver,

More information

Application-Specific Algorithm Selection

Application-Specific Algorithm Selection Application-Specific Algorithm Selection Tim Roughgarden (Stanford) joint work with Rishi Gupta 1 Algorithm Selection I need to solve problem X. Which algorithm should I use? Answer usually depends on

More information

Using Machine Learning to Optimize Storage Systems

Using Machine Learning to Optimize Storage Systems Using Machine Learning to Optimize Storage Systems Dr. Kiran Gunnam 1 Outline 1. Overview 2. Building Flash Models using Logistic Regression. 3. Storage Object classification 4. Storage Allocation recommendation

More information

Self-Organizing Maps for cyclic and unbounded graphs

Self-Organizing Maps for cyclic and unbounded graphs Self-Organizing Maps for cyclic and unbounded graphs M. Hagenbuchner 1, A. Sperduti 2, A.C. Tsoi 3 1- University of Wollongong, Wollongong, Australia. 2- University of Padova, Padova, Italy. 3- Hong Kong

More information

Chapter 1, Introduction

Chapter 1, Introduction CSI 4352, Introduction to Data Mining Chapter 1, Introduction Young-Rae Cho Associate Professor Department of Computer Science Baylor University What is Data Mining? Definition Knowledge Discovery from

More information

Introduction to Data Science. Introduction to Data Science with Python. Python Basics: Basic Syntax, Data Structures. Python Concepts (Core)

Introduction to Data Science. Introduction to Data Science with Python. Python Basics: Basic Syntax, Data Structures. Python Concepts (Core) Introduction to Data Science What is Analytics and Data Science? Overview of Data Science and Analytics Why Analytics is is becoming popular now? Application of Analytics in business Analytics Vs Data

More information

Topics in Machine Learning

Topics in Machine Learning Topics in Machine Learning Gilad Lerman School of Mathematics University of Minnesota Text/slides stolen from G. James, D. Witten, T. Hastie, R. Tibshirani and A. Ng Machine Learning - Motivation Arthur

More information

The Un-normalized Graph p-laplacian based Semi-supervised Learning Method and Speech Recognition Problem

The Un-normalized Graph p-laplacian based Semi-supervised Learning Method and Speech Recognition Problem Int. J. Advance Soft Compu. Appl, Vol. 9, No. 1, March 2017 ISSN 2074-8523 The Un-normalized Graph p-laplacian based Semi-supervised Learning Method and Speech Recognition Problem Loc Tran 1 and Linh Tran

More information

Lecture on Modeling Tools for Clustering & Regression

Lecture on Modeling Tools for Clustering & Regression Lecture on Modeling Tools for Clustering & Regression CS 590.21 Analysis and Modeling of Brain Networks Department of Computer Science University of Crete Data Clustering Overview Organizing data into

More information

Norbert Schuff VA Medical Center and UCSF

Norbert Schuff VA Medical Center and UCSF Norbert Schuff Medical Center and UCSF Norbert.schuff@ucsf.edu Medical Imaging Informatics N.Schuff Course # 170.03 Slide 1/67 Objective Learn the principle segmentation techniques Understand the role

More information

An Unsupervised Approach for Combining Scores of Outlier Detection Techniques, Based on Similarity Measures

An Unsupervised Approach for Combining Scores of Outlier Detection Techniques, Based on Similarity Measures An Unsupervised Approach for Combining Scores of Outlier Detection Techniques, Based on Similarity Measures José Ramón Pasillas-Díaz, Sylvie Ratté Presenter: Christoforos Leventis 1 Basic concepts Outlier

More information

Context Change and Versatile Models in Machine Learning

Context Change and Versatile Models in Machine Learning Context Change and Versatile s in Machine Learning José Hernández-Orallo Universitat Politècnica de València jorallo@dsic.upv.es ECML Workshop on Learning over Multiple Contexts Nancy, 19 September 2014

More information

Multi-label classification using rule-based classifier systems

Multi-label classification using rule-based classifier systems Multi-label classification using rule-based classifier systems Shabnam Nazmi (PhD candidate) Department of electrical and computer engineering North Carolina A&T state university Advisor: Dr. A. Homaifar

More information

CSC411/2515 Tutorial: K-NN and Decision Tree

CSC411/2515 Tutorial: K-NN and Decision Tree CSC411/2515 Tutorial: K-NN and Decision Tree Mengye Ren csc{411,2515}ta@cs.toronto.edu September 25, 2016 Cross-validation K-nearest-neighbours Decision Trees Review: Motivation for Validation Framework:

More information

UVA CS 6316/4501 Fall 2016 Machine Learning. Lecture 15: K-nearest-neighbor Classifier / Bias-Variance Tradeoff. Dr. Yanjun Qi. University of Virginia

UVA CS 6316/4501 Fall 2016 Machine Learning. Lecture 15: K-nearest-neighbor Classifier / Bias-Variance Tradeoff. Dr. Yanjun Qi. University of Virginia UVA CS 6316/4501 Fall 2016 Machine Learning Lecture 15: K-nearest-neighbor Classifier / Bias-Variance Tradeoff Dr. Yanjun Qi University of Virginia Department of Computer Science 11/9/16 1 Rough Plan HW5

More information

Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011

Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011 Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011 1. Introduction Reddit is one of the most popular online social news websites with millions

More information

Simulated Annealing. Slides based on lecture by Van Larhoven

Simulated Annealing. Slides based on lecture by Van Larhoven Simulated Annealing Slides based on lecture by Van Larhoven Iterative Improvement 1 General method to solve combinatorial optimization problems Principle: Start with initial configuration Repeatedly search

More information

Learning the Neighborhood with the Linkage Tree Genetic Algorithm

Learning the Neighborhood with the Linkage Tree Genetic Algorithm Learning the Neighborhood with the Linkage Tree Genetic Algorithm Dirk Thierens 12 and Peter A.N. Bosman 2 1 Institute of Information and Computing Sciences Universiteit Utrecht, The Netherlands 2 Centrum

More information

CISC 4631 Data Mining

CISC 4631 Data Mining CISC 4631 Data Mining Lecture 03: Nearest Neighbor Learning Theses slides are based on the slides by Tan, Steinbach and Kumar (textbook authors) Prof. R. Mooney (UT Austin) Prof E. Keogh (UCR), Prof. F.

More information

Uninformed Search Methods. Informed Search Methods. Midterm Exam 3/13/18. Thursday, March 15, 7:30 9:30 p.m. room 125 Ag Hall

Uninformed Search Methods. Informed Search Methods. Midterm Exam 3/13/18. Thursday, March 15, 7:30 9:30 p.m. room 125 Ag Hall Midterm Exam Thursday, March 15, 7:30 9:30 p.m. room 125 Ag Hall Covers topics through Decision Trees and Random Forests (does not include constraint satisfaction) Closed book 8.5 x 11 sheet with notes

More information

Beyond Sliding Windows: Object Localization by Efficient Subwindow Search

Beyond Sliding Windows: Object Localization by Efficient Subwindow Search Beyond Sliding Windows: Object Localization by Efficient Subwindow Search Christoph H. Lampert, Matthew B. Blaschko, & Thomas Hofmann Max Planck Institute for Biological Cybernetics Tübingen, Germany Google,

More information

Sketchable Histograms of Oriented Gradients for Object Detection

Sketchable Histograms of Oriented Gradients for Object Detection Sketchable Histograms of Oriented Gradients for Object Detection No Author Given No Institute Given Abstract. In this paper we investigate a new representation approach for visual object recognition. The

More information

Applying Supervised Learning

Applying Supervised Learning Applying Supervised Learning When to Consider Supervised Learning A supervised learning algorithm takes a known set of input data (the training set) and known responses to the data (output), and trains

More information

Statistical Analysis of Metabolomics Data. Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte

Statistical Analysis of Metabolomics Data. Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte Statistical Analysis of Metabolomics Data Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte Outline Introduction Data pre-treatment 1. Normalization 2. Centering,

More information

Fast Downward Cedalion

Fast Downward Cedalion Fast Downward Cedalion Jendrik Seipp and Silvan Sievers Universität Basel Basel, Switzerland {jendrik.seipp,silvan.sievers}@unibas.ch Frank Hutter Universität Freiburg Freiburg, Germany fh@informatik.uni-freiburg.de

More information

CLUSTERING. CSE 634 Data Mining Prof. Anita Wasilewska TEAM 16

CLUSTERING. CSE 634 Data Mining Prof. Anita Wasilewska TEAM 16 CLUSTERING CSE 634 Data Mining Prof. Anita Wasilewska TEAM 16 1. K-medoids: REFERENCES https://www.coursera.org/learn/cluster-analysis/lecture/nj0sb/3-4-the-k-medoids-clustering-method https://anuradhasrinivas.files.wordpress.com/2013/04/lesson8-clustering.pdf

More information

Dimension reduction : PCA and Clustering

Dimension reduction : PCA and Clustering Dimension reduction : PCA and Clustering By Hanne Jarmer Slides by Christopher Workman Center for Biological Sequence Analysis DTU The DNA Array Analysis Pipeline Array design Probe design Question Experimental

More information

Machine Learning in the Wild. Dealing with Messy Data. Rajmonda S. Caceres. SDS 293 Smith College October 30, 2017

Machine Learning in the Wild. Dealing with Messy Data. Rajmonda S. Caceres. SDS 293 Smith College October 30, 2017 Machine Learning in the Wild Dealing with Messy Data Rajmonda S. Caceres SDS 293 Smith College October 30, 2017 Analytical Chain: From Data to Actions Data Collection Data Cleaning/ Preparation Analysis

More information

Data Preprocessing. S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha

Data Preprocessing. S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha Data Preprocessing S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha 1 Why Data Preprocessing? Data in the real world is dirty incomplete: lacking attribute values, lacking

More information

Understanding Clustering Supervising the unsupervised

Understanding Clustering Supervising the unsupervised Understanding Clustering Supervising the unsupervised Janu Verma IBM T.J. Watson Research Center, New York http://jverma.github.io/ jverma@us.ibm.com @januverma Clustering Grouping together similar data

More information

CAMCOS Report Day. December 9 th, 2015 San Jose State University Project Theme: Classification

CAMCOS Report Day. December 9 th, 2015 San Jose State University Project Theme: Classification CAMCOS Report Day December 9 th, 2015 San Jose State University Project Theme: Classification On Classification: An Empirical Study of Existing Algorithms based on two Kaggle Competitions Team 1 Team 2

More information

K-Nearest Neighbour (Continued) Dr. Xiaowei Huang

K-Nearest Neighbour (Continued) Dr. Xiaowei Huang K-Nearest Neighbour (Continued) Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/ A few things: No lectures on Week 7 (i.e., the week starting from Monday 5 th November), and Week 11 (i.e., the week

More information

SLS Methods: An Overview

SLS Methods: An Overview HEURSTC OPTMZATON SLS Methods: An Overview adapted from slides for SLS:FA, Chapter 2 Outline 1. Constructive Heuristics (Revisited) 2. terative mprovement (Revisited) 3. Simple SLS Methods 4. Hybrid SLS

More information

A study of classification algorithms using Rapidminer

A study of classification algorithms using Rapidminer Volume 119 No. 12 2018, 15977-15988 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu A study of classification algorithms using Rapidminer Dr.J.Arunadevi 1, S.Ramya 2, M.Ramesh Raja

More information

Data Mining. Part 2. Data Understanding and Preparation. 2.4 Data Transformation. Spring Instructor: Dr. Masoud Yaghini. Data Transformation

Data Mining. Part 2. Data Understanding and Preparation. 2.4 Data Transformation. Spring Instructor: Dr. Masoud Yaghini. Data Transformation Data Mining Part 2. Data Understanding and Preparation 2.4 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Normalization Attribute Construction Aggregation Attribute Subset Selection Discretization

More information

Simple algorithm portfolio for SAT

Simple algorithm portfolio for SAT Artif Intell Rev DOI 10.1007/s10462-011-9290-2 Simple algorithm portfolio for SAT Mladen Nikolić Filip Marić PredragJaničić Springer Science+Business Media B.V. 2011 Abstract The importance of algorithm

More information

Exploiting the OpenPOWER Platform for Big Data Analytics and Cognitive. Rajesh Bordawekar and Ruchir Puri IBM T. J. Watson Research Center

Exploiting the OpenPOWER Platform for Big Data Analytics and Cognitive. Rajesh Bordawekar and Ruchir Puri IBM T. J. Watson Research Center Exploiting the OpenPOWER Platform for Big Data Analytics and Cognitive Rajesh Bordawekar and Ruchir Puri IBM T. J. Watson Research Center 3/17/2015 2014 IBM Corporation Outline IBM OpenPower Platform Accelerating

More information

MTTTS17 Dimensionality Reduction and Visualization. Spring 2018 Jaakko Peltonen. Lecture 11: Neighbor Embedding Methods continued

MTTTS17 Dimensionality Reduction and Visualization. Spring 2018 Jaakko Peltonen. Lecture 11: Neighbor Embedding Methods continued MTTTS17 Dimensionality Reduction and Visualization Spring 2018 Jaakko Peltonen Lecture 11: Neighbor Embedding Methods continued This Lecture Neighbor embedding by generative modeling Some supervised neighbor

More information

BudgetedSVM: A Toolbox for Scalable SVM Approximations

BudgetedSVM: A Toolbox for Scalable SVM Approximations Journal of Machine Learning Research 14 (2013) 3813-3817 Submitted 4/13; Revised 9/13; Published 12/13 BudgetedSVM: A Toolbox for Scalable SVM Approximations Nemanja Djuric Liang Lan Slobodan Vucetic 304

More information

Model learning for robot control: a survey

Model learning for robot control: a survey Model learning for robot control: a survey Duy Nguyen-Tuong, Jan Peters 2011 Presented by Evan Beachly 1 Motivation Robots that can learn how their motors move their body Complexity Unanticipated Environments

More information

Gene Clustering & Classification

Gene Clustering & Classification BINF, Introduction to Computational Biology Gene Clustering & Classification Young-Rae Cho Associate Professor Department of Computer Science Baylor University Overview Introduction to Gene Clustering

More information

GPUML: Graphical processors for speeding up kernel machines

GPUML: Graphical processors for speeding up kernel machines GPUML: Graphical processors for speeding up kernel machines http://www.umiacs.umd.edu/~balajiv/gpuml.htm Balaji Vasan Srinivasan, Qi Hu, Ramani Duraiswami Department of Computer Science, University of

More information

Lecture 27: Review. Reading: All chapters in ISLR. STATS 202: Data mining and analysis. December 6, 2017

Lecture 27: Review. Reading: All chapters in ISLR. STATS 202: Data mining and analysis. December 6, 2017 Lecture 27: Review Reading: All chapters in ISLR. STATS 202: Data mining and analysis December 6, 2017 1 / 16 Final exam: Announcements Tuesday, December 12, 8:30-11:30 am, in the following rooms: Last

More information

Package llama. R topics documented: July 11, Type Package

Package llama. R topics documented: July 11, Type Package Type Package Package llama July 11, 2018 Title Leveraging Learning to Automatically Manage Algorithms Version 0.9.2 Date 2018-07-11 Author Lars Kotthoff [aut,cre], Bernd Bischl [aut], Barry Hurley [ctb],

More information

Contents. Preface to the Second Edition

Contents. Preface to the Second Edition Preface to the Second Edition v 1 Introduction 1 1.1 What Is Data Mining?....................... 4 1.2 Motivating Challenges....................... 5 1.3 The Origins of Data Mining....................

More information

Metric learning approaches! for image annotation! and face recognition!

Metric learning approaches! for image annotation! and face recognition! Metric learning approaches! for image annotation! and face recognition! Jakob Verbeek" LEAR Team, INRIA Grenoble, France! Joint work with :"!Matthieu Guillaumin"!!Thomas Mensink"!!!Cordelia Schmid! 1 2

More information

Active Appearance Models

Active Appearance Models Active Appearance Models Edwards, Taylor, and Cootes Presented by Bryan Russell Overview Overview of Appearance Models Combined Appearance Models Active Appearance Model Search Results Constrained Active

More information

Sequential Model-based Optimization for General Algorithm Configuration

Sequential Model-based Optimization for General Algorithm Configuration Sequential Model-based Optimization for General Algorithm Configuration Frank Hutter, Holger Hoos, Kevin Leyton-Brown University of British Columbia LION 5, Rome January 18, 2011 Motivation Most optimization

More information

Hybridization EVOLUTIONARY COMPUTING. Reasons for Hybridization - 1. Naming. Reasons for Hybridization - 3. Reasons for Hybridization - 2

Hybridization EVOLUTIONARY COMPUTING. Reasons for Hybridization - 1. Naming. Reasons for Hybridization - 3. Reasons for Hybridization - 2 Hybridization EVOLUTIONARY COMPUTING Hybrid Evolutionary Algorithms hybridization of an EA with local search techniques (commonly called memetic algorithms) EA+LS=MA constructive heuristics exact methods

More information

SUPERVISED LEARNING METHODS. Stanley Liang, PhD Candidate, Lassonde School of Engineering, York University Helix Science Engagement Programs 2018

SUPERVISED LEARNING METHODS. Stanley Liang, PhD Candidate, Lassonde School of Engineering, York University Helix Science Engagement Programs 2018 SUPERVISED LEARNING METHODS Stanley Liang, PhD Candidate, Lassonde School of Engineering, York University Helix Science Engagement Programs 2018 2 CHOICE OF ML You cannot know which algorithm will work

More information

Machine Learning in the Process Industry. Anders Hedlund Analytics Specialist

Machine Learning in the Process Industry. Anders Hedlund Analytics Specialist Machine Learning in the Process Industry Anders Hedlund Analytics Specialist anders@binordic.com Artificial Specific Intelligence Artificial General Intelligence Strong AI Consciousness MEDIA, NEWS, CELEBRITIES

More information