THE REGULAR PERMUTATION SCHEDULING ON GRAPHS

Size: px
Start display at page:

Download "THE REGULAR PERMUTATION SCHEDULING ON GRAPHS"

Transcription

1 Journal of Information Control and Management Systems, Vol. 1, (2003) 15 THE REGULAR PERMUTATION SCHEDULING ON GRAPHS Peter CZIMMERMANN, Štefan PEŠKO Department of Mathematical Methods, Faculty of Management Science and Informatics, Univerzity of Žilina Abstract We present a generalisation of the matrix permutation problem which was formulated first by Peško [13] and it was studied by Tegze and Vlach [14]. It is motivated by the practical need of regularity in job scheduling. We suppose a real matrix and a graph (digraph) which vertices are elements of the matrix. The main goal is to minimise differences between row sums by the permutations permitted by the graph (digraph). Keywords: regular scheduling, Schur-convex function, graph automorphism. 1. INTRODUCTION In [3] following problem was solved: We have m vehicles (garbage trucks) and n days. For each day we have m works (jobs) to be done. The i-th job (in j- th day) has assigned value a i,j which represents quantity of performed work. We need to make for the vehicles a n-day job scheduling that gives minimal differences between the values s 1,..., s m which represents final quantity of performed work for each vehicle. This problem was formulated in [14] as matrix permutation problem (MPP): There is a matrix (a i,j ) R m n. We need to find permutations of the numbers 1,..., m, π j = (π 1,j,..., π m,j ) for j = 1,..., n such that f(s 1,..., s m ) is minimal for s i = n j=1 a π i,j,j (i = 1,..., m) where f(s 1,..., s m ) is a Schur-convex function and we will call it an irregularity measure for the vector (s 1,..., s m ). (More about Schur-convex functions and irregularity measure we can find in [15], [4].) The most used Schur-convex functions are: f sqr (s 1,..., s m ) = s s s2 m f dif (s 1,..., s m ) = max(s 1,..., s m ) min(s 1,..., s m ) The research of authors is supported by Slovak Scientific Agency under grant NO.1/0490/03.

2 16 The Regular Permutation Scheduling on Graphs f max (s 1,..., s m ) = max(s 1,..., s m ) f δ sqr (s 1,..., s m ) = (s 1 δ) (s m δ) 2 where δ = s 1+ +s m m We will use obviously the function f sqr. In [14] it was shown that MPP is N P-hard except the two-column case (polynomial time algorithm for two column case is given in [3]). We gain a generalisation of MPP if we don t limit ourselves to column permutations. We will call it regular permutation scheduling on graph (RPSG) because the set of the permitted permutations can be defined by the graph which vertices are elements of the permutation matrix. There are several ways how to define the set of the permitted permutations by graph. We will deal with: 1. graph of the permitted moves, 2. automorphism group of certain graphs. 2. GRAPH OF THE PERMITTED MOVES We can define the set of the permitted permutations as follows: We define for permutation matrix A a digraph G A (we will call it graph of the permitted moves - GPM) which vertices represent elements of permutation matrix A (a matrix element a i,j is represented by vertex v i,j ). There is an arc from vertex (matrix element) v i,j to vertex v k,l if external conditions allow permutation that maps a i,j to a k,l. The goal is to find such permitted permutation that minimises the irregularity measure f(s 1,..., s m ). Example 1. There is given 5-day scheduling for 3 vehicles that is represented by matrix A 3 5 = s 1 s s 3 s 1 = 9, s 2 = 12, s 3 = 13 and f sqr (s 1, s 2, s 3 ) = 394. We want to optimise this scheduling but external conditions allow us only several moves considered by following graph of permitted moves defined on matrix A (FIG.1). There are four Figure 1. Graph of the permitted moves G A. permitted permutations defined by graph G A. Permutation π that is represented

3 Journal of Information Control and Management Systems, Vol. 1, (2003) 17 by digraph G π (FIG.2) gives the most regular scheduling with external conditions given by graph G A. Optimal solution is given by matrix Figure 2. Graph of optimal permutation G π. A π = s 1 = 11, s 2 = 12, s 3 = 11 and f sqr (s 1, s 2, s 3 ) = 386. s 1 s 2 s 3 An important questions are: 1. How can we generate needed permutations? 2. How can we obtain one of them that gives an optimal solution? We will analyse this in some special cases. Matrix permutation problem Matrix permutation problem (MPP) can be described by GPM as follows: There is an edge from v i,j to v k,l if and only if j = l. We obtain in this way directed complete graph with loops on every column of the matrix. Example 2. Graph of the permitted moves for 3 3 matrix permutation problem. Figure 3. Graph of the permitted moves for MPP.

4 18 The Regular Permutation Scheduling on Graphs Directly from the fact that MPP is N P-hard (cited above) follows: Theorem 1. If the set of permitted permutations is defined by the graph of the permitted moves then RPSG is N P-hard. Two-column case As we said above two-column case of MPP is in P [3]. If GPM is complete directed graph with all loops defined on the two-column matrix and f(s 1,..., s m ) = s s 2 m this case can be solved like minimal perfect matching in following graph (denoted G M ): G M is undirected complete graph whose vertices are elements of the matrix. Edge (v i,j, v k,l ) has weight w(v i,j, v k,l ) = (a i,j + a k,l ) 2. Example 3. If we have matrix ( ) 1 2 A =, f 4 3 sqr (s 1, s 2 ) = = 58 and graph of the permitted moves is on FIG Figure 4. Graph of the permitted moves G A. Figure 5. Graph G M = K 4. We need to find minimal perfect matching in graph G M = K 4 (FIG.5) The solution is 1-factor (FIG.6) from which we can obtain a permutation π (one of several possible) defined by graph G π (FIG.7)and matrix ( ) 1 4 A π = 2 3 where f sqr = (s 1, s 2 ) = 50 is minimal. It is possible that two-column case could be polynomial for any GPM (and solved as minimal perfect matching in certain graph). There are two important open questions in this case:

5 Journal of Information Control and Management Systems, Vol. 1, (2003) Figure 6. Minimal perfect matching in G M represented by 1-factor. Figure 7. Permutation π obtained from previous 1-factor. 1. How to construct from arbitrary GPM a graph in which we can find perfect matching? 2. What in case if we have another Schur-convex function (for example f dif )? General case As we said above, general case is N P-hard problem but there are some polynomial cases. For example discrete graph with loops on every vertex (it gives the only one permutation - identity). The question is how to find out whether for given GPM problem is polynomial or N P-hard (or lies somwhere between these two classes). 3. USING A GRAPH AUTOMORPHISMS There are cases when given conditions can t be represented by graph of the permitted moves. For example if some jobs must be done in the same day but it is not important when (for example which day of the week). These situations can be represented by graph (or digraph) in which we need to find an automorphism that minimises some irregularity measure f. Definition 1. [6] An automorphism of a graph (directed graph, mixed graph) G = [V, E] is a permutation f of the vertex set of G with the property that for any vertices u, v V (f(u), f(v)) E (u, v) E. For oriented edges (arcs) orientation must be preserved. Example 4. Let us imagine that 4 workers (I,II,III and IV) works in two workshops. I and II in the first one, III and IV in the second one. We have 5-day

6 20 The Regular Permutation Scheduling on Graphs schedule for them defined by matrix M = a 1,1 a 1,2 a 1,3 a 1,4 a 1,5 a 2,1... a 2,5 a 3,1... a 3,5 a 4,1 a 4,2 a 4,3 a 4,4 a 4,5 where value a i,j represents hardness of this job. We want to optimalise the job scheduling PSfragbut replacements we know that jobs a 1,1, a 1,2, a 2,1, a 2,2, a 3,1, a 3,2, a 4,1, a 4,2 have to be done in the beginning of the week and their precedence relation is given by acyclic digraph on figure FIG.8 (where job a i,j is represented by vertex v i,j ). v 31 v 32 v 41 v 42 Figure 8. Acyclic digraph of the precedence relation. Jobs a 1,1, a 1,2, a 2,1, a 2,2 (or a 3,1, a 3,2, a 4,1, a 4,2 ) must be done in the same workshop, jobs a 1,i, a 2,i, a 3,i, a 4,i (for i = 3, 4, 5) in the same day. The situation can be represented by graph on figure FIG.9. v 13 v 14 v 15 v 23 v 24 v 25 v 31 v 32 v 33 v 34 v 35 v 41 v 42 v 43 v 44 v 45 Figure 9. Mixed graph in which we need to find an optimal automorphism.

7 Journal of Information Control and Management Systems, Vol. 1, (2003) 21 The goal is to find automorphism of the graph G (permitted permutation) which minimizes function f sqr (s 1, s 2, s 3, s 4 ). Theorem 2. If the set of permitted permutations can be defined as the group of automorphisms of certain graph then RPSG is N P-hard. Proof We show that matrix permutation problem can be defined by the group of automorphisms of some graph. Let there is given matrix A m n and a i,j (for i=1,..., m j=1,..., n) are its elements. We can define graph G A = (V A, E A ) where V A = {v i,j ; i=1,..., m, j=1,..., n} is the vertex set (vertex v i,j represents a matrix element a i,j ) and set of edges E A = {(v i,k, v j,k ); i, j=1,..., m, i j, k=1,..., n} {[v i,k 1, v(a j,k )]; i, j=1,..., m, k=2,..., n} where (u, v) is non-oriented and [u, v] oriented edge. It is easy to show that only possible automorphisms are permutations of the matrix columns. The last theorem doesn t give us an optimistic result but from works [1, 2, 5, 10] it follows that for almost all graphs their automorphism group could be computed in polynomial time and the number of automorphism that it contains is polynomial, so that it is useful to find an exact method for solving this problem. We can use for example McKay s algorithm called nauty [11]. This algorithm computes canonical labelling and automorphism group (its generators) of graphs. Although the algorithm isn t polynomial in worst case (see e.g. [12]) but as we said above, we can obtain for many graphs automorphism group of polynomial bounded order in polynomial time. For those graphs it isn t hard to generate all automorphisms one after the other and to find such that minimises given irregularity measure f. It remains an open problem to find some efficient heuristic for hard graphs (e.g. strongly regular graphs - see [7]). More complicated situation arises if we give on schedule condition to move at least k(n) jobs (e.g. we need to change jobs for at least k(n) workers after certain time) where k(n) is a function of the number of the graph vertices. In [9] and [8] it was shown that even problem to find automorphism which moves at least k(n) vertices in graph is enough complex as we can see in next theorem. Theorem 3. [9, 8] Problem to decide whether a graph on n vertices has an automorphism that moves at least k(n) vertices is 1. [9] N P-complete, when k(n) Ω(n c ) for any fixed c (0, 1), 2. [8] Turing equivalent to Graph Automorphism, when k(n) O( log n log log n ), 3. [8] Turing reducible to Graph Isomorphism, when k(n) O(log n).

8 22 The Regular Permutation Scheduling on Graphs REFERENCES [1] Babia L., Erdős P., Selkows S., Random graph isomorphism, SIAM Journal of Computing, 9(3): , (1980) [2] Babia L., Kučera L., Canonical labeling of graphs in linear average time, Proceedings of the 20th IEEE Symposium on Foundations of Computing Science, 39-46, (1979) [3] Černý J., Vašek K., Peško Š., Palúch S., Engelthaller D., Transport schedulings and their optimization (in Slovak), Research report III-8-9/03, Research Institute of Transport, Žilina, (1986) [4] Černý J., Kluvánek P., Principles of Mathematical Theory of Transport (in Slovak), VEDA, Bratislava, (1991) [5] Erdős P., Rényi A., Asymmetric graphs, Acta Math. Sci. Hungar. 14: , (1963) [6] Harary F., Graph Theory, Reading(Mass.), Addison-Wesley, (1969) [7] Fortin S., The Graph Isomorphism Problem, Technical Report TR 96-20, Department of Computing Science, The University of Alberta, Canada, (1996) [8] Lozano A., Raghavan V., On the complexity of moving vertices in a graph, 18th Conference on Foundations of Software Technology & Theoretical Computer Science, Chennai, India, (1998) [9] Lubiw A., Some N P-complete problems similar to graph isomorphism, SIAM Journal of Computing, 10(1):11-21, (1981) [10] Mathon R., A note on the graph isomorphism counting problem, Information Processing Letters, 8: , (1979) [11] McKay B., Practical graph isomorphism, Congressus Numerantium, 30:45-87, (1981) [12] Miyazaki T., The complexity of McKay s canonical labeling algorithm, Groups and Computation II(L. Finkelstein, W.M. Kantor, eds.), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 28: , Amer. Math. Soc., Providence, R.L., (1997) [13] Peško Š.,Vašek K., Optimization of Transport Scheduling (in Slovak), Research report III-8-6/09.3, Research Institute of Transport, ilina, (1983) [14] Tegze M., Vlach M., The Matrix Permutation Problem, Tech. Univ. Graz Bericht 84-54, (1984) [15] Xin-Min Zhang, Optimization of Schur-convex function, Mathematical Inequalities & Applications, Vol. 1, No.3, (1998) Referee: Karol Vašek

A Partition Method for Graph Isomorphism

A Partition Method for Graph Isomorphism Available online at www.sciencedirect.com Physics Procedia ( ) 6 68 International Conference on Solid State Devices and Materials Science A Partition Method for Graph Isomorphism Lijun Tian, Chaoqun Liu

More information

Two models of the capacitated vehicle routing problem

Two models of the capacitated vehicle routing problem Croatian Operational Research Review 463 CRORR 8(2017), 463 469 Two models of the capacitated vehicle routing problem Zuzana Borčinová 1, 1 Faculty of Management Science and Informatics, University of

More information

AVERAGE D-DISTANCE BETWEEN VERTICES OF A GRAPH

AVERAGE D-DISTANCE BETWEEN VERTICES OF A GRAPH italian journal of pure and applied mathematics n. 33 2014 (293 298) 293 AVERAGE D-DISTANCE BETWEEN VERTICES OF A GRAPH D. Reddy Babu Department of Mathematics Koneru Lakshmaiah Education Foundation (K.L.

More information

Vertex Graceful Labeling of C j C k C l

Vertex Graceful Labeling of C j C k C l Applied Mathematical Sciences, Vol. 8, 01, no. 8, 07-05 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ams.01.5331 Vertex Graceful Labeling of C j C k C l P. Selvaraju 1, P. Balaganesan,5, J. Renuka

More information

Average D-distance Between Edges of a Graph

Average D-distance Between Edges of a Graph Indian Journal of Science and Technology, Vol 8(), 5 56, January 05 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 OI : 07485/ijst/05/v8i/58066 Average -distance Between Edges of a Graph Reddy Babu

More information

On the Complexity of the Policy Improvement Algorithm. for Markov Decision Processes

On the Complexity of the Policy Improvement Algorithm. for Markov Decision Processes On the Complexity of the Policy Improvement Algorithm for Markov Decision Processes Mary Melekopoglou Anne Condon Computer Sciences Department University of Wisconsin - Madison 0 West Dayton Street Madison,

More information

A Performance Comparison of Five Algorithms for Graph Isomorphism

A Performance Comparison of Five Algorithms for Graph Isomorphism A Performance Comparison of Five Algorithms for Graph Isomorphism P. Foggia, C.Sansone, M. Vento Dipartimento di Informatica e Sistemistica Via Claudio, 21 - I 80125 - Napoli, Italy {foggiapa, carlosan,

More information

Triangle Graphs and Simple Trapezoid Graphs

Triangle Graphs and Simple Trapezoid Graphs JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 18, 467-473 (2002) Short Paper Triangle Graphs and Simple Trapezoid Graphs Department of Computer Science and Information Management Providence University

More information

Discrete Optimization. Lecture Notes 2

Discrete Optimization. Lecture Notes 2 Discrete Optimization. Lecture Notes 2 Disjunctive Constraints Defining variables and formulating linear constraints can be straightforward or more sophisticated, depending on the problem structure. The

More information

Minimum Tree Spanner Problem for Butterfly and Benes Networks

Minimum Tree Spanner Problem for Butterfly and Benes Networks Minimum Tree Spanner Problem for Butterfly and Benes Networks Bharati Rajan, Indra Rajasingh, Department of Mathematics, Loyola College, Chennai 600 0, India Amutha A Department of Mathematics, Loyola

More information

The strong chromatic number of a graph

The strong chromatic number of a graph The strong chromatic number of a graph Noga Alon Abstract It is shown that there is an absolute constant c with the following property: For any two graphs G 1 = (V, E 1 ) and G 2 = (V, E 2 ) on the same

More information

METRIC DIMENSION AND UNCERTAINTY OF TRAVERSING ROBOTS IN A NETWORK

METRIC DIMENSION AND UNCERTAINTY OF TRAVERSING ROBOTS IN A NETWORK METRIC DIMENSION AND UNCERTAINTY OF TRAVERSING ROBOTS IN A NETWORK Manjusha R andsunny Kuriakose A 2 Lecturer, Amrita Vishwavidyapeetam, Amritapuri, Kollam, Kerala, India 69525 2 Dean, Federal Institute

More information

On Sequential Topogenic Graphs

On Sequential Topogenic Graphs Int. J. Contemp. Math. Sciences, Vol. 5, 2010, no. 36, 1799-1805 On Sequential Topogenic Graphs Bindhu K. Thomas, K. A. Germina and Jisha Elizabath Joy Research Center & PG Department of Mathematics Mary

More information

A new edge selection heuristic for computing the Tutte polynomial of an undirected graph.

A new edge selection heuristic for computing the Tutte polynomial of an undirected graph. FPSAC 2012, Nagoya, Japan DMTCS proc. (subm.), by the authors, 1 12 A new edge selection heuristic for computing the Tutte polynomial of an undirected graph. Michael Monagan 1 1 Department of Mathematics,

More information

Bijective Proofs of Two Broken Circuit Theorems

Bijective Proofs of Two Broken Circuit Theorems Bijective Proofs of Two Broken Circuit Theorems Andreas Blass PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PENNSYLVANIA 16802 Bruce Eli Sagan THE UNIVERSITY OF PENNSYLVANIA PHILADELPHIA, PENNSYLVANIA

More information

arxiv: v1 [math.co] 25 Sep 2015

arxiv: v1 [math.co] 25 Sep 2015 A BASIS FOR SLICING BIRKHOFF POLYTOPES TREVOR GLYNN arxiv:1509.07597v1 [math.co] 25 Sep 2015 Abstract. We present a change of basis that may allow more efficient calculation of the volumes of Birkhoff

More information

Complexity Results on Graphs with Few Cliques

Complexity Results on Graphs with Few Cliques Discrete Mathematics and Theoretical Computer Science DMTCS vol. 9, 2007, 127 136 Complexity Results on Graphs with Few Cliques Bill Rosgen 1 and Lorna Stewart 2 1 Institute for Quantum Computing and School

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

Generating edge covers of path graphs

Generating edge covers of path graphs Generating edge covers of path graphs J. Raymundo Marcial-Romero, J. A. Hernández, Vianney Muñoz-Jiménez and Héctor A. Montes-Venegas Facultad de Ingeniería, Universidad Autónoma del Estado de México,

More information

Graph Isomorphism Completeness for Chordal bipartite graphs and Strongly Chordal Graphs

Graph Isomorphism Completeness for Chordal bipartite graphs and Strongly Chordal Graphs Graph Isomorphism Completeness for Chordal bipartite graphs and Strongly Chordal Graphs Ryuhei Uehara a Seinosuke Toda b Takayuki Nagoya c a Natural Science Faculty, Komazawa University. 1 b Department

More information

CLASSES OF VERY STRONGLY PERFECT GRAPHS. Ganesh R. Gandal 1, R. Mary Jeya Jothi 2. 1 Department of Mathematics. Sathyabama University Chennai, INDIA

CLASSES OF VERY STRONGLY PERFECT GRAPHS. Ganesh R. Gandal 1, R. Mary Jeya Jothi 2. 1 Department of Mathematics. Sathyabama University Chennai, INDIA Inter national Journal of Pure and Applied Mathematics Volume 113 No. 10 2017, 334 342 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Abstract: CLASSES

More information

Nondeterministic Query Algorithms

Nondeterministic Query Algorithms Journal of Universal Computer Science, vol. 17, no. 6 (2011), 859-873 submitted: 30/7/10, accepted: 17/2/11, appeared: 28/3/11 J.UCS Nondeterministic Query Algorithms Alina Vasilieva (Faculty of Computing,

More information

On the Wiener Index of Some Edge Deleted Graphs

On the Wiener Index of Some Edge Deleted Graphs Iranian Journal of Mathematical Sciences and Informatics Vol. 11, No. (016), pp 139-148 DOI: 10.7508/ijmsi.016.0.011 On the Wiener Index of Some Edge Deleted Graphs B. S. Durgi a,, H. S. Ramane b, P. R.

More information

Polynomial-time Algorithm for Determining the Graph Isomorphism

Polynomial-time Algorithm for Determining the Graph Isomorphism American Journal of Information Science and Computer Engineering Vol. 3, No. 6, 2017, pp. 71-76 http://www.aiscience.org/journal/ajisce ISSN: 2381-7488 (Print); ISSN: 2381-7496 (Online) Polynomial-time

More information

Fast and Simple Algorithms for Weighted Perfect Matching

Fast and Simple Algorithms for Weighted Perfect Matching Fast and Simple Algorithms for Weighted Perfect Matching Mirjam Wattenhofer, Roger Wattenhofer {mirjam.wattenhofer,wattenhofer}@inf.ethz.ch, Department of Computer Science, ETH Zurich, Switzerland Abstract

More information

Domination Number of Jump Graph

Domination Number of Jump Graph International Mathematical Forum, Vol. 8, 013, no. 16, 753-758 HIKARI Ltd, www.m-hikari.com Domination Number of Jump Graph Y. B. Maralabhavi Department of Mathematics Bangalore University Bangalore-560001,

More information

A Note On The Sparing Number Of The Sieve Graphs Of Certain Graphs

A Note On The Sparing Number Of The Sieve Graphs Of Certain Graphs Applied Mathematics E-Notes, 15(015), 9-37 c ISSN 1607-510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ A Note On The Sparing Number Of The Sieve Graphs Of Certain Graphs Naduvath

More information

Applied Mathematical Sciences, Vol. 5, 2011, no. 49, Július Czap

Applied Mathematical Sciences, Vol. 5, 2011, no. 49, Július Czap Applied Mathematical Sciences, Vol. 5, 011, no. 49, 437-44 M i -Edge Colorings of Graphs Július Czap Department of Applied Mathematics and Business Informatics Faculty of Economics, Technical University

More information

THE TRANSITIVE REDUCTION OF A DIRECTED GRAPH*

THE TRANSITIVE REDUCTION OF A DIRECTED GRAPH* SIAM J. COMPUT. Vol. 1, No. 2, June 1972 THE TRANSITIVE REDUCTION OF A DIRECTED GRAPH* A. V. AHO, M. R. GAREY" AND J. D. ULLMAN Abstract. We consider economical representations for the path information

More information

EDGE-COLOURED GRAPHS AND SWITCHING WITH S m, A m AND D m

EDGE-COLOURED GRAPHS AND SWITCHING WITH S m, A m AND D m EDGE-COLOURED GRAPHS AND SWITCHING WITH S m, A m AND D m GARY MACGILLIVRAY BEN TREMBLAY Abstract. We consider homomorphisms and vertex colourings of m-edge-coloured graphs that have a switching operation

More information

Adjacent Vertex Distinguishing Incidence Coloring of the Cartesian Product of Some Graphs

Adjacent Vertex Distinguishing Incidence Coloring of the Cartesian Product of Some Graphs Journal of Mathematical Research & Exposition Mar., 2011, Vol. 31, No. 2, pp. 366 370 DOI:10.3770/j.issn:1000-341X.2011.02.022 Http://jmre.dlut.edu.cn Adjacent Vertex Distinguishing Incidence Coloring

More information

Total forcing number of the triangular grid

Total forcing number of the triangular grid Mathematical Communications 9(2004), 169-179 169 Total forcing number of the triangular grid Damir Vukičević and Jelena Sedlar Abstract. LetT be a square triangular grid with n rows and columns of vertices

More information

Edge-Disjoint Cycles in Regular Directed Graphs

Edge-Disjoint Cycles in Regular Directed Graphs Edge-Disjoint Cycles in Regular Directed Graphs Noga Alon Colin McDiarmid Michael Molloy February 22, 2002 Abstract We prove that any k-regular directed graph with no parallel edges contains a collection

More information

Multi-color graph pebbling

Multi-color graph pebbling Multi-color graph pebbling DIMACS REU Final Presentation CJ Verbeck DIMACS REU, Rutgers July 17th, 2009 CJ Verbeck (DIMACS REU, Rutgers) Multi-color graph pebbling July 17th, 2009 1 / 22 An introduction

More information

Indexable and Strongly Indexable Graphs

Indexable and Strongly Indexable Graphs Proceedings of the Pakistan Academy of Sciences 49 (2): 139-144 (2012) Copyright Pakistan Academy of Sciences ISSN: 0377-2969 Pakistan Academy of Sciences Original Article Indexable and Strongly Indexable

More information

A NOTE ON RADIUS AND DIAMETER OF A GRAPH W.R.T. D-DISTANCE

A NOTE ON RADIUS AND DIAMETER OF A GRAPH W.R.T. D-DISTANCE Int. J. Chem. Sci.: 14(3), 2016, 1725-1729 ISSN 0972-768X www.sadgurupublications.com A NOTE ON RAIUS AN IAMETER OF A GRAPH W.R.T. -ISTANCE. REY BABU a * and P. L. N. VARMA b a epartment of Mathematics,

More information

ORIENTED CHROMATIC NUMBER OF CARTESIAN PRODUCTS AND STRONG PRODUCTS OF PATHS

ORIENTED CHROMATIC NUMBER OF CARTESIAN PRODUCTS AND STRONG PRODUCTS OF PATHS Discussiones Mathematicae Graph Theory xx (xxxx) 1 13 doi:10.7151/dmgt.2074 ORIENTED CHROMATIC NUMBER OF CARTESIAN PRODUCTS AND STRONG PRODUCTS OF PATHS Janusz Dybizbański and Anna Nenca Institute of Informatics

More information

Unlabeled equivalence for matroids representable over finite fields

Unlabeled equivalence for matroids representable over finite fields Unlabeled equivalence for matroids representable over finite fields November 16, 2012 S. R. Kingan Department of Mathematics Brooklyn College, City University of New York 2900 Bedford Avenue Brooklyn,

More information

Subdivided graphs have linear Ramsey numbers

Subdivided graphs have linear Ramsey numbers Subdivided graphs have linear Ramsey numbers Noga Alon Bellcore, Morristown, NJ 07960, USA and Department of Mathematics Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv,

More information

Cayley graphs and coset diagrams/1

Cayley graphs and coset diagrams/1 1 Introduction Cayley graphs and coset diagrams Let G be a finite group, and X a subset of G. The Cayley graph of G with respect to X, written Cay(G, X) has two different definitions in the literature.

More information

Some bounds on chromatic number of NI graphs

Some bounds on chromatic number of NI graphs International Journal of Mathematics and Soft Computing Vol.2, No.2. (2012), 79 83. ISSN 2249 3328 Some bounds on chromatic number of NI graphs Selvam Avadayappan Department of Mathematics, V.H.N.S.N.College,

More information

Vertex 3-colorability of claw-free graphs

Vertex 3-colorability of claw-free graphs Algorithmic Operations Research Vol.2 (27) 5 2 Vertex 3-colorability of claw-free graphs Marcin Kamiński a Vadim Lozin a a RUTCOR - Rutgers University Center for Operations Research, 64 Bartholomew Road,

More information

The crossing number of K 1,4,n

The crossing number of K 1,4,n Discrete Mathematics 308 (2008) 1634 1638 www.elsevier.com/locate/disc The crossing number of K 1,4,n Yuanqiu Huang, Tinglei Zhao Department of Mathematics, Normal University of Hunan, Changsha 410081,

More information

[Ramalingam, 4(12): December 2017] ISSN DOI /zenodo Impact Factor

[Ramalingam, 4(12): December 2017] ISSN DOI /zenodo Impact Factor GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES FORCING VERTEX TRIANGLE FREE DETOUR NUMBER OF A GRAPH S. Sethu Ramalingam * 1, I. Keerthi Asir 2 and S. Athisayanathan 3 *1,2 & 3 Department of Mathematics,

More information

NEIGHBOURHOOD SUM CORDIAL LABELING OF GRAPHS

NEIGHBOURHOOD SUM CORDIAL LABELING OF GRAPHS NEIGHBOURHOOD SUM CORDIAL LABELING OF GRAPHS A. Muthaiyan # and G. Bhuvaneswari * Department of Mathematics, Government Arts and Science College, Veppanthattai, Perambalur - 66, Tamil Nadu, India. P.G.

More information

A Modified Inertial Method for Loop-free Decomposition of Acyclic Directed Graphs

A Modified Inertial Method for Loop-free Decomposition of Acyclic Directed Graphs MACRo 2015-5 th International Conference on Recent Achievements in Mechatronics, Automation, Computer Science and Robotics A Modified Inertial Method for Loop-free Decomposition of Acyclic Directed Graphs

More information

Binding Number of Some Special Classes of Trees

Binding Number of Some Special Classes of Trees International J.Math. Combin. Vol.(206), 76-8 Binding Number of Some Special Classes of Trees B.Chaluvaraju, H.S.Boregowda 2 and S.Kumbinarsaiah 3 Department of Mathematics, Bangalore University, Janana

More information

ON SWELL COLORED COMPLETE GRAPHS

ON SWELL COLORED COMPLETE GRAPHS Acta Math. Univ. Comenianae Vol. LXIII, (1994), pp. 303 308 303 ON SWELL COLORED COMPLETE GRAPHS C. WARD and S. SZABÓ Abstract. An edge-colored graph is said to be swell-colored if each triangle contains

More information

Routing in Unidirectional (n, k)-star graphs

Routing in Unidirectional (n, k)-star graphs Routing in Unidirectional (n, k)-star graphs Eddie CHENG Department of Mathematics and Statistics, Oakland University, Rochester,Michigan USA 48309 and Serge KRUK Department of Mathematics and Statistics,

More information

Effect of Regularization on Fuzzy Graph

Effect of Regularization on Fuzzy Graph International Journal of Applied Science-Research and Review (IJAS) www.ijas.org.uk Effect of Regularization on Fuzzy raph Vandana Bansal* IK PT University, Jalandhar, Punjab India Original Article A R

More information

On competition numbers of complete multipartite graphs with partite sets of equal size. Boram PARK, Suh-Ryung KIM, and Yoshio SANO.

On competition numbers of complete multipartite graphs with partite sets of equal size. Boram PARK, Suh-Ryung KIM, and Yoshio SANO. RIMS-1644 On competition numbers of complete multipartite graphs with partite sets of equal size By Boram PARK, Suh-Ryung KIM, and Yoshio SANO October 2008 RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES

More information

Colour Refinement. A Simple Partitioning Algorithm with Applications From Graph Isomorphism Testing to Machine Learning. Martin Grohe RWTH Aachen

Colour Refinement. A Simple Partitioning Algorithm with Applications From Graph Isomorphism Testing to Machine Learning. Martin Grohe RWTH Aachen Colour Refinement A Simple Partitioning Algorithm with Applications From Graph Isomorphism Testing to Machine Learning Martin Grohe RWTH Aachen Outline 1. Colour Refinement and Weisfeiler Lehman 2. Colour

More information

On some subclasses of circular-arc graphs

On some subclasses of circular-arc graphs On some subclasses of circular-arc graphs Guillermo Durán - Min Chih Lin Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires e-mail: {willy,oscarlin}@dc.uba.ar

More information

ON HARMONIOUS COLORINGS OF REGULAR DIGRAPHS 1

ON HARMONIOUS COLORINGS OF REGULAR DIGRAPHS 1 Volume 1 Issue 1 July 015 Discrete Applied Mathematics 180 (015) ON HARMONIOUS COLORINGS OF REGULAR DIGRAPHS 1 AUTHORS INFO S.M.Hegde * and Lolita Priya Castelino Department of Mathematical and Computational

More information

The Edge Fixing Edge-To-Vertex Monophonic Number Of A Graph

The Edge Fixing Edge-To-Vertex Monophonic Number Of A Graph Applied Mathematics E-Notes, 15(2015), 261-275 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ The Edge Fixing Edge-To-Vertex Monophonic Number Of A Graph KrishnaPillai

More information

Operations in Fuzzy Labeling Graph through Matching and Complete Matching

Operations in Fuzzy Labeling Graph through Matching and Complete Matching Operations in Fuzzy Labeling Graph through Matching and Complete Matching S. Yahya Mohamad 1 and S.Suganthi 2 1 PG & Research Department of Mathematics, Government Arts College, Trichy 620 022, Tamilnadu,

More information

arxiv: v1 [cs.ds] 1 Sep 2015

arxiv: v1 [cs.ds] 1 Sep 2015 On Minimizing Crossings in Storyline Visualizations Irina Kostitsyna 1, Martin Nöllenburg 2, Valentin Polishchuk 3, André Schulz 4, and Darren Strash 5 arxiv:1509.00442v1 [cs.ds] 1 Sep 2015 1 Dept. of

More information

A Performance Comparison of Five Algorithms for Graph Isomorphism

A Performance Comparison of Five Algorithms for Graph Isomorphism A Performance Comparison of Five Algorithms for Graph Isomorphism P. Foggia, C.Sansone, M. Vento Dipartimento di Informatica e Sistemistica Via Claudio, 21 - I 80125 - Napoli, Italy {foggiapa, carlosan,

More information

Algebraic Constructions of Ecient Broadcast Networks. Michael J. Dinneen and Michael R. Fellows. University of Victoria.

Algebraic Constructions of Ecient Broadcast Networks. Michael J. Dinneen and Michael R. Fellows. University of Victoria. Algebraic Constructions of Ecient Broadcast Networks Michael J. Dinneen and Michael R. Fellows Department of Computer Science University of Victoria Victoria, B.C. Canada V8W P6 Vance Faber Los Alamos

More information

1 The Traveling Salesman Problem

1 The Traveling Salesman Problem Comp 260: Advanced Algorithms Tufts University, Spring 2011 Prof. Lenore Cowen Scribe: Jisoo Park Lecture 3: The Traveling Salesman Problem 1 The Traveling Salesman Problem The Traveling Salesman Problem

More information

Product constructions for transitive decompositions of graphs

Product constructions for transitive decompositions of graphs 116 Product constructions for transitive decompositions of graphs Geoffrey Pearce Abstract A decomposition of a graph is a partition of the edge set, giving a set of subgraphs. A transitive decomposition

More information

Week 5. Convex Optimization

Week 5. Convex Optimization Week 5. Convex Optimization Lecturer: Prof. Santosh Vempala Scribe: Xin Wang, Zihao Li Feb. 9 and, 206 Week 5. Convex Optimization. The convex optimization formulation A general optimization problem is

More information

Testing Isomorphism of Strongly Regular Graphs

Testing Isomorphism of Strongly Regular Graphs Spectral Graph Theory Lecture 9 Testing Isomorphism of Strongly Regular Graphs Daniel A. Spielman September 26, 2018 9.1 Introduction In the last lecture we saw how to test isomorphism of graphs in which

More information

Odd Harmonious Labeling of Some Graphs

Odd Harmonious Labeling of Some Graphs International J.Math. Combin. Vol.3(0), 05- Odd Harmonious Labeling of Some Graphs S.K.Vaidya (Saurashtra University, Rajkot - 360005, Gujarat, India) N.H.Shah (Government Polytechnic, Rajkot - 360003,

More information

Graph Theory. Part of Texas Counties.

Graph Theory. Part of Texas Counties. Graph Theory Part of Texas Counties. We would like to visit each of the above counties, crossing each county only once, starting from Harris county. Is this possible? This problem can be modeled as a graph.

More information

A Tight Analysis of the (1 + 1)-EA for the Single Source Shortest Path Problem

A Tight Analysis of the (1 + 1)-EA for the Single Source Shortest Path Problem A Tight Analysis of the + )-EA for the Single Source Shortest Path Problem Benjamin Doerr Max-Planck-Institut für Informatik Stuhlsatzenhausweg 85 66 Saarbrücken, Germany Edda Happ Max-Planck-Institut

More information

Enumerating Tilings of Rectangles by Squares with Recurrence Relations

Enumerating Tilings of Rectangles by Squares with Recurrence Relations Journal of Combinatorics Volume 0, Number 0, 1, 2014 Enumerating Tilings of Rectangles by Squares with Recurrence Relations Daryl DeFord Counting the number of ways to tile an m n rectangle with squares

More information

Decreasing the Diameter of Bounded Degree Graphs

Decreasing the Diameter of Bounded Degree Graphs Decreasing the Diameter of Bounded Degree Graphs Noga Alon András Gyárfás Miklós Ruszinkó February, 00 To the memory of Paul Erdős Abstract Let f d (G) denote the minimum number of edges that have to be

More information

Graphs connected with block ciphers

Graphs connected with block ciphers Graphs connected with block ciphers OTOKAR GROŠEK Slovak University of Technology Department of Applied Informatics Ilkovičova 3 812 19 Bratislava SLOVAKIA PAVOL ZAJAC Slovak University of Technology Department

More information

Faster Algorithms for Computing Distances between One-Dimensional Point Sets

Faster Algorithms for Computing Distances between One-Dimensional Point Sets Faster Algorithms for Computing Distances between One-Dimensional Point Sets Justin Colannino School of Computer Science McGill University Montréal, Québec, Canada July 8, 25 Godfried Toussaint Abstract

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI Department of Computer Science and Engineering CS6702 - GRAPH THEORY AND APPLICATIONS Anna University 2 & 16 Mark Questions & Answers Year / Semester: IV /

More information

arxiv: v1 [cs.cg] 3 Sep 2018

arxiv: v1 [cs.cg] 3 Sep 2018 The Weighted Barycenter Drawing Recognition Problem Peter Eades 1, Patrick Healy 2, and Nikola S. Nikolov 2 1 University of Sydney, peter.d.eades@gmail.com 2 University of Limerick patrick.healy,nikola.nikolov@ul.ie

More information

On Independent Equitable Cototal Dominating set of graph

On Independent Equitable Cototal Dominating set of graph IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X Volume 12, Issue 6 Ver V (Nov - Dec2016), PP 62-66 wwwiosrjournalsorg On Independent Equitable Cototal Dominating set of graph

More information

4 Integer Linear Programming (ILP)

4 Integer Linear Programming (ILP) TDA6/DIT37 DISCRETE OPTIMIZATION 17 PERIOD 3 WEEK III 4 Integer Linear Programg (ILP) 14 An integer linear program, ILP for short, has the same form as a linear program (LP). The only difference is that

More information

Some new results on circle graphs. Guillermo Durán 1

Some new results on circle graphs. Guillermo Durán 1 Some new results on circle graphs Guillermo Durán 1 Departamento de Ingeniería Industrial, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile gduran@dii.uchile.cl Departamento

More information

Introduction to Mathematical Programming IE406. Lecture 16. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 16. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 16 Dr. Ted Ralphs IE406 Lecture 16 1 Reading for This Lecture Bertsimas 7.1-7.3 IE406 Lecture 16 2 Network Flow Problems Networks are used to model

More information

Construction of a transitive orientation using B-stable subgraphs

Construction of a transitive orientation using B-stable subgraphs Computer Science Journal of Moldova, vol.23, no.1(67), 2015 Construction of a transitive orientation using B-stable subgraphs Nicolae Grigoriu Abstract A special method for construction of transitive orientations

More information

Dominator Coloring of Prism Graph

Dominator Coloring of Prism Graph Applied Mathematical Sciences, Vol. 9, 0, no. 38, 889-89 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/ams.0.7 Dominator Coloring of Prism Graph T. Manjula Department of Mathematics, Sathyabama

More information

Hardness of Subgraph and Supergraph Problems in c-tournaments

Hardness of Subgraph and Supergraph Problems in c-tournaments Hardness of Subgraph and Supergraph Problems in c-tournaments Kanthi K Sarpatwar 1 and N.S. Narayanaswamy 1 Department of Computer Science and Engineering, IIT madras, Chennai 600036, India kanthik@gmail.com,swamy@cse.iitm.ac.in

More information

Bipolar Fuzzy Line Graph of a Bipolar Fuzzy Hypergraph

Bipolar Fuzzy Line Graph of a Bipolar Fuzzy Hypergraph BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 13, No 1 Sofia 2013 Print ISSN: 1311-9702; Online ISSN: 1314-4081 DOI: 10.2478/cait-2013-0002 Bipolar Fuzzy Line Graph of a

More information

A Network Coloring Game

A Network Coloring Game A Network Coloring Game Kamalika Chaudhuri, Fan Chung 2, and Mohammad Shoaib Jamall 2 Information Theory and Applications Center, UC San Diego kamalika@soe.ucsd.edu 2 Department of Mathematics, UC San

More information

Proximal Manifold Learning via Descriptive Neighbourhood Selection

Proximal Manifold Learning via Descriptive Neighbourhood Selection Applied Mathematical Sciences, Vol. 8, 2014, no. 71, 3513-3517 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.42111 Proximal Manifold Learning via Descriptive Neighbourhood Selection

More information

Progress Towards the Total Domination Game 3 4 -Conjecture

Progress Towards the Total Domination Game 3 4 -Conjecture Progress Towards the Total Domination Game 3 4 -Conjecture 1 Michael A. Henning and 2 Douglas F. Rall 1 Department of Pure and Applied Mathematics University of Johannesburg Auckland Park, 2006 South Africa

More information

Kernel perfect and critical kernel imperfect digraphs structure

Kernel perfect and critical kernel imperfect digraphs structure Kernel perfect and critical kernel imperfect digraphs structure Hortensia Galeana-Sánchez, Mucuy-Kak Guevara To cite this version: Hortensia Galeana-Sánchez, Mucuy-Kak Guevara. Kernel perfect and critical

More information

A simple algorithm for 4-coloring 3-colorable planar graphs

A simple algorithm for 4-coloring 3-colorable planar graphs A simple algorithm for 4-coloring 3-colorable planar graphs Ken-ichi Kawarabayashi 1 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan Kenta Ozeki 2 Department of

More information

International Journal of Mathematical Archive-7(9), 2016, Available online through ISSN

International Journal of Mathematical Archive-7(9), 2016, Available online through  ISSN International Journal of Mathematical Archive-7(9), 2016, 189-194 Available online through wwwijmainfo ISSN 2229 5046 TRIPLE CONNECTED COMPLEMENTARY ACYCLIC DOMINATION OF A GRAPH N SARADHA* 1, V SWAMINATHAN

More information

Ramsey-type results for Gallai colorings

Ramsey-type results for Gallai colorings Worcester Polytechnic Institute DigitalCommons@WPI Computer Science Faculty Publications Department of Computer Science 7-21-2008 Ramsey-type results for Gallai colorings András Gyárfás Computer and Automation

More information

LOCAL CONNECTIVE CHROMATIC NUMBER OF DIRECT PRODUCT OF PATHS AND CYCLES

LOCAL CONNECTIVE CHROMATIC NUMBER OF DIRECT PRODUCT OF PATHS AND CYCLES BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 303-4874, ISSN (o) 303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 7(017), 561-57 DOI: 10.751/BIMVI1703561Ç Former BULLETIN OF THE

More information

Applied Mathematics Letters. Graph triangulations and the compatibility of unrooted phylogenetic trees

Applied Mathematics Letters. Graph triangulations and the compatibility of unrooted phylogenetic trees Applied Mathematics Letters 24 (2011) 719 723 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml Graph triangulations and the compatibility

More information

CS 4407 Algorithms Lecture 5: Graphs an Introduction

CS 4407 Algorithms Lecture 5: Graphs an Introduction CS 4407 Algorithms Lecture 5: Graphs an Introduction Prof. Gregory Provan Department of Computer Science University College Cork 1 Outline Motivation Importance of graphs for algorithm design applications

More information

The Edge Domination in Prime Square Dominating Graphs

The Edge Domination in Prime Square Dominating Graphs Narayana. B et al International Journal of Computer Science and Mobile Computing Vol.6 Issue.1 January- 2017 pg. 182-189 Available Online at www.ijcsmc.com International Journal of Computer Science and

More information

A TIGHT BOUND ON THE LENGTH OF ODD CYCLES IN THE INCOMPATIBILITY GRAPH OF A NON-C1P MATRIX

A TIGHT BOUND ON THE LENGTH OF ODD CYCLES IN THE INCOMPATIBILITY GRAPH OF A NON-C1P MATRIX A TIGHT BOUND ON THE LENGTH OF ODD CYCLES IN THE INCOMPATIBILITY GRAPH OF A NON-C1P MATRIX MEHRNOUSH MALEKESMAEILI, CEDRIC CHAUVE, AND TAMON STEPHEN Abstract. A binary matrix has the consecutive ones property

More information

arxiv: v1 [math.co] 20 Nov 2013

arxiv: v1 [math.co] 20 Nov 2013 HOMOGENEOUS 2-PARTITE DIGRAPHS arxiv:1311.5056v1 [math.co] 20 Nov 2013 MATTHIAS HAMANN Abstract. We call a 2-partite digraph D homogeneous if every isomorphism between finite induced subdigraphs that respects

More information

EDGE OFFSET IN DRAWINGS OF LAYERED GRAPHS WITH EVENLY-SPACED NODES ON EACH LAYER

EDGE OFFSET IN DRAWINGS OF LAYERED GRAPHS WITH EVENLY-SPACED NODES ON EACH LAYER EDGE OFFSET IN DRAWINGS OF LAYERED GRAPHS WITH EVENLY-SPACED NODES ON EACH LAYER MATTHIAS F. STALLMANN Abstract. Minimizing edge lengths is an important esthetic criterion in graph drawings. In a layered

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 36 CS 473: Algorithms, Spring 2018 LP Duality Lecture 20 April 3, 2018 Some of the

More information

Complexity Analysis of Routing Algorithms in Computer Networks

Complexity Analysis of Routing Algorithms in Computer Networks Complexity Analysis of Routing Algorithms in Computer Networks Peter BARTALOS Slovak University of Technology Faculty of Informatics and Information Technologies Ilkovičova 3, 84 6 Bratislava, Slovakia

More information

Forced orientation of graphs

Forced orientation of graphs Forced orientation of graphs Babak Farzad Mohammad Mahdian Ebad S. Mahmoodian Amin Saberi Bardia Sadri Abstract The concept of forced orientation of graphs was introduced by G. Chartrand et al. in 1994.

More information

Graph Reconstruction Numbers

Graph Reconstruction Numbers Graph Reconstruction Numbers Brian McMullen and Stanis law P. Radziszowski Department of Computer Science Rochester Institute of Technology Rochester, NY 14623 {bmm3056,spr}@cs.rit.edu December 30, 2005

More information

Another abstraction of the Erdős-Szekeres Happy End Theorem

Another abstraction of the Erdős-Szekeres Happy End Theorem Another abstraction of the Erdős-Szekeres Happy End Theorem Noga Alon Ehsan Chiniforooshan Vašek Chvátal François Genest Submitted: July 13, 2009; Accepted: Jan 26, 2010; Published: XX Mathematics Subject

More information

On Universal Cycles of Labeled Graphs

On Universal Cycles of Labeled Graphs On Universal Cycles of Labeled Graphs Greg Brockman Harvard University Cambridge, MA 02138 United States brockman@hcs.harvard.edu Bill Kay University of South Carolina Columbia, SC 29208 United States

More information