Your favorite blog : (popularly known as VIJAY JOTANI S BLOG..now in facebook.join ON FB VIJAY

Size: px
Start display at page:

Download "Your favorite blog : (popularly known as VIJAY JOTANI S BLOG..now in facebook.join ON FB VIJAY"

Transcription

1 Course Code : BCS-042 Course Title : Introduction to Algorithm Design Assignment Number : BCA(IV)-042/Assign/14-15 Maximum Marks : 80 Weightage : 25% Last Date of Submission : 15th October, 2014 (For July 2014 Session) 15th April, 2015 (For January 2015 Session) There are nine questions in this assignment, which carries 80 marks. Rest 20 marks are for viva-voce. Answer all the questions. Please go through the guidelines regarding assignments given in the Programme Guide for the format of presentation. Question 1: Describe an algorithm for finding both the largest and the smallest integers in a finite sequence of integers in an array and count them how many comparison operation are involved. Solution:- C code to find largest and smallest number in an array #include<stdio.h> int main() { int a[50], size, i, big, small, count = 0; printf("\nenter the size of the array: "); scanf("%d", &size); printf("\n Enter %d elements in to the array: ", size); for(i=0; i<size; i++) scanf("%d", &a[i]); big = a[0]; for(i = 1; i < size; i++){ if(big < a[i]) big = a[i]; { count++; } } printf(" Largest element: %d \n ", big); small = a[0]; for(i=1; i<size; i++) { if(small > a[i]) { count++; } small = a[i]; } printf(" Smallest element: %d \n ", small);

2 printf(" number of comparison %d ", count); return 0; } Output: Algorithm: step 1 : Start step 2 : Declare variables int a[50], size, i, big, small, count = 0 step 3 : read value step 4 : get the value element for the array the operation for largest number step 5 : begin

3 in loop if big is less than a[i] do small = a[i] count the comparison comparison ++ step 6 : Display Largest element step 7 : begin the operation for small number in loop if small is greater than a[i] do big = a[i] count the comparison comparison ++ step 8 : Display Smallest element step 9 : stop. Question 2: Write Prim s algorithm and apply it to find a minimum cost spanning tree of the following Graph. Show all the steps.

4 Solution:- How does Prim s Algorithm Work? The idea behind Prim s algorithm is simple, a spanning tree means all vertices must be connected. So the two disjoint subsets of vertices must be connected to make a Spanning Tree. And they must be connected with the minimum weight edge to make it a Minimum Spanning Tree (mst). Pick the vertex with minimum key value. The vertex B is picked, as it has mstset value 3 We repeat this steps until mstset doesn t include all vertices of given graph.

5

6

7

8

9

10 (ii) Differentiate between Bellman-Ford and Dijkstra s algorithm to find a shortest path in a graph. Solution:- (i) Apply Dijkstra s algorithm to find shortest path from source vertex A to each of other vertices of following directed graph. Show all the steps. Initial step: sdist[a] = 0; the value to the source itself sdist[b]=, sdist[c]=, sdist[d]=, sdist[e]= ; the nodes not processed

11

12 Step 2 Computation from vertex C Adj[C] = {B, D, E}; sdist[b] > sdist[c] + EdgeCost[C,B] 10 > (True) Therefore, sdist[b] = 9; sdist[d] = 11; sdist[e] = 10; Step 3 Adj[E]=0; means there is no outgoing edges from E And no more vertices, algorithm terminated. Hence the path which follows the algorithm is:

13 Figure: the path obtained using Dijkstra s Algorithm (ii) Differentiate between Bellman-Ford and Dijkstra s algorithm to find a shortest path in a graph. Bellman-Ford algorithm is a single-source shortest path algorithm, which allows for negative edge weight and can detect negative cycles in a graph. Dijkstra algorithm is also another single-source shortest path algorithm. However, the weight of all the edges must be non-negative.

14 The vertexes in Dijkstra s algorithm contain the whole information of a network. There is no such thing that every vertex only cares about itself and its neighbors. On the other hand, Bellman-Ford algorithm s nodes contain only the information that are related to. This information allows that node just to know about which neighbor nodes can it connect and the node that the relation come from, mutually. Dijkstra s algorithm is faster than Bellman-Ford s algorithm however the second algorithm can be more useful to solve some problems, such as negative weights of paths. In above Graph, as far as the total cost is concerned, there will be no difference, since the edges in the graph have non-negative weight. However, Dijkstra s algorithm is usually used, since the typical implementation with binary heap has Theta (( E + V )log V ) time complexity, while Bellman-Ford algorithm has O( V E ) complexity. Question 4: Write a pseudo code for Quicksort and partition algorithms. Illustrate the operation of partition procedure on the following sequence. A = <25,5,30,40,15,65,20,35> Solution:- (a) Pseudo code for Quicksort: Quicksort (A, p, r) // Sort A[p.. r] into ascending order. 1. if (p < r) 1.1 q = Partition(A, p, r) 1.2 Quicksort(A, p, q-1) 1.3 Quicksort(A, q+1, r) (b) Pseudo code for Partition: Partition (A, p, r) // It is assumed that p <= r. 1. x = A[r]; i = p-1; // x is the pivot value.

15 2. for j = p to r-1 do if (A[j] <= x) {i = i + 1 Exchange A[i] with A[j].} 3. Exchange A[i+1] with A[r]. 4. return i+1. Example of Sequence A = <25, 5 30, 40, 15, 65, 20, 35> /* A typical recursive implementation of quick sort */ #include<stdio.h> // A utility function to swap two elements void swap(int* a, int* b) { } int t = *a; *a = *b; *b = t; /* This function takes last element as pivot, places the pivot element at its correct position in sorted array, and places all smaller (smaller than pivot) to left of pivot and all greater elements to right of pivot */

16 int partition (int arr[], int l, int h) { int x = arr[h]; // pivot int i = (l - 1); // Index of smaller element for (int j = l; j <= h- 1; j++) { // If current element is smaller than or equal to pivot if (arr[j] <= x) { i++; // increment index of smaller element swap(&arr[i], &arr[j]); // Swap current element with index } } swap(&arr[i + 1], &arr[h]); return (i + 1); }

17 /* arr[] --> Array to be sorted, l --> Starting index, h --> Ending index */ void quicksort(int arr[], int l, int h) { if (l < h) { int p = partition(arr, l, h); /* Partitioning index */ quicksort(arr, l, p - 1); quicksort(arr, p + 1, h); } } /* Function to print an array */ void printarray(int arr[], int size) { int i; for (i=0; i < size; i++) printf("%d ", arr[i]);

18 printf("\n"); } // Driver program to test above functions int main() { int arr[] = {25,5,30,40,15,65,20,35}; int n = sizeof(arr)/sizeof(arr[0]); quicksort(arr, 0, n-1); printf("sorted array: \n"); printarray(arr, n); return 0; } Output:-

19 (b) (i) Suppose most of the entries in the adjancy matrix are zeroes, i.e. when a graph is sparse, how much time is needed to find m number of edges in a graph. (ii) What is the storage required for an adjacency list of any graph.

20 Solution:- (a) Through adjacency matrix and adjacency list (b) (i) Suppose most of the entries in the adjancy matrix are zeroes, i.e. when a graph is sparse, how much time is needed to find m number of edges in a graph.

21 It will take much less time if say 0 (e + n), where e is the number of edges is a graph and e << n 2 /2. But this can be achieved if a graph is represented through an adjacency list where only the edges will be represented. (ii) What is the storage required for an adjacency list of any graph. Adjacency List Putting it in another way of an adjacency list represents only columns of the adjacency matrix for a given vertex that contains entries as 1 s. It is to be observed that adjacency list compared to adjacency matrix consumes less memory space if a graph is sparse. A graph with few edges is called sparse graph. If the graph is dense, the situation is reverse. A dense graph, is a graph will relatively few missing edges. In case of an undirected graph with n vertices and e edge adjacency list requires n head and 2 e list nodes (i.e. each edges is represented twice). The storage required (in terms of bits) for an adjacency list of any graph. (i) For storing n (n vertices) head nodes we require log 2 n bits (ii) For storing list nodes for each head n nodes we require log n + log e Therefore total storage requirement in item of bits for adjacency matrix is 2 log 2n ( 2 log 2n + log 2e ) Question 6: Explain the following items with (i) Asymptotic bounds (ii) Greedy techniques (iii) DFS (iv) Recursion tree method Solution:- (i) Asymptotic bounds An algorithm provides an approach to solve a given problem. The key components of an algorithm are input, processing and output. Generally all algorithms works well for small size input irrespective of the complexity. So we need to analyze the algorithm for large value of input size. It is also possible that one problem have many algorithmic solutions. To select the best algorithm for an instance of task or input we need to compare the algorithm to find out how long a particular solution will take to generate the desired output. We will determine the behavior of function and running time of an algorithm as a function of input size for large value of n. This behavior can be expressed using asymptotic notations.

22 To understand concepts of the asymptotic notations first we need to get idea of lower bound, upper bound and how to represent time complexity expression for various algorithms. This is like expressing cost component of an algorithm. The basic five asymptotic notations are: 1 Theta Notation () 2 Big Oh Notation (O) 3 Big Omega Notation () 4 Small o Notation (o) 5 Small Omega Notation (ii) Greedy techniques Greedy technique is a general algorithm design strategy, built on following elements: configurations: different choices, values to find objective function: some configurations to be either maximized or minimized The method: Applicable to optimization problems ONLY Constructs a solution through a sequence of steps Each step expands a partially constructed solution so far, until a complete solution to the problem is reached. On each step, the choice made must be Feasible: it has to satisfy the problem s constraints Locally optimal: it has to be the best local choice among all feasible choices available on that step Irrevocable: Once made, it cannot be changed on subsequent steps of the algorithm NOTE: Greedy method works best when applied to problems with the greedy-choice property A globally-optimal solution can always be found by a series of local improvements from a starting configuration. (iii) DFS Depth-First Search We are aware of tree traversal mechanism. Give a tree, we can traverse it using preorder, inorder and

23 postorder. Similarly given an undirected graph we can traverse it or visit its nodes using breadth firstsearch and depth-first search. Searching in breadth-first search or depth first search means exploring a given graph. Through searching a graph one can find out whether a graph is connected or not? There are many more applications of graph searching algorithms. The logic behind this algorithm is to go as far as possible from the given starting node searching for the target. In case, we get a node that has no adjacent/successor node, we get back (recursively) and continue with the last vertex that is still not visited. Broadly it is divided into 3 steps: Take a vertex that is not visited yet and mark it visited Go to its first adjacent non-visited (successor) vertex and mark it visited If all the adjacent vertices (successors) of the considered vertex are already visited or it doesn t have any more adjacent vertex (successor) go back to its parent vertex (iv) Recursion tree method A recursion tree is useful for visualizing what happens when a recurrence is iterated. It diagrams the tree of recursive calls and the amount of work done at each call. For instance, consider the recurrence T(n) = 2T(n/2) + n 2. The recursion tree for this recurrence has the following form:

24 This a geometric series, thus in the limit the sum is O(n 2 ). The depth of the tree in this case does not really matter; the amount of work at each level is decreasing so quickly that the total is only a constant factor more than the root. Recursion trees can be useful for gaining intuition about the closed form of a recurrence, but they are not a proof (and in fact it is easy to get the wrong answer with a recursion tree, as is the case with any method that includes kinds of reasoning). As we saw last time, a good way of establishing a closed form for a recurrence is to make an educated guess and then prove by induction that your guess is indeed a solution. Recurrence trees can be a good method of guessing. Let s consider another example, T(n) = T(n/3) + T(2n/3) + n.

25 Expanding out the first few levels, the recurrence tree is: Note that the tree here is not balanced: the longest path is the rightmost one, and its length is log 3/2 n. Hence our guess for the closed form of this recurrence is O(n log n). Question 7: Briefly describe running time of important algorithms under different classes. (10 Marks)

26

27

28

29 Solution:- Question 8: What are the different approaches of solution to recursion relation? Solve the following recurrence relation by master method. T (n) =2T(n/2)+n Solution:- Many algorithms are recursive in nature. When we analyze them, we get a recurrence relation for time complexity. We get running time on an input of size n as a function of n and the running time on inputs of smaller sizes. For example in Merge Sort, to sort a given array, we divide it in two halves and recursively repeat the process for the two halves. Finally we merge the results. Time complexity of Merge Sort can be written as T(n) = 2T(n/2) + cn. There are many other algorithms like Binary Search, Tower of Hanoi, etc. There are mainly three ways for solving recurrences.

30 1) Substitution Method: We make a guess for the solution and then we use mathematical induction to prove the guess is correct or incorrect. 2) Recurrence Tree Method: In this method, we draw a recurrence tree and calculate the time taken by every level of tree. Finally, we sum the work done at all levels. To draw the recurrence tree, we start from the given recurrence and keep drawing till we find a pattern among levels. The pattern is typically a arithmetic or geometric series. 3) Master Method: Master Method is a direct way to get the solution. The master method works only for following type of recurrences or for recurrences that can be transformed to following type. The master method is a cookbook method for solving recurrences. Although it cannot solve all recurrences, it is nevertheless very handy for dealing with many recurrences seen in practice. T (n) =2T(n/2)+n T(n) = 2T(n/2)+ n = 2(2T(n/4))+ n/2)+ n = 4T(n=4)+2n = 8T(n=8)+3n = It looks like T(n) satisfies the recurrence T(n) = 2kT(n=2k)+ kn for any positive integer k. Let s verify this by induction. T(n) = 2T(n=2)+ n = 2 1 T(n=2 1 )+1.n [k = 1, given recurrence] T(n) = 2 k-1 T(n=2 k-1 )+(k -1)n [inductive hypothesis] = 2 k-1 (2T(n/2 k )+ n/2 k-1 )+(k -1)n [substitution] = 2 k T(n=2 k )+ kn [algebra] Our guess was right! The recurrence becomes trivial when n/2k = 1, or equivalently, when k = log 2 n: T(n) = nt(1)+ n log 2 n = n log 2 n+ n. Finally, we have to put back the _ s we stripped off; our final closed-form solution is T(n) = Ø (n logn).

31

Data Structures Brett Bernstein

Data Structures Brett Bernstein Data Structures Brett Bernstein Final Review 1. Consider a binary tree of height k. (a) What is the maximum number of nodes? (b) What is the maximum number of leaves? (c) What is the minimum number of

More information

CS521 \ Notes for the Final Exam

CS521 \ Notes for the Final Exam CS521 \ Notes for final exam 1 Ariel Stolerman Asymptotic Notations: CS521 \ Notes for the Final Exam Notation Definition Limit Big-O ( ) Small-o ( ) Big- ( ) Small- ( ) Big- ( ) Notes: ( ) ( ) ( ) ( )

More information

R13. II B. Tech I Semester Supplementary Examinations, May/June DATA STRUCTURES (Com. to ECE, CSE, EIE, IT, ECC)

R13. II B. Tech I Semester Supplementary Examinations, May/June DATA STRUCTURES (Com. to ECE, CSE, EIE, IT, ECC) SET - 1 II B. Tech I Semester Supplementary Examinations, May/June - 2016 PART A 1. a) Write a procedure for the Tower of Hanoi problem? b) What you mean by enqueue and dequeue operations in a queue? c)

More information

MTH 307/417/515 Final Exam Solutions

MTH 307/417/515 Final Exam Solutions MTH 307/417/515 Final Exam Solutions 1. Write the output for the following programs. Explain the reasoning behind your answer. (a) #include int main() int n; for(n = 7; n!= 0; n--) printf("n =

More information

DESIGN AND ANALYSIS OF ALGORITHMS

DESIGN AND ANALYSIS OF ALGORITHMS DESIGN AND ANALYSIS OF ALGORITHMS QUESTION BANK Module 1 OBJECTIVE: Algorithms play the central role in both the science and the practice of computing. There are compelling reasons to study algorithms.

More information

L.J. Institute of Engineering & Technology Semester: VIII (2016)

L.J. Institute of Engineering & Technology Semester: VIII (2016) Subject Name: Design & Analysis of Algorithm Subject Code:1810 Faculties: Mitesh Thakkar Sr. UNIT-1 Basics of Algorithms and Mathematics No 1 What is an algorithm? What do you mean by correct algorithm?

More information

Sankalchand Patel College of Engineering - Visnagar Department of Computer Engineering and Information Technology. Assignment

Sankalchand Patel College of Engineering - Visnagar Department of Computer Engineering and Information Technology. Assignment Class: V - CE Sankalchand Patel College of Engineering - Visnagar Department of Computer Engineering and Information Technology Sub: Design and Analysis of Algorithms Analysis of Algorithm: Assignment

More information

( ) D. Θ ( ) ( ) Ο f ( n) ( ) Ω. C. T n C. Θ. B. n logn Ο

( ) D. Θ ( ) ( ) Ο f ( n) ( ) Ω. C. T n C. Θ. B. n logn Ο CSE 0 Name Test Fall 0 Multiple Choice. Write your answer to the LEFT of each problem. points each. The expected time for insertion sort for n keys is in which set? (All n! input permutations are equally

More information

& ( D. " mnp ' ( ) n 3. n 2. ( ) C. " n

& ( D.  mnp ' ( ) n 3. n 2. ( ) C.  n CSE Name Test Summer Last Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time to multiply two n " n matrices is: A. " n C. "% n B. " max( m,n, p). The

More information

END-TERM EXAMINATION

END-TERM EXAMINATION (Please Write your Exam Roll No. immediately) Exam. Roll No... END-TERM EXAMINATION Paper Code : MCA-205 DECEMBER 2006 Subject: Design and analysis of algorithm Time: 3 Hours Maximum Marks: 60 Note: Attempt

More information

Sorting Algorithms. + Analysis of the Sorting Algorithms

Sorting Algorithms. + Analysis of the Sorting Algorithms Sorting Algorithms + Analysis of the Sorting Algorithms Insertion Sort What if first k elements of array are already sorted? 4, 7, 12, 5, 19, 16 We can shift the tail of the sorted elements list down and

More information

n 2 ( ) ( ) Ο f ( n) ( ) Ω B. n logn Ο

n 2 ( ) ( ) Ο f ( n) ( ) Ω B. n logn Ο CSE 220 Name Test Fall 20 Last 4 Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. 4 points each. The time to compute the sum of the n elements of an integer array is in:

More information

Sorting. Bubble Sort. Pseudo Code for Bubble Sorting: Sorting is ordering a list of elements.

Sorting. Bubble Sort. Pseudo Code for Bubble Sorting: Sorting is ordering a list of elements. Sorting Sorting is ordering a list of elements. Types of sorting: There are many types of algorithms exist based on the following criteria: Based on Complexity Based on Memory usage (Internal & External

More information

n 2 C. Θ n ( ) Ο f ( n) B. n 2 Ω( n logn)

n 2 C. Θ n ( ) Ο f ( n) B. n 2 Ω( n logn) CSE 0 Name Test Fall 0 Last Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time to find the maximum of the n elements of an integer array is in: A.

More information

n 2 ( ) ( ) + n is in Θ n logn

n 2 ( ) ( ) + n is in Θ n logn CSE Test Spring Name Last Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time to multiply an m n matrix and a n p matrix is in: A. Θ( n) B. Θ( max(

More information

9. The expected time for insertion sort for n keys is in which set? (All n! input permutations are equally likely.)

9. The expected time for insertion sort for n keys is in which set? (All n! input permutations are equally likely.) CSE 0 Name Test Spring 006 Last 4 Digits of Student ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. Suppose f ( x) is a monotonically increasing function. Which of the

More information

CSE373: Data Structure & Algorithms Lecture 21: More Comparison Sorting. Aaron Bauer Winter 2014

CSE373: Data Structure & Algorithms Lecture 21: More Comparison Sorting. Aaron Bauer Winter 2014 CSE373: Data Structure & Algorithms Lecture 21: More Comparison Sorting Aaron Bauer Winter 2014 The main problem, stated carefully For now, assume we have n comparable elements in an array and we want

More information

( ) + n. ( ) = n "1) + n. ( ) = T n 2. ( ) = 2T n 2. ( ) = T( n 2 ) +1

( ) + n. ( ) = n 1) + n. ( ) = T n 2. ( ) = 2T n 2. ( ) = T( n 2 ) +1 CSE 0 Name Test Summer 00 Last Digits of Student ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. Suppose you are sorting millions of keys that consist of three decimal

More information

) $ f ( n) " %( g( n)

) $ f ( n)  %( g( n) CSE 0 Name Test Spring 008 Last Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time to compute the sum of the n elements of an integer array is: # A.

More information

Multiple Choice. Write your answer to the LEFT of each problem. 3 points each

Multiple Choice. Write your answer to the LEFT of each problem. 3 points each CSE 0-00 Test Spring 0 Name Last 4 Digits of Student ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. Suppose f ( x) is a monotonically increasing function. Which of the

More information

logn D. Θ C. Θ n 2 ( ) ( ) f n B. nlogn Ο n2 n 2 D. Ο & % ( C. Θ # ( D. Θ n ( ) Ω f ( n)

logn D. Θ C. Θ n 2 ( ) ( ) f n B. nlogn Ο n2 n 2 D. Ο & % ( C. Θ # ( D. Θ n ( ) Ω f ( n) CSE 0 Test Your name as it appears on your UTA ID Card Fall 0 Multiple Choice:. Write the letter of your answer on the line ) to the LEFT of each problem.. CIRCLED ANSWERS DO NOT COUNT.. points each. The

More information

CS61BL. Lecture 5: Graphs Sorting

CS61BL. Lecture 5: Graphs Sorting CS61BL Lecture 5: Graphs Sorting Graphs Graphs Edge Vertex Graphs (Undirected) Graphs (Directed) Graphs (Multigraph) Graphs (Acyclic) Graphs (Cyclic) Graphs (Connected) Graphs (Disconnected) Graphs (Unweighted)

More information

R10 SET - 1. Code No: R II B. Tech I Semester, Supplementary Examinations, May

R10 SET - 1. Code No: R II B. Tech I Semester, Supplementary Examinations, May www.jwjobs.net R10 SET - 1 II B. Tech I Semester, Supplementary Examinations, May - 2012 (Com. to CSE, IT, ECC ) Time: 3 hours Max Marks: 75 *******-****** 1. a) Which of the given options provides the

More information

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 Asymptotics, Recurrence and Basic Algorithms 1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 1. O(logn) 2. O(n) 3. O(nlogn) 4. O(n 2 ) 5. O(2 n ) 2. [1 pt] What is the solution

More information

( ) n 3. n 2 ( ) D. Ο

( ) n 3. n 2 ( ) D. Ο CSE 0 Name Test Summer 0 Last Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time to multiply two n n matrices is: A. Θ( n) B. Θ( max( m,n, p) ) C.

More information

CS2223: Algorithms Sorting Algorithms, Heap Sort, Linear-time sort, Median and Order Statistics

CS2223: Algorithms Sorting Algorithms, Heap Sort, Linear-time sort, Median and Order Statistics CS2223: Algorithms Sorting Algorithms, Heap Sort, Linear-time sort, Median and Order Statistics 1 Sorting 1.1 Problem Statement You are given a sequence of n numbers < a 1, a 2,..., a n >. You need to

More information

CSci 231 Final Review

CSci 231 Final Review CSci 231 Final Review Here is a list of topics for the final. Generally you are responsible for anything discussed in class (except topics that appear italicized), and anything appearing on the homeworks.

More information

Department of Computer Applications. MCA 312: Design and Analysis of Algorithms. [Part I : Medium Answer Type Questions] UNIT I

Department of Computer Applications. MCA 312: Design and Analysis of Algorithms. [Part I : Medium Answer Type Questions] UNIT I MCA 312: Design and Analysis of Algorithms [Part I : Medium Answer Type Questions] UNIT I 1) What is an Algorithm? What is the need to study Algorithms? 2) Define: a) Time Efficiency b) Space Efficiency

More information

Student number: Datenstrukturen & Algorithmen page 1

Student number: Datenstrukturen & Algorithmen page 1 Student number: Datenstrukturen & Algorithmen page 1 Problem 1. / 15 P Please note: 1) In this problem, you have to provide solutions only. You can write them right on this sheet. 2) If you use algorithms

More information

CLASS: II YEAR / IV SEMESTER CSE CS 6402-DESIGN AND ANALYSIS OF ALGORITHM UNIT I INTRODUCTION

CLASS: II YEAR / IV SEMESTER CSE CS 6402-DESIGN AND ANALYSIS OF ALGORITHM UNIT I INTRODUCTION CLASS: II YEAR / IV SEMESTER CSE CS 6402-DESIGN AND ANALYSIS OF ALGORITHM UNIT I INTRODUCTION 1. What is performance measurement? 2. What is an algorithm? 3. How the algorithm is good? 4. What are the

More information

Test 1 Last 4 Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. 2 points each t 1

Test 1 Last 4 Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. 2 points each t 1 CSE 0 Name Test Fall 00 Last Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each t. What is the value of k? k=0 A. k B. t C. t+ D. t+ +. Suppose that you have

More information

D. Θ nlogn ( ) D. Ο. ). Which of the following is not necessarily true? . Which of the following cannot be shown as an improvement? D.

D. Θ nlogn ( ) D. Ο. ). Which of the following is not necessarily true? . Which of the following cannot be shown as an improvement? D. CSE 0 Name Test Fall 00 Last Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time to convert an array, with priorities stored at subscripts through n,

More information

( ). Which of ( ) ( ) " #& ( ) " # g( n) ( ) " # f ( n) Test 1

( ). Which of ( ) ( )  #& ( )  # g( n) ( )  # f ( n) Test 1 CSE 0 Name Test Summer 006 Last Digits of Student ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time to multiply two n x n matrices is: A. "( n) B. "( nlogn) # C.

More information

Cpt S 223 Course Overview. Cpt S 223, Fall 2007 Copyright: Washington State University

Cpt S 223 Course Overview. Cpt S 223, Fall 2007 Copyright: Washington State University Cpt S 223 Course Overview 1 Course Goals Learn about new/advanced data structures Be able to make design choices on the suitable data structure for different application/problem needs Analyze (objectively)

More information

( ) 1 B. 1. Suppose f x

( ) 1 B. 1. Suppose f x CSE Name Test Spring Last Digits of Student ID Multiple Choice. Write your answer to the LEFT of each problem. points each is a monotonically increasing function. Which of the following approximates the

More information

( ) ( ) C. " 1 n. ( ) $ f n. ( ) B. " log( n! ) ( ) and that you already know ( ) ( ) " % g( n) ( ) " #&

( ) ( ) C.  1 n. ( ) $ f n. ( ) B.  log( n! ) ( ) and that you already know ( ) ( )  % g( n) ( )  #& CSE 0 Name Test Summer 008 Last 4 Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time for the following code is in which set? for (i=0; i

More information

1. For the sieve technique we solve the problem, recursively mathematically precisely accurately 2. We do sorting to, keep elements in random positions keep the algorithm run in linear order keep the algorithm

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -500 043 INFORMATION TECHNOLOGY TUTORIAL QUESTION BANK Course Name : DESIGN AND ANALYSIS OF ALGORITHMS Course Code : AIT001 Class

More information

COMP 251 Winter 2017 Online quizzes with answers

COMP 251 Winter 2017 Online quizzes with answers COMP 251 Winter 2017 Online quizzes with answers Open Addressing (2) Which of the following assertions are true about open address tables? A. You cannot store more records than the total number of slots

More information

Measuring algorithm efficiency

Measuring algorithm efficiency CMPT 225 Measuring algorithm efficiency Timing Counting Cost functions Cases Best case Average case Worst case Searching Sorting O Notation O notation's mathematical basis O notation classes and notations

More information

University of the Western Cape Department of Computer Science

University of the Western Cape Department of Computer Science University of the Western Cape Department of Computer Science Algorithms and Complexity CSC212 Paper II Final Examination 13 November 2015 Time: 90 Minutes. Marks: 100. UWC number Surname, first name Mark

More information

ECE250: Algorithms and Data Structures Final Review Course

ECE250: Algorithms and Data Structures Final Review Course ECE250: Algorithms and Data Structures Final Review Course Ladan Tahvildari, PEng, SMIEEE Professor Software Technologies Applied Research (STAR) Group Dept. of Elect. & Comp. Eng. University of Waterloo

More information

Data Structures and Algorithms Week 4

Data Structures and Algorithms Week 4 Data Structures and Algorithms Week. About sorting algorithms. Heapsort Complete binary trees Heap data structure. Quicksort a popular algorithm very fast on average Previous Week Divide and conquer Merge

More information

CIS 121 Data Structures and Algorithms Midterm 3 Review Solution Sketches Fall 2018

CIS 121 Data Structures and Algorithms Midterm 3 Review Solution Sketches Fall 2018 CIS 121 Data Structures and Algorithms Midterm 3 Review Solution Sketches Fall 2018 Q1: Prove or disprove: You are given a connected undirected graph G = (V, E) with a weight function w defined over its

More information

A6-R3: DATA STRUCTURE THROUGH C LANGUAGE

A6-R3: DATA STRUCTURE THROUGH C LANGUAGE A6-R3: DATA STRUCTURE THROUGH C LANGUAGE NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. 2. PART ONE is to be answered in the TEAR-OFF

More information

IV/IV B.Tech (Regular) DEGREE EXAMINATION. Design and Analysis of Algorithms (CS/IT 414) Scheme of Evaluation

IV/IV B.Tech (Regular) DEGREE EXAMINATION. Design and Analysis of Algorithms (CS/IT 414) Scheme of Evaluation IV/IV B.Tech (Regular) DEGREE EXAMINATION Design and Analysis of Algorithms (CS/IT 414) Scheme of Evaluation Maximum: 60 Marks 1. Write briefly about the following 1*12= 12 Marks a) Give the characteristics

More information

Course Review for Finals. Cpt S 223 Fall 2008

Course Review for Finals. Cpt S 223 Fall 2008 Course Review for Finals Cpt S 223 Fall 2008 1 Course Overview Introduction to advanced data structures Algorithmic asymptotic analysis Programming data structures Program design based on performance i.e.,

More information

CSE 2320 Section 002, Fall 2015 Exam 2 Time: 80 mins

CSE 2320 Section 002, Fall 2015 Exam 2 Time: 80 mins CSE 2320 Section 002, Fall 201 Exam 2 Time: 80 mins Name:. Student ID:. Total exam points: 100. Question Points Out of 1 24 2 10 3 10 4 18 6 1 16 Total 100 If you have the smallest doubt about what a question

More information

CMPSCI 311: Introduction to Algorithms Practice Final Exam

CMPSCI 311: Introduction to Algorithms Practice Final Exam CMPSCI 311: Introduction to Algorithms Practice Final Exam Name: ID: Instructions: Answer the questions directly on the exam pages. Show all your work for each question. Providing more detail including

More information

Plotting run-time graphically. Plotting run-time graphically. CS241 Algorithmics - week 1 review. Prefix Averages - Algorithm #1

Plotting run-time graphically. Plotting run-time graphically. CS241 Algorithmics - week 1 review. Prefix Averages - Algorithm #1 CS241 - week 1 review Special classes of algorithms: logarithmic: O(log n) linear: O(n) quadratic: O(n 2 ) polynomial: O(n k ), k 1 exponential: O(a n ), a > 1 Classifying algorithms is generally done

More information

DIVIDE & CONQUER. Problem of size n. Solution to sub problem 1

DIVIDE & CONQUER. Problem of size n. Solution to sub problem 1 DIVIDE & CONQUER Definition: Divide & conquer is a general algorithm design strategy with a general plan as follows: 1. DIVIDE: A problem s instance is divided into several smaller instances of the same

More information

DATA STRUCTURES AND ALGORITHMS

DATA STRUCTURES AND ALGORITHMS DATA STRUCTURES AND ALGORITHMS For COMPUTER SCIENCE DATA STRUCTURES &. ALGORITHMS SYLLABUS Programming and Data Structures: Programming in C. Recursion. Arrays, stacks, queues, linked lists, trees, binary

More information

Total Points: 60. Duration: 1hr

Total Points: 60. Duration: 1hr CS800 : Algorithms Fall 201 Nov 22, 201 Quiz 2 Practice Total Points: 0. Duration: 1hr 1. (,10) points Binary Heap. (a) The following is a sequence of elements presented to you (in order from left to right):

More information

Solutions to Exam Data structures (X and NV)

Solutions to Exam Data structures (X and NV) Solutions to Exam Data structures X and NV 2005102. 1. a Insert the keys 9, 6, 2,, 97, 1 into a binary search tree BST. Draw the final tree. See Figure 1. b Add NIL nodes to the tree of 1a and color it

More information

FINAL EXAM SOLUTIONS

FINAL EXAM SOLUTIONS COMP/MATH 3804 Design and Analysis of Algorithms I Fall 2015 FINAL EXAM SOLUTIONS Question 1 (12%). Modify Euclid s algorithm as follows. function Newclid(a,b) if a

More information

Lecture 5: Sorting Part A

Lecture 5: Sorting Part A Lecture 5: Sorting Part A Heapsort Running time O(n lg n), like merge sort Sorts in place (as insertion sort), only constant number of array elements are stored outside the input array at any time Combines

More information

Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest. Introduction to Algorithms

Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest. Introduction to Algorithms Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest Introduction to Algorithms Preface xiii 1 Introduction 1 1.1 Algorithms 1 1.2 Analyzing algorithms 6 1.3 Designing algorithms 1 1 1.4 Summary 1 6

More information

INDIAN STATISTICAL INSTITUTE

INDIAN STATISTICAL INSTITUTE INDIAN STATISTICAL INSTITUTE Mid Semestral Examination M. Tech (CS) - I Year, 2016-2017 (Semester - II) Design and Analysis of Algorithms Date : 21.02.2017 Maximum Marks : 60 Duration : 3.0 Hours Note:

More information

Analysis of Algorithms. Unit 4 - Analysis of well known Algorithms

Analysis of Algorithms. Unit 4 - Analysis of well known Algorithms Analysis of Algorithms Unit 4 - Analysis of well known Algorithms 1 Analysis of well known Algorithms Brute Force Algorithms Greedy Algorithms Divide and Conquer Algorithms Decrease and Conquer Algorithms

More information

D.K.M.COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1.

D.K.M.COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1. D.K.M.COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1. DESIGN AND ANALYSIS OF ALGORITHM UNIT- I SECTION-A 2 MARKS 1. Define an algorithm? 2. Specify the criteria of algorithm? 3. What is Computational Procedure?

More information

Data Structures and Algorithms Chapter 4

Data Structures and Algorithms Chapter 4 Data Structures and Algorithms Chapter. About sorting algorithms. Heapsort Complete binary trees Heap data structure. Quicksort a popular algorithm very fast on average Previous Chapter Divide and conquer

More information

Computer Science E-22 Practice Final Exam

Computer Science E-22 Practice Final Exam name Computer Science E-22 This exam consists of three parts. Part I has 10 multiple-choice questions that you must complete. Part II consists of 4 multi-part problems, of which you must complete 3, and

More information

Design and Analysis of Algorithms - - Assessment

Design and Analysis of Algorithms - - Assessment X Courses» Design and Analysis of Algorithms Week 1 Quiz 1) In the code fragment below, start and end are integer values and prime(x) is a function that returns true if x is a prime number and false otherwise.

More information

Assignment 1. Stefano Guerra. October 11, The following observation follows directly from the definition of in order and pre order traversal:

Assignment 1. Stefano Guerra. October 11, The following observation follows directly from the definition of in order and pre order traversal: Assignment 1 Stefano Guerra October 11, 2016 1 Problem 1 Describe a recursive algorithm to reconstruct an arbitrary binary tree, given its preorder and inorder node sequences as input. First, recall that

More information

SUGGESTION : read all the questions and their values before you start.

SUGGESTION : read all the questions and their values before you start. Faculty of Science Final Examination Computer Science 308-251B Examiner: Prof. Claude Crépeau Date: April 30, 2010 Associate Examiner: Prof. Patrick Hayden Time: 09:00 12:00 INSTRUCTIONS: This examination

More information

Mergesort again. 1. Split the list into two equal parts

Mergesort again. 1. Split the list into two equal parts Quicksort Mergesort again 1. Split the list into two equal parts 5 3 9 2 8 7 3 2 1 4 5 3 9 2 8 7 3 2 1 4 Mergesort again 2. Recursively mergesort the two parts 5 3 9 2 8 7 3 2 1 4 2 3 5 8 9 1 2 3 4 7 Mergesort

More information

ASSIGNMENTS. Progra m Outcom e. Chapter Q. No. Outcom e (CO) I 1 If f(n) = Θ(g(n)) and g(n)= Θ(h(n)), then proof that h(n) = Θ(f(n))

ASSIGNMENTS. Progra m Outcom e. Chapter Q. No. Outcom e (CO) I 1 If f(n) = Θ(g(n)) and g(n)= Θ(h(n)), then proof that h(n) = Θ(f(n)) ASSIGNMENTS Chapter Q. No. Questions Course Outcom e (CO) Progra m Outcom e I 1 If f(n) = Θ(g(n)) and g(n)= Θ(h(n)), then proof that h(n) = Θ(f(n)) 2 3. What is the time complexity of the algorithm? 4

More information

1 P a g e A r y a n C o l l e g e \ B S c _ I T \ C \

1 P a g e A r y a n C o l l e g e \ B S c _ I T \ C \ BSc IT C Programming (2013-2017) Unit I Q1. What do you understand by type conversion? (2013) Q2. Why we need different data types? (2013) Q3 What is the output of the following (2013) main() Printf( %d,

More information

Prelim 2. CS 2110, November 19, 2015, 7:30 PM Total. Sorting Invariants Max Score Grader

Prelim 2. CS 2110, November 19, 2015, 7:30 PM Total. Sorting Invariants Max Score Grader Prelim 2 CS 2110, November 19, 2015, 7:30 PM 1 2 3 4 5 6 Total Question True Short Complexity Searching Trees Graphs False Answer Sorting Invariants Max 20 15 13 14 17 21 100 Score Grader The exam is closed

More information

CS6402 DESIGN AND ANALYSIS OF ALGORITHMS QUESTION BANK UNIT I

CS6402 DESIGN AND ANALYSIS OF ALGORITHMS QUESTION BANK UNIT I CS6402 DESIGN AND ANALYSIS OF ALGORITHMS QUESTION BANK UNIT I PART A(2MARKS) 1. What is an algorithm? 2. What is meant by open hashing? 3. Define Ω-notation 4.Define order of an algorithm. 5. Define O-notation

More information

(a) Write code to do this without using any floating-point arithmetic. Efficiency is not a concern here.

(a) Write code to do this without using any floating-point arithmetic. Efficiency is not a concern here. CS 146 Final Exam 1 Solutions by Dr. Beeson 1. Analysis of non-recursive algorithms. Consider the problem of counting the number of points with integer coordinates (x,y) on the circle of radius R, where

More information

CS-6402 DESIGN AND ANALYSIS OF ALGORITHMS

CS-6402 DESIGN AND ANALYSIS OF ALGORITHMS CS-6402 DESIGN AND ANALYSIS OF ALGORITHMS 2 marks UNIT-I 1. Define Algorithm. An algorithm is a sequence of unambiguous instructions for solving a problem in a finite amount of time. 2.Write a short note

More information

Total Score /1 /20 /41 /15 /23 Grader

Total Score /1 /20 /41 /15 /23 Grader NAME: NETID: CS2110 Spring 2015 Prelim 2 April 21, 2013 at 5:30 0 1 2 3 4 Total Score /1 /20 /41 /15 /23 Grader There are 5 questions numbered 0..4 on 8 pages. Check now that you have all the pages. Write

More information

CIS 121 Data Structures and Algorithms with Java Spring Code Snippets and Recurrences Monday, January 29/Tuesday, January 30

CIS 121 Data Structures and Algorithms with Java Spring Code Snippets and Recurrences Monday, January 29/Tuesday, January 30 CIS 11 Data Structures and Algorithms with Java Spring 018 Code Snippets and Recurrences Monday, January 9/Tuesday, January 30 Learning Goals Practice solving recurrences and proving asymptotic bounds

More information

Review for Midterm Exam

Review for Midterm Exam Review for Midterm Exam 1 Policies and Overview midterm exam policies overview of problems, algorithms, data structures overview of discrete mathematics 2 Sample Questions on the cost functions of algorithms

More information

COMP Data Structures

COMP Data Structures COMP 2140 - Data Structures Shahin Kamali Topic 5 - Sorting University of Manitoba Based on notes by S. Durocher. COMP 2140 - Data Structures 1 / 55 Overview Review: Insertion Sort Merge Sort Quicksort

More information

End-Term Examination Second Semester [MCA] MAY-JUNE 2006

End-Term Examination Second Semester [MCA] MAY-JUNE 2006 (Please write your Roll No. immediately) Roll No. Paper Code: MCA-102 End-Term Examination Second Semester [MCA] MAY-JUNE 2006 Subject: Data Structure Time: 3 Hours Maximum Marks: 60 Note: Question 1.

More information

COE428 Lecture Notes Week 1 (Week of January 9, 2017)

COE428 Lecture Notes Week 1 (Week of January 9, 2017) COE428 Lecture Notes: Week 1 1 of 10 COE428 Lecture Notes Week 1 (Week of January 9, 2017) Table of Contents COE428 Lecture Notes Week 1 (Week of January 9, 2017)...1 Announcements...1 Topics...1 Informal

More information

Introduction to Algorithms I

Introduction to Algorithms I Summer School on Algorithms and Optimization Organized by: ACM Unit, ISI and IEEE CEDA. Tutorial II Date: 05.07.017 Introduction to Algorithms I (Q1) A binary tree is a rooted tree in which each node has

More information

Prelim 2 Solution. CS 2110, November 19, 2015, 5:30 PM Total. Sorting Invariants Max Score Grader

Prelim 2 Solution. CS 2110, November 19, 2015, 5:30 PM Total. Sorting Invariants Max Score Grader Prelim 2 CS 2110, November 19, 2015, 5:30 PM 1 2 3 4 5 6 Total Question True Short Complexity Searching Trees Graphs False Answer Sorting Invariants Max 20 15 13 14 17 21 100 Score Grader The exam is closed

More information

Algorithm Design (8) Graph Algorithms 1/2

Algorithm Design (8) Graph Algorithms 1/2 Graph Algorithm Design (8) Graph Algorithms / Graph:, : A finite set of vertices (or nodes) : A finite set of edges (or arcs or branches) each of which connect two vertices Takashi Chikayama School of

More information

ECE368 Exam 2 Spring 2016

ECE368 Exam 2 Spring 2016 ECE368 Exam 2 Spring 2016 Thursday, April 7, 2016 15:00-16:15pm ARMS 1010 READ THIS BEFORE YOU BEGIN This is a closed-book, closed-notes exam. Electronic devices are not allowed. The time allotted for

More information

1) What is the primary purpose of template functions? 2) Suppose bag is a template class, what is the syntax for declaring a bag b of integers?

1) What is the primary purpose of template functions? 2) Suppose bag is a template class, what is the syntax for declaring a bag b of integers? Review for Final (Chapter 6 13, 15) 6. Template functions & classes 1) What is the primary purpose of template functions? A. To allow a single function to be used with varying types of arguments B. To

More information

21# 33# 90# 91# 34# # 39# # # 31# 98# 0# 1# 2# 3# 4# 5# 6# 7# 8# 9# 10# #

21# 33# 90# 91# 34# # 39# # # 31# 98# 0# 1# 2# 3# 4# 5# 6# 7# 8# 9# 10# # 1. Prove that n log n n is Ω(n). York University EECS 11Z Winter 1 Problem Set 3 Instructor: James Elder Solutions log n n. Thus n log n n n n n log n n Ω(n).. Show that n is Ω (n log n). We seek a c >,

More information

Lecture Summary CSC 263H. August 5, 2016

Lecture Summary CSC 263H. August 5, 2016 Lecture Summary CSC 263H August 5, 2016 This document is a very brief overview of what we did in each lecture, it is by no means a replacement for attending lecture or doing the readings. 1. Week 1 2.

More information

Lecture 6 Basic Graph Algorithms

Lecture 6 Basic Graph Algorithms CS 491 CAP Intro to Competitive Algorithmic Programming Lecture 6 Basic Graph Algorithms Uttam Thakore University of Illinois at Urbana-Champaign September 30, 2015 Updates ICPC Regionals teams will be

More information

Introduction to Algorithms Third Edition

Introduction to Algorithms Third Edition Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest Clifford Stein Introduction to Algorithms Third Edition The MIT Press Cambridge, Massachusetts London, England Preface xiü I Foundations Introduction

More information

Trees Rooted Trees Spanning trees and Shortest Paths. 12. Graphs and Trees 2. Aaron Tan November 2017

Trees Rooted Trees Spanning trees and Shortest Paths. 12. Graphs and Trees 2. Aaron Tan November 2017 12. Graphs and Trees 2 Aaron Tan 6 10 November 2017 1 10.5 Trees 2 Definition Definition Definition: Tree A graph is said to be circuit-free if, and only if, it has no circuits. A graph is called a tree

More information

Greedy algorithms is another useful way for solving optimization problems.

Greedy algorithms is another useful way for solving optimization problems. Greedy Algorithms Greedy algorithms is another useful way for solving optimization problems. Optimization Problems For the given input, we are seeking solutions that must satisfy certain conditions. These

More information

AC64/AT64 DESIGN & ANALYSIS OF ALGORITHMS DEC 2014

AC64/AT64 DESIGN & ANALYSIS OF ALGORITHMS DEC 2014 AC64/AT64 DESIGN & ANALYSIS OF ALGORITHMS DEC 214 Q.2 a. Design an algorithm for computing gcd (m,n) using Euclid s algorithm. Apply the algorithm to find gcd (31415, 14142). ALGORITHM Euclid(m, n) //Computes

More information

We can use a max-heap to sort data.

We can use a max-heap to sort data. Sorting 7B N log N Sorts 1 Heap Sort We can use a max-heap to sort data. Convert an array to a max-heap. Remove the root from the heap and store it in its proper position in the same array. Repeat until

More information

Virtual University of Pakistan

Virtual University of Pakistan Virtual University of Pakistan Department of Computer Science Course Outline Course Instructor Dr. Sohail Aslam E mail Course Code Course Title Credit Hours 3 Prerequisites Objectives Learning Outcomes

More information

DESIGN AND ANALYSIS OF ALGORITHMS UNIT I INTRODUCTION

DESIGN AND ANALYSIS OF ALGORITHMS UNIT I INTRODUCTION 1 DESIGN AND ANALYSIS OF ALGORITHMS UNIT I INTRODUCTION Objectives Explain what the use of algorithm is Describe the fundamentals of algorithmic problem solving Understand how to calculate the complexity

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COMPUTER SCIENCE AND ENGINEERING TUTORIAL QUESTION BANK Course Name Course Code Class Branch DATA STRUCTURES ACS002 B. Tech

More information

UNIT 1 BASICS OF AN ALGORITHM

UNIT 1 BASICS OF AN ALGORITHM UNIT 1 BASICS OF AN ALGORITHM Basics of an Algorithm Structure Page Nos. 1.0 Introduction 5 1.1 Objectives 6 1.2. Analysis and Complexity of Algorithms 6 1.3 Basic Technique for Design of Efficient Algorithms

More information

Undirected Graphs. DSA - lecture 6 - T.U.Cluj-Napoca - M. Joldos 1

Undirected Graphs. DSA - lecture 6 - T.U.Cluj-Napoca - M. Joldos 1 Undirected Graphs Terminology. Free Trees. Representations. Minimum Spanning Trees (algorithms: Prim, Kruskal). Graph Traversals (dfs, bfs). Articulation points & Biconnected Components. Graph Matching

More information

Lecture 9: Sorting Algorithms

Lecture 9: Sorting Algorithms Lecture 9: Sorting Algorithms Bo Tang @ SUSTech, Spring 2018 Sorting problem Sorting Problem Input: an array A[1..n] with n integers Output: a sorted array A (in ascending order) Problem is: sort A[1..n]

More information

CS 161 Lecture 11 BFS, Dijkstra s algorithm Jessica Su (some parts copied from CLRS) 1 Review

CS 161 Lecture 11 BFS, Dijkstra s algorithm Jessica Su (some parts copied from CLRS) 1 Review 1 Review 1 Something I did not emphasize enough last time is that during the execution of depth-firstsearch, we construct depth-first-search trees. One graph may have multiple depth-firstsearch trees,

More information

CPSC 311 Lecture Notes. Sorting and Order Statistics (Chapters 6-9)

CPSC 311 Lecture Notes. Sorting and Order Statistics (Chapters 6-9) CPSC 311 Lecture Notes Sorting and Order Statistics (Chapters 6-9) Acknowledgement: These notes are compiled by Nancy Amato at Texas A&M University. Parts of these course notes are based on notes from

More information

Data Structures and Algorithms. Roberto Sebastiani

Data Structures and Algorithms. Roberto Sebastiani Data Structures and Algorithms Roberto Sebastiani roberto.sebastiani@disi.unitn.it http://www.disi.unitn.it/~rseba - Week 0 - B.S. In Applied Computer Science Free University of Bozen/Bolzano academic

More information