Spatial Outlier Detection

Size: px
Start display at page:

Download "Spatial Outlier Detection"

Transcription

1 Spatial Outlier Detection Chang-Tien Lu Department of Computer Science Northern Virginia Center Virginia Tech Joint work with Dechang Chen, Yufeng Kou, Jiang Zhao 1

2 Spatial Outlier A spatial data point that is extreme relative to its neighbors 2

3 Outline Single-Attribute Spatial Outlier Detection Z-value approach Iterative Approach & Median Multi-Attribute Spatial Outlier Detection Region Outlier Detection & Tracking Conclusion 3

4 An Example of Spatial Outlier Spatial outlier: S, global outlier: G, L 4

5 5 Spatial Outlier Detection: Z s(x) approach θ σ µ > = s s x s x S Z ) ( ) ( = )) ( ( 1 ) ( ) ( ) ( y f k x f x S x N y Function: If Declare x as a spatial outlier

6 Evaluation of Statistical Assumption Distribution of traffic station attribute f(x) is normal S 1 x ) = f ( x ) y N ( x ( f ( y )) k ( ) Distribution of is normal too! 6

7 Outline Single-Attribute Spatial Outlier Detection Z-value approach Iterative & Median Approach Multi-Attribute Spatial Outlier Detection Region Outlier Detection & Tracking Conclusion 7

8 Motivation Number of neighbors: k=3 Expected outliers: S1, S2, S3 Outliers detected by traditional approaches: S1, E1, E2 Why inconsistent? An outlier may have negative impact on its nearby points 8

9 Motivation of Proposed Algorithms Objective Eliminate the negative impact of detected spatial outlier on its nearby points, for example: S1 Find spatial outliers that will be ignored by traditional algorithms, for example: S2 Solutions: Iterative algorithms Each iteration detect only one spatial outlier Before a new iteration, substitute the attribute value of the previous detected spatial outlier with the average attribute value of its neighbors Median algorithm Use Median to represent the average attribute value of neighbors 9

10 Iterative Z-value Algorithm In each iteration: Compute the standardized difference (Zvalue) for every point in the dataset: z i = d i σ µ The point with largest Z-value identified as a spatial outlier Substitute the attribute value of the previous detected spatial outlier with the average attribute value of its neighbors 10

11 In each iteration: Iterative Ratio Algorithm Compute the ratio of a point s attribute value and the average attribute value of its neighbors, (r-value), for every point The point with largest r-value identified as an outlier Substitute the attribute value of the previous detected spatial outlier with the average attribute value of its neighbors 11

12 Iterative Z-value v.s. Ratio Iterative Z-value Z(s1) = 1.7 Z(s2) = S2 will be selected first Iterative Ratio Ratio(s1) = 10/1=10 Ratio(s2) = 170/2=8.5 S1 will be selected first 12

13 Median Algorithm Use median to represent the average attribute value of neighbors Median is a robust estimator for the center of a data set Compute Z-value for each point z i = d Select the points whose Z-value greater than threshold as spatial outliers i σ µ 13

14 Outline Single-Attribute Spatial Outlier Detection Multi-Attribute Spatial Outlier Detection Region Outlier Detection & Tracking Conclusions 14

15 Multivariate Spatial Outlier Transportation: Abnormal traffic sensor stations (volume, occupancy, speed) Astronomy : A star whose constituent different from neighboring stars Census A county whose race population dissimilar with neighboring counties Multivariate spatial outliers are not necessarily univariate spatial outliers Unusual combination of normal values may cause multivariate spatial outliers 15

16 Problem Formulation: Definitions A set of spatial points X = {x 1, x 2,.. x n } q measurements (attribute values) are made on the spatial object x, y denotes the vector of (y 1,y 2,,y q ) T NN k (x i ) denotes the k nearest spatial neighbors of X i An attribute function f : A map from X to R q (the q dimensional Euclidean space) y i =f(x i ) = (f 1 (x i ), f 2 (x i ),, f q (x i )) T = (y i1, y i2,, y iq ) T Neighborhood function g: A map from X to Rq such that the jth component of g(x), g j (x i ) returns a summary statistic of attribute values y j of all the spatial points inside NN k (x i ), for example, mean function Comparison function h: For example, h=f g or h=f/g 16

17 Mahalanobis distance A distance measure based on correlations between the variable D 2 t (x) = (X m t )T S -1 t (X m t ) D t is the generalized squared distance of each point from the t group S t represents the within-group covariance matrix m t is the vector of the means of the variables of the t group X is the vector containing the values of the variables at location x Superior to Euclidean distance because it considers the distribution of the points (correlations) 17

18 Mahalanobis Distance It takes into account not only the average value but also its variance and the covariance of the variables measured It accounts for ranges of acceptability (variance) between variables It compensates for interactions or dependencies (covariance) between variables If the variables are normally distributed they can be converted to probabilities using the x 2 density function Unit of variable has influence on the distance Each variable stardardized to mean of zero and vairance of one 18

19 Multivariate Spatial Outlier Detection q-dimensional vector h(x) follows a multivariate normal distribution with mean vector µ and variance-covariance vector Σ Mahalanobis distance d 2 (x) = (h(x)- µ) T Σ -1 (h(x)-µ) is distributed as χ 2 q, which is chi-square distribution with q degree of freedom The probability that h(x) satisfies (h(x)- µ) Σ -1 (h(x)- µ)> χ 2 q (α) is α For a threshold θ, if d 2 (x) > θ, x is a spatial outlier n n 1 1 µ = h( ) Σ [ ][ ] T s = h( xi ) µ s h( xi ) µ s n 1 n 1 i= 1 s x i i= 19

20 Experiment: Census Data Set 20

21 Experiment Result (Median Algorithm) 21

22 Experiment Result (Mean Algorithm) 22

23 Outline Single-Attribute Spatial Outlier Detection Multi-Attribute Spatial Outlier Detection Region Outlier Detection & Tracking Conclusions 23

24 Region Outlier What is region outlier A group of adjoining spatial points whose feature is inconsistent with that of their surrounding neighbors Characteristics of meteorological data Spatial region outliers are frequently associated with severe weather phenomena and climate patterns, e.g., hurricane, tornado Preferable to decompose the original observation into different scales and treat them separately 24

25 Propose Approach Three steps Transform original data into wavelet domain Reconstruct from wavelet domain with particular scales of interest Apply image segmentation to identify region outliers Track the movement of the region outlier 25

26 Wavelet Analysis Method Characteristics of Wavelet Analysis Analyze signal at different frequencies with different resolutions Provide frequency and location of a variation Data in different scale can be studies with different focus Effective to filter signal or split different scales of variation Linear time and space complexities Applications of Wavelet Analysis Signal processing, image processing, computer vision Data mining area clustering, classification, regression, and data visualization 26

27 Wavelet Analysis Method Continuous wavelet transform W ( n, s ) = N n: localization of the wavelet transform s: scale Ψ: wavelet function X i (i=0,n-1): a discrete signal Inverse wavelet transform / 2 δjδt = J Re alw xi j C ψ (0) = s δ ( i 1 * x ( i) ψ i = 0 s n ) δ t 1 ( n, s ) j 0 1 / 2 0 j C δ : a constant for each wavelet function J: maximum scale index Ψ 0 : normalized wavelet function 27

28 Mexican Hat Wavelet with Locations and Scales The variation exists on all scales Power of variation changes at different locations 28

29 Wavelet Analysis Method Two base functions for wavelet analysis Mexican hat base 2 ( 1) d ψ 0 ( η ) = ( e 2 τ ( 21 / 2 ) d η Morlet base η 2 / 2 ) ψ 0 ( η ) 1 / 4 0η = π e w e η 2 / 2 We choose Mexican hat base Capture both positive and negative variations as separate peaks in wavelet power Provide better localization (spatial resolution) 29

30 Image segmentation Image Segmentation Partitions an image into connected components Points in a specific component have uniform attribute values Segmentation Methods: Discontinuity based Segment according to abrupt change of color intensity Often used for edge linking and curve detection Similarity based Segment image to regions which have similar characteristics within the boundary For example, region growing and split-and-merging 30

31 Segmentation Algorithm Find the largest connected component Find a connected component S from the dataset Compare its size with previously detected component S Use S to record the largest one Repeat above steps until all points of the dataset have been processed Steps to extract S from data set Σ 1) Pick a point p0 from Σ, whose value is greater than θ and not processed yet. 2) Label p0 as processed, and add p0 and its unprocessed neighbors into a queue 3) Remove a point p in the queue, check if its degree of connection C(p, p 0 ) is greater than variation level λ. If true, the neighbors of p will be added into the queue and p marked as processed. 4) Repeat the marking process until the queue is empty 31

32 Segmentation Algorithm Input: Σ : a set of data points θ: threshold for the clip level λ: variation level Output: S: the largest connected component with value above θ Σ = Ø; while (Σ contains unlabeled points) s p 0 = pickoneunlabeledpoint(σ, θ); L(p 0 ) = '*'; /*labeling p 0 as processed*/ QUEUE = InsertQueue(QUEUE, p 0 ); /* insert p 0 into a Queue */ while ( not Empty(QUEUE) ) /*get an element from the head of QUEUE*/ p 0 = RemoveQueue(QUEUE); For each p that is adjacent to p 0 if ( L(p) <> '*' and C(p, p 0 ) 1-λ) QUEUE = InsertQueue(QUEUE, p); L(p) = 0 s; S' = { p:l(p)=`0 }; /* S' is a λ-connected component*/ if (S' has more points than S) S = S'; /* save the largest component to S */ return(s); 32

33 Global Weather Data Global data of water vapor Multiple-parameter data with resolution of 1 degree by 1 degree Covers whole earth and is updated 4 times a day 33

34 Mexican Hat Wavelet with Locations and Scales The variation exists on all scales Power of variation changes at different locations Mexican hat wavelet has a satisfactory localization resolution 34

35 Wavelet transform A high value does not necessarily correspond to a high wavelet power Wavelet power mainly represents the variation of the signal for a particular scale 35

36 Perform Wavelet Transform along X dimension (Latitude) Include only particular scales of interest (2 and 3) Two spatial outliers Over south America (Center at 27 S and 55 W): tropical storm Over Gulf of Mexican (Center at 27 N and 90 W): hurricane 36

37 The Problem of transforming along the Y-axis (longitude) Reveal more patterns than the reconstructed data from wavelet transform along X-axis (latitude) These patterns are caused by the normal variation along the longitude Y and are noises in most cases 37

38 Experiment: Image Segmentation Reconstruction of water vapor at 0Am on 9/18, 2003 with Hurricane Isabel identified Reconstruction of water vapor at 6Am on 9/18, 2003 with Hurricane Isabel identified 38

39 Experiment: Tracking Movement 12 consecutive detected Isabel regions in 3 days 6 hour interval between two adjacent regions Noisy data might exist due to other weather patterns or inappropriate segmentation parameters Isabel moves northwestward Trajectory of moving region with noisy data Trajectory of moving region with noisy data removed 39

40 Outline Single-Attribute Spatial Outlier Detection Multi-Attribute Spatial Outlier Detection Region Outlier Detection Conclusions 40

41 Summary Single Attribute Spatial Outlier Z-value, Iterative, Median Multi-Attribute Spatial Outlier Two multivariate spatial outlier detection algorithms based on difference or ratio. Order the degree of spatial outlier-ness w.r.t Mahalanobis distance Region Outlier Detection based on wavelet transform and image segmentation On-line processing approach to tracking movement of outlier region in a data stream 41

42 Future Directions Multi-attribute spatial-temporal outliers Region outlier in three dimensional space with multiple attributes Track multiple moving outlier regions Remove the limitation (assumption) of multivariate normal distribution Widely used informal method: box plot approach Investigate the issue of handling large diskresident data set Minimize the number of disk page reads or passes 42

43 Related Publications Related Publications C.T. Lu, D. Chen, Y. Kou, Algorithms for Spatial Outlier Detection, IEEE International Conference on Data Mining, 2003 C.T. Lu, D. Chen, Y. Kou, Detecting Spatial Outliers with Multiple Attribute, IEEE International Conference on Tools with Artificial Intelligence, 2003 J. Zhao, C.T. Lu, Y. Kou, Detecting Region Outliers in Meteorological Data, Proceedings of the 11th International Symposium on Advances in Geographic Information Systems, New Orleans, Louisiana, pp , Nov. 7-8,

44 Links Mapview: Mapcube: 44

45 Q & A ctlu@vt.edu 45

Information Sciences Manuscript Draft. Title: Detecting and Tracking Region Outliers in Meteorological Data Sequences

Information Sciences Manuscript Draft. Title: Detecting and Tracking Region Outliers in Meteorological Data Sequences Information Sciences Manuscript Draft Manuscript Number: Title: Detecting and Tracking Region Outliers in Meteorological Data Sequences Article Type: Full Length Article Section/Category: Keywords: Spatial

More information

Detecting and tracking regional outliers in meteorological data

Detecting and tracking regional outliers in meteorological data Information Sciences 177 (2007) 1609 1632 www.elsevier.com/locate/ins Detecting and tracking regional outliers in meteorological data Chang-Tien Lu a, Yufeng Kou a, Jiang Zhao b, Li Chen c, * a Department

More information

Traffic Volume(Time v.s. Station)

Traffic Volume(Time v.s. Station) Detecting Spatial Outliers: Algorithm and Application Chang-Tien Lu Spatial Database Lab Department of Computer Science University of Minnesota ctlu@cs.umn.edu hone: 612-378-7705 Outline Introduction Motivation

More information

Part I. Hierarchical clustering. Hierarchical Clustering. Hierarchical clustering. Produces a set of nested clusters organized as a

Part I. Hierarchical clustering. Hierarchical Clustering. Hierarchical clustering. Produces a set of nested clusters organized as a Week 9 Based in part on slides from textbook, slides of Susan Holmes Part I December 2, 2012 Hierarchical Clustering 1 / 1 Produces a set of nested clusters organized as a Hierarchical hierarchical clustering

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Introduction Often, we have only a set of features x = x 1, x 2,, x n, but no associated response y. Therefore we are not interested in prediction nor classification,

More information

Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection - 2. Importance of edge detection in computer vision Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

More information

Moving Object Segmentation Method Based on Motion Information Classification by X-means and Spatial Region Segmentation

Moving Object Segmentation Method Based on Motion Information Classification by X-means and Spatial Region Segmentation IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.11, November 2013 1 Moving Object Segmentation Method Based on Motion Information Classification by X-means and Spatial

More information

Statistics 202: Data Mining. c Jonathan Taylor. Outliers Based in part on slides from textbook, slides of Susan Holmes.

Statistics 202: Data Mining. c Jonathan Taylor. Outliers Based in part on slides from textbook, slides of Susan Holmes. Outliers Based in part on slides from textbook, slides of Susan Holmes December 2, 2012 1 / 1 Concepts What is an outlier? The set of data points that are considerably different than the remainder of the

More information

Sensor Tasking and Control

Sensor Tasking and Control Sensor Tasking and Control Outline Task-Driven Sensing Roles of Sensor Nodes and Utilities Information-Based Sensor Tasking Joint Routing and Information Aggregation Summary Introduction To efficiently

More information

Introduction to Medical Imaging (5XSA0) Module 5

Introduction to Medical Imaging (5XSA0) Module 5 Introduction to Medical Imaging (5XSA0) Module 5 Segmentation Jungong Han, Dirk Farin, Sveta Zinger ( s.zinger@tue.nl ) 1 Outline Introduction Color Segmentation region-growing region-merging watershed

More information

Unified approach to detecting spatial outliers Shashi Shekhar, Chang-Tien Lu And Pusheng Zhang. Pekka Maksimainen University of Helsinki 2007

Unified approach to detecting spatial outliers Shashi Shekhar, Chang-Tien Lu And Pusheng Zhang. Pekka Maksimainen University of Helsinki 2007 Unified approach to detecting spatial outliers Shashi Shekhar, Chang-Tien Lu And Pusheng Zhang Pekka Maksimainen University of Helsinki 2007 Spatial outlier Outlier Inconsistent observation in data set

More information

Statistical Analysis of Metabolomics Data. Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte

Statistical Analysis of Metabolomics Data. Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte Statistical Analysis of Metabolomics Data Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte Outline Introduction Data pre-treatment 1. Normalization 2. Centering,

More information

Robotics Programming Laboratory

Robotics Programming Laboratory Chair of Software Engineering Robotics Programming Laboratory Bertrand Meyer Jiwon Shin Lecture 8: Robot Perception Perception http://pascallin.ecs.soton.ac.uk/challenges/voc/databases.html#caltech car

More information

Unsupervised Data Mining: Clustering. Izabela Moise, Evangelos Pournaras, Dirk Helbing

Unsupervised Data Mining: Clustering. Izabela Moise, Evangelos Pournaras, Dirk Helbing Unsupervised Data Mining: Clustering Izabela Moise, Evangelos Pournaras, Dirk Helbing Izabela Moise, Evangelos Pournaras, Dirk Helbing 1 1. Supervised Data Mining Classification Regression Outlier detection

More information

Part 3: Image Processing

Part 3: Image Processing Part 3: Image Processing Image Filtering and Segmentation Georgy Gimel farb COMPSCI 373 Computer Graphics and Image Processing 1 / 60 1 Image filtering 2 Median filtering 3 Mean filtering 4 Image segmentation

More information

Voronoi Region. K-means method for Signal Compression: Vector Quantization. Compression Formula 11/20/2013

Voronoi Region. K-means method for Signal Compression: Vector Quantization. Compression Formula 11/20/2013 Voronoi Region K-means method for Signal Compression: Vector Quantization Blocks of signals: A sequence of audio. A block of image pixels. Formally: vector example: (0.2, 0.3, 0.5, 0.1) A vector quantizer

More information

Data Preprocessing. S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha

Data Preprocessing. S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha Data Preprocessing S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha 1 Why Data Preprocessing? Data in the real world is dirty incomplete: lacking attribute values, lacking

More information

3. Data Preprocessing. 3.1 Introduction

3. Data Preprocessing. 3.1 Introduction 3. Data Preprocessing Contents of this Chapter 3.1 Introduction 3.2 Data cleaning 3.3 Data integration 3.4 Data transformation 3.5 Data reduction SFU, CMPT 740, 03-3, Martin Ester 84 3.1 Introduction Motivation

More information

DATA MINING II - 1DL460

DATA MINING II - 1DL460 DATA MINING II - 1DL460 Spring 2016 A second course in data mining!! http://www.it.uu.se/edu/course/homepage/infoutv2/vt16 Kjell Orsborn! Uppsala Database Laboratory! Department of Information Technology,

More information

Filtering Images. Contents

Filtering Images. Contents Image Processing and Data Visualization with MATLAB Filtering Images Hansrudi Noser June 8-9, 010 UZH, Multimedia and Robotics Summer School Noise Smoothing Filters Sigmoid Filters Gradient Filters Contents

More information

2. Data Preprocessing

2. Data Preprocessing 2. Data Preprocessing Contents of this Chapter 2.1 Introduction 2.2 Data cleaning 2.3 Data integration 2.4 Data transformation 2.5 Data reduction Reference: [Han and Kamber 2006, Chapter 2] SFU, CMPT 459

More information

SYDE Winter 2011 Introduction to Pattern Recognition. Clustering

SYDE Winter 2011 Introduction to Pattern Recognition. Clustering SYDE 372 - Winter 2011 Introduction to Pattern Recognition Clustering Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 5 All the approaches we have learned

More information

Data Preprocessing. Javier Béjar. URL - Spring 2018 CS - MAI 1/78 BY: $\

Data Preprocessing. Javier Béjar. URL - Spring 2018 CS - MAI 1/78 BY: $\ Data Preprocessing Javier Béjar BY: $\ URL - Spring 2018 C CS - MAI 1/78 Introduction Data representation Unstructured datasets: Examples described by a flat set of attributes: attribute-value matrix Structured

More information

Clustering in Ratemaking: Applications in Territories Clustering

Clustering in Ratemaking: Applications in Territories Clustering Clustering in Ratemaking: Applications in Territories Clustering Ji Yao, PhD FIA ASTIN 13th-16th July 2008 INTRODUCTION Structure of talk Quickly introduce clustering and its application in insurance ratemaking

More information

Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford

Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford Department of Engineering Science University of Oxford January 27, 2017 Many datasets consist of multiple heterogeneous subsets. Cluster analysis: Given an unlabelled data, want algorithms that automatically

More information

Feature Detectors and Descriptors: Corners, Lines, etc.

Feature Detectors and Descriptors: Corners, Lines, etc. Feature Detectors and Descriptors: Corners, Lines, etc. Edges vs. Corners Edges = maxima in intensity gradient Edges vs. Corners Corners = lots of variation in direction of gradient in a small neighborhood

More information

Elemental Set Methods. David Banks Duke University

Elemental Set Methods. David Banks Duke University Elemental Set Methods David Banks Duke University 1 1. Introduction Data mining deals with complex, high-dimensional data. This means that datasets often combine different kinds of structure. For example:

More information

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Structured Light II Johannes Köhler Johannes.koehler@dfki.de Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Introduction Previous lecture: Structured Light I Active Scanning Camera/emitter

More information

Clustering Part 4 DBSCAN

Clustering Part 4 DBSCAN Clustering Part 4 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville DBSCAN DBSCAN is a density based clustering algorithm Density = number of

More information

Supervised vs. Unsupervised Learning

Supervised vs. Unsupervised Learning Clustering Supervised vs. Unsupervised Learning So far we have assumed that the training samples used to design the classifier were labeled by their class membership (supervised learning) We assume now

More information

Mobility Data Management & Exploration

Mobility Data Management & Exploration Mobility Data Management & Exploration Ch. 07. Mobility Data Mining and Knowledge Discovery Nikos Pelekis & Yannis Theodoridis InfoLab University of Piraeus Greece infolab.cs.unipi.gr v.2014.05 Chapter

More information

INF 4300 Classification III Anne Solberg The agenda today:

INF 4300 Classification III Anne Solberg The agenda today: INF 4300 Classification III Anne Solberg 28.10.15 The agenda today: More on estimating classifier accuracy Curse of dimensionality and simple feature selection knn-classification K-means clustering 28.10.15

More information

Machine Learning: k-nearest Neighbors. Lecture 08. Razvan C. Bunescu School of Electrical Engineering and Computer Science

Machine Learning: k-nearest Neighbors. Lecture 08. Razvan C. Bunescu School of Electrical Engineering and Computer Science Machine Learning: k-nearest Neighbors Lecture 08 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Nonparametric Methods: k-nearest Neighbors Input: A training dataset

More information

Mixture Models and EM

Mixture Models and EM Table of Content Chapter 9 Mixture Models and EM -means Clustering Gaussian Mixture Models (GMM) Expectation Maximiation (EM) for Mixture Parameter Estimation Introduction Mixture models allows Complex

More information

Clustering. Chapter 10 in Introduction to statistical learning

Clustering. Chapter 10 in Introduction to statistical learning Clustering Chapter 10 in Introduction to statistical learning 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 1 Clustering ² Clustering is the art of finding groups in data (Kaufman and Rousseeuw, 1990). ² What

More information

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Cluster Analysis Mu-Chun Su Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Introduction Cluster analysis is the formal study of algorithms and methods

More information

Segmentation and Grouping

Segmentation and Grouping Segmentation and Grouping How and what do we see? Fundamental Problems ' Focus of attention, or grouping ' What subsets of pixels do we consider as possible objects? ' All connected subsets? ' Representation

More information

Supplementary Figure 1. Decoding results broken down for different ROIs

Supplementary Figure 1. Decoding results broken down for different ROIs Supplementary Figure 1 Decoding results broken down for different ROIs Decoding results for areas V1, V2, V3, and V1 V3 combined. (a) Decoded and presented orientations are strongly correlated in areas

More information

COMPUTER AND ROBOT VISION

COMPUTER AND ROBOT VISION VOLUME COMPUTER AND ROBOT VISION Robert M. Haralick University of Washington Linda G. Shapiro University of Washington A^ ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo Park, California

More information

Machine Learning A W 1sst KU. b) [1 P] Give an example for a probability distributions P (A, B, C) that disproves

Machine Learning A W 1sst KU. b) [1 P] Give an example for a probability distributions P (A, B, C) that disproves Machine Learning A 708.064 11W 1sst KU Exercises Problems marked with * are optional. 1 Conditional Independence I [2 P] a) [1 P] Give an example for a probability distribution P (A, B, C) that disproves

More information

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information

Spatial Interpolation & Geostatistics

Spatial Interpolation & Geostatistics (Z i Z j ) 2 / 2 Spatial Interpolation & Geostatistics Lag Lag Mean Distance between pairs of points 1 Tobler s Law All places are related, but nearby places are related more than distant places Corollary:

More information

University of Florida CISE department Gator Engineering. Clustering Part 4

University of Florida CISE department Gator Engineering. Clustering Part 4 Clustering Part 4 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville DBSCAN DBSCAN is a density based clustering algorithm Density = number of

More information

Instance-based Learning

Instance-based Learning Instance-based Learning Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February 19 th, 2007 2005-2007 Carlos Guestrin 1 Why not just use Linear Regression? 2005-2007 Carlos Guestrin

More information

Region-based Segmentation

Region-based Segmentation Region-based Segmentation Image Segmentation Group similar components (such as, pixels in an image, image frames in a video) to obtain a compact representation. Applications: Finding tumors, veins, etc.

More information

Uncertainties: Representation and Propagation & Line Extraction from Range data

Uncertainties: Representation and Propagation & Line Extraction from Range data 41 Uncertainties: Representation and Propagation & Line Extraction from Range data 42 Uncertainty Representation Section 4.1.3 of the book Sensing in the real world is always uncertain How can uncertainty

More information

Spatial Interpolation - Geostatistics 4/3/2018

Spatial Interpolation - Geostatistics 4/3/2018 Spatial Interpolation - Geostatistics 4/3/201 (Z i Z j ) 2 / 2 Spatial Interpolation & Geostatistics Lag Distance between pairs of points Lag Mean Tobler s Law All places are related, but nearby places

More information

Clustering & Classification (chapter 15)

Clustering & Classification (chapter 15) Clustering & Classification (chapter 5) Kai Goebel Bill Cheetham RPI/GE Global Research goebel@cs.rpi.edu cheetham@cs.rpi.edu Outline k-means Fuzzy c-means Mountain Clustering knn Fuzzy knn Hierarchical

More information

Bayesian Spherical Wavelet Shrinkage: Applications to Shape Analysis

Bayesian Spherical Wavelet Shrinkage: Applications to Shape Analysis Bayesian Spherical Wavelet Shrinkage: Applications to Shape Analysis Xavier Le Faucheur a, Brani Vidakovic b and Allen Tannenbaum a a School of Electrical and Computer Engineering, b Department of Biomedical

More information

CS 490: Computer Vision Image Segmentation: Thresholding. Fall 2015 Dr. Michael J. Reale

CS 490: Computer Vision Image Segmentation: Thresholding. Fall 2015 Dr. Michael J. Reale CS 490: Computer Vision Image Segmentation: Thresholding Fall 205 Dr. Michael J. Reale FUNDAMENTALS Introduction Before we talked about edge-based segmentation Now, we will discuss a form of regionbased

More information

Processing and Others. Xiaojun Qi -- REU Site Program in CVMA

Processing and Others. Xiaojun Qi -- REU Site Program in CVMA Advanced Digital Image Processing and Others Xiaojun Qi -- REU Site Program in CVMA (0 Summer) Segmentation Outline Strategies and Data Structures Overview of Algorithms Region Splitting Region Merging

More information

Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Exploratory data analysis tasks Examine the data, in search of structures

More information

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010 INFORMATICS SEMINAR SEPT. 27 & OCT. 4, 2010 Introduction to Semi-Supervised Learning Review 2 Overview Citation X. Zhu and A.B. Goldberg, Introduction to Semi- Supervised Learning, Morgan & Claypool Publishers,

More information

Today. Lecture 4: Last time. The EM algorithm. We examine clustering in a little more detail; we went over it a somewhat quickly last time

Today. Lecture 4: Last time. The EM algorithm. We examine clustering in a little more detail; we went over it a somewhat quickly last time Today Lecture 4: We examine clustering in a little more detail; we went over it a somewhat quickly last time The CAD data will return and give us an opportunity to work with curves (!) We then examine

More information

Homework 4: Clustering, Recommenders, Dim. Reduction, ML and Graph Mining (due November 19 th, 2014, 2:30pm, in class hard-copy please)

Homework 4: Clustering, Recommenders, Dim. Reduction, ML and Graph Mining (due November 19 th, 2014, 2:30pm, in class hard-copy please) Virginia Tech. Computer Science CS 5614 (Big) Data Management Systems Fall 2014, Prakash Homework 4: Clustering, Recommenders, Dim. Reduction, ML and Graph Mining (due November 19 th, 2014, 2:30pm, in

More information

Data Preprocessing. Javier Béjar AMLT /2017 CS - MAI. (CS - MAI) Data Preprocessing AMLT / / 71 BY: $\

Data Preprocessing. Javier Béjar AMLT /2017 CS - MAI. (CS - MAI) Data Preprocessing AMLT / / 71 BY: $\ Data Preprocessing S - MAI AMLT - 2016/2017 (S - MAI) Data Preprocessing AMLT - 2016/2017 1 / 71 Outline 1 Introduction Data Representation 2 Data Preprocessing Outliers Missing Values Normalization Discretization

More information

Data Mining and Analytics. Introduction

Data Mining and Analytics. Introduction Data Mining and Analytics Introduction Data Mining Data mining refers to extracting or mining knowledge from large amounts of data It is also termed as Knowledge Discovery from Data (KDD) Mostly, data

More information

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 3. Chapter 3: Data Preprocessing. Major Tasks in Data Preprocessing

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 3. Chapter 3: Data Preprocessing. Major Tasks in Data Preprocessing Data Mining: Concepts and Techniques (3 rd ed.) Chapter 3 1 Chapter 3: Data Preprocessing Data Preprocessing: An Overview Data Quality Major Tasks in Data Preprocessing Data Cleaning Data Integration Data

More information

Lecture 8 Object Descriptors

Lecture 8 Object Descriptors Lecture 8 Object Descriptors Azadeh Fakhrzadeh Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Reading instructions Chapter 11.1 11.4 in G-W Azadeh Fakhrzadeh

More information

3. Data Structures for Image Analysis L AK S H M O U. E D U

3. Data Structures for Image Analysis L AK S H M O U. E D U 3. Data Structures for Image Analysis L AK S H M AN @ O U. E D U Different formulations Can be advantageous to treat a spatial grid as a: Levelset Matrix Markov chain Topographic map Relational structure

More information

Histograms. h(r k ) = n k. p(r k )= n k /NM. Histogram: number of times intensity level rk appears in the image

Histograms. h(r k ) = n k. p(r k )= n k /NM. Histogram: number of times intensity level rk appears in the image Histograms h(r k ) = n k Histogram: number of times intensity level rk appears in the image p(r k )= n k /NM normalized histogram also a probability of occurence 1 Histogram of Image Intensities Create

More information

ECLT 5810 Data Preprocessing. Prof. Wai Lam

ECLT 5810 Data Preprocessing. Prof. Wai Lam ECLT 5810 Data Preprocessing Prof. Wai Lam Why Data Preprocessing? Data in the real world is imperfect incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate

More information

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University.

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University. 3D Computer Vision Structured Light II Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 Introduction

More information

Chapter 5: Outlier Detection

Chapter 5: Outlier Detection Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Knowledge Discovery in Databases SS 2016 Chapter 5: Outlier Detection Lecture: Prof. Dr.

More information

CS 664 Segmentation. Daniel Huttenlocher

CS 664 Segmentation. Daniel Huttenlocher CS 664 Segmentation Daniel Huttenlocher Grouping Perceptual Organization Structural relationships between tokens Parallelism, symmetry, alignment Similarity of token properties Often strong psychophysical

More information

CS 543: Final Project Report Texture Classification using 2-D Noncausal HMMs

CS 543: Final Project Report Texture Classification using 2-D Noncausal HMMs CS 543: Final Project Report Texture Classification using 2-D Noncausal HMMs Felix Wang fywang2 John Wieting wieting2 Introduction We implement a texture classification algorithm using 2-D Noncausal Hidden

More information

Overview of Clustering

Overview of Clustering based on Loïc Cerfs slides (UFMG) April 2017 UCBL LIRIS DM2L Example of applicative problem Student profiles Given the marks received by students for different courses, how to group the students so that

More information

MULTIVIEW REPRESENTATION OF 3D OBJECTS OF A SCENE USING VIDEO SEQUENCES

MULTIVIEW REPRESENTATION OF 3D OBJECTS OF A SCENE USING VIDEO SEQUENCES MULTIVIEW REPRESENTATION OF 3D OBJECTS OF A SCENE USING VIDEO SEQUENCES Mehran Yazdi and André Zaccarin CVSL, Dept. of Electrical and Computer Engineering, Laval University Ste-Foy, Québec GK 7P4, Canada

More information

Spatial Patterns Point Pattern Analysis Geographic Patterns in Areal Data

Spatial Patterns Point Pattern Analysis Geographic Patterns in Areal Data Spatial Patterns We will examine methods that are used to analyze patterns in two sorts of spatial data: Point Pattern Analysis - These methods concern themselves with the location information associated

More information

Multiple Model Estimation : The EM Algorithm & Applications

Multiple Model Estimation : The EM Algorithm & Applications Multiple Model Estimation : The EM Algorithm & Applications Princeton University COS 429 Lecture Nov. 13, 2007 Harpreet S. Sawhney hsawhney@sarnoff.com Recapitulation Problem of motion estimation Parametric

More information

7.1 INTRODUCTION Wavelet Transform is a popular multiresolution analysis tool in image processing and

7.1 INTRODUCTION Wavelet Transform is a popular multiresolution analysis tool in image processing and Chapter 7 FACE RECOGNITION USING CURVELET 7.1 INTRODUCTION Wavelet Transform is a popular multiresolution analysis tool in image processing and computer vision, because of its ability to capture localized

More information

Course Content. What is an Outlier? Chapter 7 Objectives

Course Content. What is an Outlier? Chapter 7 Objectives Principles of Knowledge Discovery in Data Fall 2007 Chapter 7: Outlier Detection Dr. Osmar R. Zaïane University of Alberta Course Content Introduction to Data Mining Association Analysis Sequential Pattern

More information

Clustering and Visualisation of Data

Clustering and Visualisation of Data Clustering and Visualisation of Data Hiroshi Shimodaira January-March 28 Cluster analysis aims to partition a data set into meaningful or useful groups, based on distances between data points. In some

More information

Supervised vs unsupervised clustering

Supervised vs unsupervised clustering Classification Supervised vs unsupervised clustering Cluster analysis: Classes are not known a- priori. Classification: Classes are defined a-priori Sometimes called supervised clustering Extract useful

More information

Image Segmentation for Image Object Extraction

Image Segmentation for Image Object Extraction Image Segmentation for Image Object Extraction Rohit Kamble, Keshav Kaul # Computer Department, Vishwakarma Institute of Information Technology, Pune kamble.rohit@hotmail.com, kaul.keshav@gmail.com ABSTRACT

More information

Note Set 4: Finite Mixture Models and the EM Algorithm

Note Set 4: Finite Mixture Models and the EM Algorithm Note Set 4: Finite Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine Finite Mixture Models A finite mixture model with K components, for

More information

Exploratory data analysis for microarrays

Exploratory data analysis for microarrays Exploratory data analysis for microarrays Jörg Rahnenführer Computational Biology and Applied Algorithmics Max Planck Institute for Informatics D-66123 Saarbrücken Germany NGFN - Courses in Practical DNA

More information

Outline. Advanced Digital Image Processing and Others. Importance of Segmentation (Cont.) Importance of Segmentation

Outline. Advanced Digital Image Processing and Others. Importance of Segmentation (Cont.) Importance of Segmentation Advanced Digital Image Processing and Others Xiaojun Qi -- REU Site Program in CVIP (7 Summer) Outline Segmentation Strategies and Data Structures Algorithms Overview K-Means Algorithm Hidden Markov Model

More information

9.1. K-means Clustering

9.1. K-means Clustering 424 9. MIXTURE MODELS AND EM Section 9.2 Section 9.3 Section 9.4 view of mixture distributions in which the discrete latent variables can be interpreted as defining assignments of data points to specific

More information

Data fusion and multi-cue data matching using diffusion maps

Data fusion and multi-cue data matching using diffusion maps Data fusion and multi-cue data matching using diffusion maps Stéphane Lafon Collaborators: Raphy Coifman, Andreas Glaser, Yosi Keller, Steven Zucker (Yale University) Part of this work was supported by

More information

Clustering. Supervised vs. Unsupervised Learning

Clustering. Supervised vs. Unsupervised Learning Clustering Supervised vs. Unsupervised Learning So far we have assumed that the training samples used to design the classifier were labeled by their class membership (supervised learning) We assume now

More information

Background Subtraction based on Cooccurrence of Image Variations

Background Subtraction based on Cooccurrence of Image Variations Background Subtraction based on Cooccurrence of Image Variations Makito Seki Toshikazu Wada Hideto Fujiwara Kazuhiko Sumi Advanced Technology R&D Center Faculty of Systems Engineering Mitsubishi Electric

More information

Acquisition Description Exploration Examination Understanding what data is collected. Characterizing properties of data.

Acquisition Description Exploration Examination Understanding what data is collected. Characterizing properties of data. Summary Statistics Acquisition Description Exploration Examination what data is collected Characterizing properties of data. Exploring the data distribution(s). Identifying data quality problems. Selecting

More information

Online Pattern Recognition in Multivariate Data Streams using Unsupervised Learning

Online Pattern Recognition in Multivariate Data Streams using Unsupervised Learning Online Pattern Recognition in Multivariate Data Streams using Unsupervised Learning Devina Desai ddevina1@csee.umbc.edu Tim Oates oates@csee.umbc.edu Vishal Shanbhag vshan1@csee.umbc.edu Machine Learning

More information

Ulrik Söderström 16 Feb Image Processing. Segmentation

Ulrik Söderström 16 Feb Image Processing. Segmentation Ulrik Söderström ulrik.soderstrom@tfe.umu.se 16 Feb 2011 Image Processing Segmentation What is Image Segmentation? To be able to extract information from an image it is common to subdivide it into background

More information

Probabilistic and Statistical Models for Outlier Detection

Probabilistic and Statistical Models for Outlier Detection Chapter 2 Probabilistic and Statistical Models for Outlier Detection With four parameters, I can fit an elephant, and with five, I can make him wiggle his trunk. John von Neumann 2.1 Introduction The earliest

More information

Data Mining Chapter 9: Descriptive Modeling Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 9: Descriptive Modeling Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 9: Descriptive Modeling Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Descriptive model A descriptive model presents the main features of the data

More information

The Curse of Dimensionality

The Curse of Dimensionality The Curse of Dimensionality ACAS 2002 p1/66 Curse of Dimensionality The basic idea of the curse of dimensionality is that high dimensional data is difficult to work with for several reasons: Adding more

More information

IBL and clustering. Relationship of IBL with CBR

IBL and clustering. Relationship of IBL with CBR IBL and clustering Distance based methods IBL and knn Clustering Distance based and hierarchical Probability-based Expectation Maximization (EM) Relationship of IBL with CBR + uses previously processed

More information

Machine Learning Classifiers and Boosting

Machine Learning Classifiers and Boosting Machine Learning Classifiers and Boosting Reading Ch 18.6-18.12, 20.1-20.3.2 Outline Different types of learning problems Different types of learning algorithms Supervised learning Decision trees Naïve

More information

Computer Vision Grouping and Segmentation. Grouping and Segmentation

Computer Vision Grouping and Segmentation. Grouping and Segmentation Computer Vision Grouping and Segmentation Professor Hager http://www.cs.jhu.edu/~hager Grouping and Segmentation G&S appear to be one of the early processes in human vision They are a way of *organizing*

More information

Outlier Detection Using Unsupervised and Semi-Supervised Technique on High Dimensional Data

Outlier Detection Using Unsupervised and Semi-Supervised Technique on High Dimensional Data Outlier Detection Using Unsupervised and Semi-Supervised Technique on High Dimensional Data Ms. Gayatri Attarde 1, Prof. Aarti Deshpande 2 M. E Student, Department of Computer Engineering, GHRCCEM, University

More information

Introduction to Trajectory Clustering. By YONGLI ZHANG

Introduction to Trajectory Clustering. By YONGLI ZHANG Introduction to Trajectory Clustering By YONGLI ZHANG Outline 1. Problem Definition 2. Clustering Methods for Trajectory data 3. Model-based Trajectory Clustering 4. Applications 5. Conclusions 1 Problem

More information

Processing of binary images

Processing of binary images Binary Image Processing Tuesday, 14/02/2017 ntonis rgyros e-mail: argyros@csd.uoc.gr 1 Today From gray level to binary images Processing of binary images Mathematical morphology 2 Computer Vision, Spring

More information

A DATA DRIVEN METHOD FOR FLAT ROOF BUILDING RECONSTRUCTION FROM LiDAR POINT CLOUDS

A DATA DRIVEN METHOD FOR FLAT ROOF BUILDING RECONSTRUCTION FROM LiDAR POINT CLOUDS A DATA DRIVEN METHOD FOR FLAT ROOF BUILDING RECONSTRUCTION FROM LiDAR POINT CLOUDS A. Mahphood, H. Arefi *, School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran,

More information

Image Segmentation. Selim Aksoy. Bilkent University

Image Segmentation. Selim Aksoy. Bilkent University Image Segmentation Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Examples of grouping in vision [http://poseidon.csd.auth.gr/lab_research/latest/imgs/s peakdepvidindex_img2.jpg]

More information

Image Segmentation. Selim Aksoy. Bilkent University

Image Segmentation. Selim Aksoy. Bilkent University Image Segmentation Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Examples of grouping in vision [http://poseidon.csd.auth.gr/lab_research/latest/imgs/s peakdepvidindex_img2.jpg]

More information

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier Computer Vision 2 SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung Computer Vision 2 Dr. Benjamin Guthier 1. IMAGE PROCESSING Computer Vision 2 Dr. Benjamin Guthier Content of this Chapter Non-linear

More information

Using Machine Learning to Optimize Storage Systems

Using Machine Learning to Optimize Storage Systems Using Machine Learning to Optimize Storage Systems Dr. Kiran Gunnam 1 Outline 1. Overview 2. Building Flash Models using Logistic Regression. 3. Storage Object classification 4. Storage Allocation recommendation

More information

How to Price a House

How to Price a House How to Price a House An Interpretable Bayesian Approach Dustin Lennon dustin@inferentialist.com Inferentialist Consulting Seattle, WA April 9, 2014 Introduction Project to tie up loose ends / came out

More information