Parametric Curves, Lines in Space

Size: px
Start display at page:

Download "Parametric Curves, Lines in Space"

Transcription

1 Parametric Curves, Lines in Space Calculus III Josh Engwer TTU 02 September 2014 Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

2 PART I PART I: 2D PARAMETRIC CURVES Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

3 Parametric Curves in R 2 (Introduction) Definition A 2D parametric curve has the following form: x = f (t) y = g(t) t I, where I is an interval f, g C(I) Each point (x, y) on the curve depends on a parameter, t R. A particular choice of functions f, g and interval I is called a parameterization of the curve. ALTERNATIVE NOTATION: x(t) = f (t) y(t) = g(t) is used to emphasize that x and y are functions of t. t I ALTERNATIVE NOTATION: x = f (t), y = g(t), t I REMARK: The t I piece is omitted when t Dom(f ) Dom(g) Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

4 Parametric Curves in R 2 (Introduction) (DEMO) PARAMETRIC CURVES (Click below): Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

5 Parametric Curves (Parameterizations are not Unique) (DEMO) COMPARING PARAMETERIZATIONS (Click below): REMARK: Focus on choosing simplest parameterization (see next slide). Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

6 Parametric Curves in R 2 (Conversions) CONVERSION PROCEDURE Solve for t in one eqn and substitute into the other eqn. 2D Parametric Rectangular Restrict the ranges of x & y if necessary. x = t Explicit Rectangular 2D Parametric y = f (x) = y = f (t) t Dom(f ) x = g(t) Explicit Rectangular 2D Parametric x = g(y) = y = t Explicit Polar 2D Parametric r = f (θ) = t Dom(g) x = f (t) cos t y = f (t) sin t t Dom(f ) *** ALL OTHER CONVERSION POSSIBILITIES ARE TOO DIFFICULT *** Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

7 Parametric Curves in R 3 (Introduction) Definition A 3D parametric curve has the following form: x = f (t) y = g(t) z = h(t) t I, where I is an interval f, g, h C(I) Each point (x, y, z) on the curve depends on a parameter, t R. A particular choice of functions f, g, h and interval I is called a parameterization of the curve. REMARK: General 3D parametric curves will be treated in Chapter 10. For now, consider only 3D lines in space. Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

8 PART II PART II: LINES IN SPACE Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

9 Lines in R 2 (Canonical Forms from Algebra) Recall from Algebra the following canonical forms of a line on the xy-plane: TYPE CANONICAL FORM REMARK(s) Point-Slope Form y y 0 = m(x x 0 ) m Slope of Line Line contains point (x 0, y 0 ) Slope-Intercept Form y = mx + b m Slope of Line b y-intercept : (0, b) Both-Intercepts Form x a + y m Slope of Line b = 1 a x-intercept : (a, 0) b y-intercept : (0, b) General Form Ax + By = C A, B, C R Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

10 Lines in R 2 (Canonical Forms from Algebra) Recall from Algebra the following canonical forms of a line on the xy-plane: TYPE CANONICAL FORM REMARK(s) Point-Slope Form y y 0 = m(x x 0 ) m Slope of Line Line contains point (x 0, y 0 ) Slope-Intercept Form y = mx + b m Slope of Line b y-intercept : (0, b) Both-Intercepts Form x a + y m Slope of Line b = 1 a x-intercept : (a, 0) b y-intercept : (0, b) General Form Ax + By = C A, B, C R Unfortunately, none of these forms are useful for lines in space. Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

11 Lines in R 2 (Canonical Forms from Algebra) Recall from Algebra the following canonical forms of a line on the xy-plane: TYPE CANONICAL FORM REMARK(s) Point-Slope Form y y 0 = m(x x 0 ) m Slope of Line Line contains point (x 0, y 0 ) Slope-Intercept Form y = mx + b m Slope of Line b y-intercept : (0, b) Both-Intercepts Form x a + y m Slope of Line b = 1 a x-intercept : (a, 0) b y-intercept : (0, b) General Form Ax + By = C A, B, C R Unfortunately, none of these forms are useful for lines in space. The solution: Use Vectors! Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

12 Lines (Parametric Form Derivation) Given line l vector v = v 1, v 2 and containing point P(x 0, y 0 ) Let Q(x, y) be any point on line l. Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

13 Lines (Parametric Form Derivation) Given line l vector v = v 1, v 2 and containing point P(x 0, y 0 ) Form vector PQ = x x 0, y y 0. Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

14 Lines (Parametric Form Derivation) Given line l vector v = v 1, v 2 and containing point P(x 0, y 0 ) Notice that PQ v Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

15 Lines (Parametric Form Derivation) Given line l vector v = v 1, v 2 and containing point P(x 0, y 0 ) PQ v = x x 0, y y 0 = t v 1, v 2 Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

16 Lines (Parametric Form Derivation) Given line l vector v = v 1, v 2 and containing point P(x 0, y 0 ) PQ v = x x 0, y y 0 = t v 1, v 2 = x x 0, y y 0 = tv 1, tv 2 Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

17 Lines (Parametric Form Derivation) Given line l vector v = v 1, v 2 and containing point P(x 0, y 0 ) PQ v = x x 0, y y 0 = t v 1, v 2 = { x x 0, y y 0 = tv 1, tv 2 x x0 = tv Equate each component: 1 y y 0 = tv 2 Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

18 Lines (Parametric Form Derivation) Given line l vector v = v 1, v 2 and containing point P(x 0, y 0 ) PQ v = x x 0, y y 0 = t v 1, v 2 = { x x 0, y y 0 = tv 1, tv 2 x x0 = tv Equate each component: 1 { y y 0 = tv 2 x = x0 + tv Solve for (x, y): 1 y = y 0 + tv 2 Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

19 Lines in R 2 (Parametric Form) Definition The parametric form of line l containing point P 0 (x 0, y 0 ) and parallel to vector v = v 1, v 2 is: x = x 0 + v 1 t l : y = y 0 + v 2 t t R Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

20 Lines in R 3 (Parametric Form) Definition The parametric form of line l containing point P 0 (x 0, y 0, z 0 ) and parallel to vector v = v 1, v 2, v 3 is: x = x 0 + v 1 t y = y l : 0 + v 2 t z = z 0 + v 3 t t R Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

21 Lines in R 3 (Intersecting Lines) Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

22 Lines in R 3 (Parallel Lines) Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

23 Lines in R 3 (Coincident Lines) Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

24 Lines in R 3 (Skew Lines) The dashed line segment indicates that line l 2 is behind line l 1. Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

25 Lines in R 3 (Classification Flowchart) Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

26 Lines in R 3 (Distance from Point to Line Derivation) Find the shortest distance from point P to line l. Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

27 Lines in R 3 (Distance from Point to Line Derivation) Find the shortest distance from point P to line l. Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

28 Lines in R 3 (Distance from Point to Line Derivation) Find the shortest distance from point P to line l. Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

29 Lines in R 3 (Distance from Point to Line Derivation) Find the shortest distance from point P to line l. Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

30 Lines in R 3 (Distance from Point to Line Derivation) Find the shortest distance from point P to line l. Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

31 Lines in R 3 (Distance from Point to Line Derivation) Find the shortest distance from point P to line l. sin θ = d QP Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

32 Lines in R 3 (Distance from Point to Line Derivation) Find the shortest distance from point P to line l. d = QP sin θ Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

33 Lines in R 3 (Distance from Point to Line Derivation) Find the shortest distance from point P to line l. d v = v QP sin θ Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

34 Lines in R 3 (Distance from Point to Line Derivation) Find the shortest distance from point P to line l. d v = v QP Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

35 Lines in R 3 (Distance from Point to Line Derivation) Find the shortest distance from point P to line l. d = v QP v Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

36 Lines in R 3 (Distance from Point to Line) Theorem The shortest distance, d, from point P to line l is: d = v QP v where Q is any point on line l, and v is any vector parallel to line l. Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

37 Fin Fin. Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September / 37

GEOMETRY IN THREE DIMENSIONS

GEOMETRY IN THREE DIMENSIONS 1 CHAPTER 5. GEOMETRY IN THREE DIMENSIONS 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW GEOMETRY IN THREE DIMENSIONS Contents 1 Geometry in R 3 2 1.1 Lines...............................................

More information

MATH 1020 WORKSHEET 10.1 Parametric Equations

MATH 1020 WORKSHEET 10.1 Parametric Equations MATH WORKSHEET. Parametric Equations If f and g are continuous functions on an interval I, then the equations x ft) and y gt) are called parametric equations. The parametric equations along with the graph

More information

Section 18-1: Graphical Representation of Linear Equations and Functions

Section 18-1: Graphical Representation of Linear Equations and Functions Section 18-1: Graphical Representation of Linear Equations and Functions Prepare a table of solutions and locate the solutions on a coordinate system: f(x) = 2x 5 Learning Outcome 2 Write x + 3 = 5 as

More information

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines Math 18.02 (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines February 12 Reading Material: From Simmons: 17.1 and 17.2. Last time: Square Systems. Word problem. How many solutions?

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

PARAMETERIZATIONS OF PLANE CURVES

PARAMETERIZATIONS OF PLANE CURVES PARAMETERIZATIONS OF PLANE CURVES Suppose we want to plot the path of a particle moving in a plane. This path looks like a curve, but we cannot plot it like we would plot any other type of curve in the

More information

Topic 1.6: Lines and Planes

Topic 1.6: Lines and Planes Math 275 Notes (Ultman) Topic 1.6: Lines and Planes Textbook Section: 12.5 From the Toolbox (what you need from previous classes): Plotting points, sketching vectors. Be able to find the component form

More information

Topics in Analytic Geometry Part II

Topics in Analytic Geometry Part II Name Chapter 9 Topics in Analytic Geometry Part II Section 9.4 Parametric Equations Objective: In this lesson you learned how to evaluate sets of parametric equations for given values of the parameter

More information

1.5 Equations of Lines and Planes in 3-D

1.5 Equations of Lines and Planes in 3-D 1.5. EQUATIONS OF LINES AND PLANES IN 3-D 55 Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from the

More information

Vector Fields: Intro, Div, Curl

Vector Fields: Intro, Div, Curl Vector Fields: Intro, Div, Curl Calculus III Josh Engwer TTU 07 November 2014 Josh Engwer (TTU) Vector Fields: Intro, Div, Curl 07 November 2014 1 / 34 The Function Landscape FUNCTION TYPE PROTOTYPE MAPPING

More information

Section 13.5: Equations of Lines and Planes. 1 Objectives. 2 Assignments. 3 Lecture Notes

Section 13.5: Equations of Lines and Planes. 1 Objectives. 2 Assignments. 3 Lecture Notes Section 13.5: Equations of Lines and Planes 1 Objectives 1. Find vector, symmetric, or parametric equations for a line in space given two points on the line, given a point on the line and a vector parallel

More information

Algebra 1 Semester 2 Final Review

Algebra 1 Semester 2 Final Review Team Awesome 011 Name: Date: Period: Algebra 1 Semester Final Review 1. Given y mx b what does m represent? What does b represent?. What axis is generally used for x?. What axis is generally used for y?

More information

To sketch the graph we need to evaluate the parameter t within the given interval to create our x and y values.

To sketch the graph we need to evaluate the parameter t within the given interval to create our x and y values. Module 10 lesson 6 Parametric Equations. When modeling the path of an object, it is useful to use equations called Parametric equations. Instead of using one equation with two variables, we will use two

More information

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives Recall that if z = f(x, y), then the partial derivatives f x and f y are defined as and represent the rates of change of z in the x- and y-directions, that is, in the directions of the unit vectors i and

More information

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc. 8 Complex Numbers, Polar Equations, and Parametric Equations Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 8.5 Polar Equations and Graphs Polar Coordinate System Graphs of Polar Equations Conversion

More information

MAC Learning Objectives. Module 12 Polar and Parametric Equations. Polar and Parametric Equations. There are two major topics in this module:

MAC Learning Objectives. Module 12 Polar and Parametric Equations. Polar and Parametric Equations. There are two major topics in this module: MAC 4 Module 2 Polar and Parametric Equations Learning Objectives Upon completing this module, you should be able to:. Use the polar coordinate system. 2. Graph polar equations. 3. Solve polar equations.

More information

Lesson 19: The Graph of a Linear Equation in Two Variables is a Line

Lesson 19: The Graph of a Linear Equation in Two Variables is a Line Lesson 19: The Graph of a Linear Equation in Two Variables is a Line Classwork Exercises Theorem: The graph of a linear equation y = mx + b is a non-vertical line with slope m and passing through (0, b),

More information

1.5 Equations of Lines and Planes in 3-D

1.5 Equations of Lines and Planes in 3-D 56 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from

More information

Directional Derivatives as Vectors

Directional Derivatives as Vectors Directional Derivatives as Vectors John Ganci 1 Al Lehnen 2 1 Richland College Dallas, TX jganci@dcccd.edu 2 Madison Area Technical College Madison, WI alehnen@matcmadison.edu Statement of problem We are

More information

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations 1 Definition of polar coordinates Let us first recall the definition of Cartesian coordinates: to each point in the plane we can

More information

Each point P in the xy-plane corresponds to an ordered pair (x, y) of real numbers called the coordinates of P.

Each point P in the xy-plane corresponds to an ordered pair (x, y) of real numbers called the coordinates of P. Lecture 7, Part I: Section 1.1 Rectangular Coordinates Rectangular or Cartesian coordinate system Pythagorean theorem Distance formula Midpoint formula Lecture 7, Part II: Section 1.2 Graph of Equations

More information

The Three Dimensional Coordinate System

The Three Dimensional Coordinate System The Three-Dimensional Coordinate System The Three Dimensional Coordinate System You can construct a three-dimensional coordinate system by passing a z-axis perpendicular to both the x- and y-axes at the

More information

AP CALCULUS BC 2014 SCORING GUIDELINES

AP CALCULUS BC 2014 SCORING GUIDELINES SCORING GUIDELINES Question The graphs of the polar curves r = and r = sin ( θ ) are shown in the figure above for θ. (a) Let R be the shaded region that is inside the graph of r = and inside the graph

More information

Date Lesson TOPIC Homework. The Intersection of a Line with a Plane and the Intersection of Two Lines

Date Lesson TOPIC Homework. The Intersection of a Line with a Plane and the Intersection of Two Lines UNIT 4 - RELATIONSHIPS BETWEEN LINES AND PLANES Date Lesson TOPIC Homework Oct. 4. 9. The Intersection of a Line with a Plane and the Intersection of Two Lines Pg. 496 # (4, 5)b, 7, 8b, 9bd, Oct. 6 4.

More information

COMPUTER AIDED ENGINEERING DESIGN (BFF2612)

COMPUTER AIDED ENGINEERING DESIGN (BFF2612) COMPUTER AIDED ENGINEERING DESIGN (BFF2612) BASIC MATHEMATICAL CONCEPTS IN CAED by Dr. Mohd Nizar Mhd Razali Faculty of Manufacturing Engineering mnizar@ump.edu.my COORDINATE SYSTEM y+ y+ z+ z+ x+ RIGHT

More information

with slopes m 1 and m 2 ), if and only if its coordinates satisfy the equation y y 0 = 0 and Ax + By + C 2

with slopes m 1 and m 2 ), if and only if its coordinates satisfy the equation y y 0 = 0 and Ax + By + C 2 CHAPTER 10 Straight lines Learning Objectives (i) Slope (m) of a non-vertical line passing through the points (x 1 ) is given by (ii) If a line makes an angle α with the positive direction of x-axis, then

More information

7-5 Parametric Equations

7-5 Parametric Equations 3. Sketch the curve given by each pair of parametric equations over the given interval. Make a table of values for 6 t 6. t x y 6 19 28 5 16.5 17 4 14 8 3 11.5 1 2 9 4 1 6.5 7 0 4 8 1 1.5 7 2 1 4 3 3.5

More information

9.5 Polar Coordinates. Copyright Cengage Learning. All rights reserved.

9.5 Polar Coordinates. Copyright Cengage Learning. All rights reserved. 9.5 Polar Coordinates Copyright Cengage Learning. All rights reserved. Introduction Representation of graphs of equations as collections of points (x, y), where x and y represent the directed distances

More information

Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations / 17

Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations / 17 Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, Parametric equations Johns Hopkins University Fall 2014 Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations 2014 1 / 17

More information

THREE DIMENSIONAL GEOMETRY

THREE DIMENSIONAL GEOMETRY For more important questions visit : www4onocom CHAPTER 11 THREE DIMENSIONAL GEOMETRY POINTS TO REMEMBER Distance between points P(x 1 ) and Q(x, y, z ) is PQ x x y y z z 1 1 1 (i) The coordinates of point

More information

Lecture 34: Curves defined by Parametric equations

Lecture 34: Curves defined by Parametric equations Curves defined by Parametric equations When the path of a particle moving in the plane is not the graph of a function, we cannot describe it using a formula that express y directly in terms of x, or x

More information

14.6 Directional Derivatives and the Gradient Vector

14.6 Directional Derivatives and the Gradient Vector 14 Partial Derivatives 14.6 and the Gradient Vector Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and the Gradient Vector In this section we introduce

More information

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc. 8 Complex Numbers, Polar Equations, and Parametric Equations Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 8.2 Trigonometric (Polar) Form of Complex Numbers The Complex Plane and Vector Representation

More information

Math Exam III Review

Math Exam III Review Math 213 - Exam III Review Peter A. Perry University of Kentucky April 10, 2019 Homework Exam III is tonight at 5 PM Exam III will cover 15.1 15.3, 15.6 15.9, 16.1 16.2, and identifying conservative vector

More information

Polar (BC Only) They are necessary to find the derivative of a polar curve in x- and y-coordinates. The derivative

Polar (BC Only) They are necessary to find the derivative of a polar curve in x- and y-coordinates. The derivative Polar (BC Only) Polar coordinates are another way of expressing points in a plane. Instead of being centered at an origin and moving horizontally or vertically, polar coordinates are centered at the pole

More information

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA:

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA: MA 114 Exam 3 Spring 217 Exam 3 Name: Section and/or TA: Last Four Digits of Student ID: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test.

More information

Precalculus 2 Section 10.6 Parametric Equations

Precalculus 2 Section 10.6 Parametric Equations Precalculus 2 Section 10.6 Parametric Equations Parametric Equations Write parametric equations. Graph parametric equations. Determine an equivalent rectangular equation for parametric equations. Determine

More information

Line Integration in the Complex Plane

Line Integration in the Complex Plane න f z dz C Engineering Math EECE 3640 1 A Review of Integration of Functions of Real Numbers: a b f x dx is the area under the curve in the figure below: The interval of integration is the path along the

More information

Chapter 10 Homework: Parametric Equations and Polar Coordinates

Chapter 10 Homework: Parametric Equations and Polar Coordinates Chapter 1 Homework: Parametric Equations and Polar Coordinates Name Homework 1.2 1. Consider the parametric equations x = t and y = 3 t. a. Construct a table of values for t =, 1, 2, 3, and 4 b. Plot the

More information

Section 1.5. Finding Linear Equations

Section 1.5. Finding Linear Equations Section 1.5 Finding Linear Equations Using Slope and a Point to Find an Equation of a Line Example Find an equation of a line that has slope m = 3 and contains the point (2, 5). Solution Substitute m =

More information

Applications of Triple Integrals

Applications of Triple Integrals Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers In this section we present Lagrange s method for maximizing or minimizing a general function f(x, y, z) subject to a constraint (or side condition) of the form g(x, y, z) = k. Figure 1 shows this curve

More information

Mathematics (www.tiwariacademy.com)

Mathematics (www.tiwariacademy.com) () Miscellaneous Exercise on Chapter 10 Question 1: Find the values of k for which the line is (a) Parallel to the x-axis, (b) Parallel to the y-axis, (c) Passing through the origin. Answer 1: The given

More information

Math 1313 Prerequisites/Test 1 Review

Math 1313 Prerequisites/Test 1 Review Math 1313 Prerequisites/Test 1 Review Test 1 (Prerequisite Test) is the only exam that can be done from ANYWHERE online. Two attempts. See Online Assignments in your CASA account. Note the deadline too.

More information

Workbook. MAT 397: Calculus III

Workbook. MAT 397: Calculus III Workbook MAT 397: Calculus III Instructor: Caleb McWhorter Name: Summer 2017 Contents Preface..................................................... 2 1 Spatial Geometry & Vectors 3 1.1 Basic n Euclidean

More information

2.2 Graphs Of Functions. Copyright Cengage Learning. All rights reserved.

2.2 Graphs Of Functions. Copyright Cengage Learning. All rights reserved. 2.2 Graphs Of Functions Copyright Cengage Learning. All rights reserved. Objectives Graphing Functions by Plotting Points Graphing Functions with a Graphing Calculator Graphing Piecewise Defined Functions

More information

Plane Curve [Parametric Equation]

Plane Curve [Parametric Equation] Plane Curve [Parametric Equation] Bander Almutairi King Saud University December 1, 2015 Bander Almutairi (King Saud University) Plane Curve [Parametric Equation] December 1, 2015 1 / 8 1 Parametric Equation

More information

MATH 19520/51 Class 6

MATH 19520/51 Class 6 MATH 19520/51 Class 6 Minh-Tam Trinh University of Chicago 2017-10-06 1 Review partial derivatives. 2 Review equations of planes. 3 Review tangent lines in single-variable calculus. 4 Tangent planes to

More information

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT:

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT: CALCULUS WITH PARAMETERIZED CURVES In calculus I we learned how to differentiate and integrate functions. In the chapter covering the applications of the integral, we learned how to find the length of

More information

Parametric Curves and Polar Coordinates

Parametric Curves and Polar Coordinates Parametric Curves and Polar Coordinates Math 251, Fall 2017 Juergen Gerlach Radford University Parametric Curves We will investigate several aspects of parametric curves in the plane. The curve given by

More information

Parametric Curves and Polar Coordinates

Parametric Curves and Polar Coordinates Parametric Curves and Polar Coordinates Math 251, Fall 2017 Juergen Gerlach Radford University Parametric Curves We will investigate several aspects of parametric curves in the plane. The curve given by

More information

Section 7D Systems of Linear Equations

Section 7D Systems of Linear Equations Section 7D Systems of Linear Equations Companies often look at more than one equation of a line when analyzing how their business is doing. For example a company might look at a cost equation and a profit

More information

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY True/False 10 points: points each) For the problems below, circle T if the answer is true and circle F is the answer is false. After you ve chosen

More information

The Graph of an Equation Graph the following by using a table of values and plotting points.

The Graph of an Equation Graph the following by using a table of values and plotting points. Precalculus - Calculus Preparation - Section 1 Graphs and Models Success in math as well as Calculus is to use a multiple perspective -- graphical, analytical, and numerical. Thanks to Rene Descartes we

More information

Double Integrals, Iterated Integrals, Cross-sections

Double Integrals, Iterated Integrals, Cross-sections Chapter 14 Multiple Integrals 1 ouble Integrals, Iterated Integrals, Cross-sections 2 ouble Integrals over more general regions, efinition, Evaluation of ouble Integrals, Properties of ouble Integrals

More information

2.4. A LIBRARY OF PARENT FUNCTIONS

2.4. A LIBRARY OF PARENT FUNCTIONS 2.4. A LIBRARY OF PARENT FUNCTIONS 1 What You Should Learn Identify and graph linear and squaring functions. Identify and graph cubic, square root, and reciprocal function. Identify and graph step and

More information

5. y 2 + z 2 + 4z = 0 correct. 6. z 2 + x 2 + 2x = a b = 4 π

5. y 2 + z 2 + 4z = 0 correct. 6. z 2 + x 2 + 2x = a b = 4 π M408D (54690/95/00), Midterm #2 Solutions Multiple choice questions (20 points) See last two pages. Question #1 (25 points) Dene the vector-valued function r(t) = he t ; 2; 3e t i: a) At what point P (x

More information

6.7. POLAR COORDINATES

6.7. POLAR COORDINATES 6.7. POLAR COORDINATES What You Should Learn Plot points on the polar coordinate system. Convert points from rectangular to polar form and vice versa. Convert equations from rectangular to polar form and

More information

Put your initials on the top of every page, in case the pages become separated.

Put your initials on the top of every page, in case the pages become separated. Math 1201, Fall 2016 Name (print): Dr. Jo Nelson s Calculus III Practice for 1/2 of Final, Midterm 1 Material Time Limit: 90 minutes DO NOT OPEN THIS BOOKLET UNTIL INSTRUCTED TO DO SO. This exam contains

More information

Review for Mastery Using Graphs and Tables to Solve Linear Systems

Review for Mastery Using Graphs and Tables to Solve Linear Systems 3-1 Using Graphs and Tables to Solve Linear Systems A linear system of equations is a set of two or more linear equations. To solve a linear system, find all the ordered pairs (x, y) that make both equations

More information

Sec 4.1 Coordinates and Scatter Plots. Coordinate Plane: Formed by two real number lines that intersect at a right angle.

Sec 4.1 Coordinates and Scatter Plots. Coordinate Plane: Formed by two real number lines that intersect at a right angle. Algebra I Chapter 4 Notes Name Sec 4.1 Coordinates and Scatter Plots Coordinate Plane: Formed by two real number lines that intersect at a right angle. X-axis: The horizontal axis Y-axis: The vertical

More information

MATH 1113 Exam 1 Review. Fall 2017

MATH 1113 Exam 1 Review. Fall 2017 MATH 1113 Exam 1 Review Fall 2017 Topics Covered Section 1.1: Rectangular Coordinate System Section 1.2: Circles Section 1.3: Functions and Relations Section 1.4: Linear Equations in Two Variables and

More information

OpenGL Graphics System. 2D Graphics Primitives. Drawing 2D Graphics Primitives. 2D Graphics Primitives. Mathematical 2D Primitives.

OpenGL Graphics System. 2D Graphics Primitives. Drawing 2D Graphics Primitives. 2D Graphics Primitives. Mathematical 2D Primitives. D Graphics Primitives Eye sees Displays - CRT/LCD Frame buffer - Addressable pixel array (D) Graphics processor s main function is to map application model (D) by projection on to D primitives: points,

More information

Functions. Copyright Cengage Learning. All rights reserved.

Functions. Copyright Cengage Learning. All rights reserved. Functions Copyright Cengage Learning. All rights reserved. 2.2 Graphs Of Functions Copyright Cengage Learning. All rights reserved. Objectives Graphing Functions by Plotting Points Graphing Functions with

More information

Volumes of Solids of Revolution Lecture #6 a

Volumes of Solids of Revolution Lecture #6 a Volumes of Solids of Revolution Lecture #6 a Sphereoid Parabaloid Hyperboloid Whateveroid Volumes Calculating 3-D Space an Object Occupies Take a cross-sectional slice. Compute the area of the slice. Multiply

More information

Functions of Several Variables

Functions of Several Variables Jim Lambers MAT 280 Spring Semester 2009-10 Lecture 2 Notes These notes correspond to Section 11.1 in Stewart and Section 2.1 in Marsden and Tromba. Functions of Several Variables Multi-variable calculus

More information

Practice Test - Chapter 7

Practice Test - Chapter 7 Write an equation for an ellipse with each set of characteristics. 1. vertices (7, 4), ( 3, 4); foci (6, 4), ( 2, 4) The distance between the vertices is 2a. 2a = 7 ( 3) a = 5; a 2 = 25 The distance between

More information

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives In general, if f is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say y = b, where b is a constant. By the definition of a derivative, we have Then we are really

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc.

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc. Chapter 1 Linear Equations and Straight Lines 2 of 71 Outline 1.1 Coordinate Systems and Graphs 1.4 The Slope of a Straight Line 1.3 The Intersection Point of a Pair of Lines 1.2 Linear Inequalities 1.5

More information

9.1 Parametric Curves

9.1 Parametric Curves Math 172 Chapter 9A notes Page 1 of 20 9.1 Parametric Curves So far we have discussed equations in the form. Sometimes and are given as functions of a parameter. Example. Projectile Motion Sketch and axes,

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

The Rectangular Coordinate System and Equations of Lines. College Algebra

The Rectangular Coordinate System and Equations of Lines. College Algebra The Rectangular Coordinate System and Equations of Lines College Algebra Cartesian Coordinate System A grid system based on a two-dimensional plane with perpendicular axes: horizontal axis is the x-axis

More information

FIND RECTANGULAR COORDINATES FROM POLAR COORDINATES CALCULATOR

FIND RECTANGULAR COORDINATES FROM POLAR COORDINATES CALCULATOR 29 June, 2018 FIND RECTANGULAR COORDINATES FROM POLAR COORDINATES CALCULATOR Document Filetype: PDF 464.26 KB 0 FIND RECTANGULAR COORDINATES FROM POLAR COORDINATES CALCULATOR Rectangular to Polar Calculator

More information

Let be a function. We say, is a plane curve given by the. Let a curve be given by function where is differentiable with continuous.

Let be a function. We say, is a plane curve given by the. Let a curve be given by function where is differentiable with continuous. Module 8 : Applications of Integration - II Lecture 22 : Arc Length of a Plane Curve [Section 221] Objectives In this section you will learn the following : How to find the length of a plane curve 221

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;...

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;... Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; 2 Application of Gradient; Tutorial Class V 3-10/10/2012 1 First Order

More information

SECTION 1.2 (e-book 2.3) Functions: Graphs & Properties

SECTION 1.2 (e-book 2.3) Functions: Graphs & Properties SECTION 1.2 (e-book 2.3) Functions: Graphs & Properties Definition (Graph Form): A function f can be defined by a graph in the xy-plane. In this case the output can be obtained by drawing vertical line

More information

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f Gradients and the Directional Derivative In 14.3, we discussed the partial derivatives f f and, which tell us the rate of change of the x y height of the surface defined by f in the x direction and the

More information

Name: Date: 1. Match the equation with its graph. Page 1

Name: Date: 1. Match the equation with its graph. Page 1 Name: Date: 1. Match the equation with its graph. y 6x A) C) Page 1 D) E) Page . Match the equation with its graph. ( x3) ( y3) A) C) Page 3 D) E) Page 4 3. Match the equation with its graph. ( x ) y 1

More information

Did You Find a Parking Space?

Did You Find a Parking Space? Lesson.4 Skills Practice Name Date Did You Find a Parking Space? Parallel and Perpendicular Lines on the Coordinate Plane Vocabulary Complete the sentence. 1. The point-slope form of the equation of the

More information

Chapter P: Preparation for Calculus

Chapter P: Preparation for Calculus 1. Which of the following is the correct graph of y = x x 3? E) Copyright Houghton Mifflin Company. All rights reserved. 1 . Which of the following is the correct graph of y = 3x x? E) Copyright Houghton

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometry of Space In Figure 11.43, consider the line L through the point P(x 1, y 1, z 1 ) and parallel to the vector. The vector v is a direction vector for the line L, and a, b, and c

More information

Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Big Ideas. What We Are Doing Today... Notes. Notes. Notes

Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Big Ideas. What We Are Doing Today... Notes. Notes. Notes Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Textbook: Section 16.6 Big Ideas A surface in R 3 is a 2-dimensional object in 3-space. Surfaces can be described using two variables.

More information

Parametric Surfaces. Substitution

Parametric Surfaces. Substitution Calculus Lia Vas Parametric Surfaces. Substitution Recall that a curve in space is given by parametric equations as a function of single parameter t x = x(t) y = y(t) z = z(t). A curve is a one-dimensional

More information

Review Exercise. 1. Determine vector and parametric equations of the plane that contains the

Review Exercise. 1. Determine vector and parametric equations of the plane that contains the Review Exercise 1. Determine vector and parametric equations of the plane that contains the points A11, 2, 12, B12, 1, 12, and C13, 1, 42. 2. In question 1, there are a variety of different answers possible,

More information

MH2800/MAS183 - Linear Algebra and Multivariable Calculus

MH2800/MAS183 - Linear Algebra and Multivariable Calculus MH28/MAS83 - Linear Algebra and Multivariable Calculus SEMESTER II EXAMINATION 2-22 Solved by Tao Biaoshuai Email: taob@e.ntu.edu.sg QESTION Let A 2 2 2. Solve the homogeneous linear system Ax and write

More information

Math 21a Tangent Lines and Planes Fall, What do we know about the gradient f? Tangent Lines to Curves in the Plane.

Math 21a Tangent Lines and Planes Fall, What do we know about the gradient f? Tangent Lines to Curves in the Plane. Math 21a Tangent Lines and Planes Fall, 2016 What do we know about the gradient f? Tangent Lines to Curves in the Plane. 1. For each of the following curves, find the tangent line to the curve at the point

More information

graphing_9.1.notebook March 15, 2019

graphing_9.1.notebook March 15, 2019 1 2 3 Writing the equation of a line in slope intercept form. In order to write an equation in y = mx + b form you will need the slope "m" and the y intercept "b". We will subsitute the values for m and

More information

Three Dimensional Geometry. Linear Programming

Three Dimensional Geometry. Linear Programming Three Dimensional Geometry Linear Programming A plane is determined uniquely if any one of the following is known: The normal to the plane and its distance from the origin is given, i.e. equation of a

More information

Meeting 1 Introduction to Functions. Part 1 Graphing Points on a Plane (REVIEW) Part 2 What is a function?

Meeting 1 Introduction to Functions. Part 1 Graphing Points on a Plane (REVIEW) Part 2 What is a function? Meeting 1 Introduction to Functions Part 1 Graphing Points on a Plane (REVIEW) A plane is a flat, two-dimensional surface. We describe particular locations, or points, on a plane relative to two number

More information

Section Graphs and Lines

Section Graphs and Lines Section 1.1 - Graphs and Lines The first chapter of this text is a review of College Algebra skills that you will need as you move through the course. This is a review, so you should have some familiarity

More information

Vectors. Section 1: Lines and planes

Vectors. Section 1: Lines and planes Vectors Section 1: Lines and planes Notes and Examples These notes contain subsections on Reminder: notation and definitions Equation of a line The intersection of two lines Finding the equation of a plane

More information

Drill Exercise - 1. Drill Exercise - 2. Drill Exercise - 3

Drill Exercise - 1. Drill Exercise - 2. Drill Exercise - 3 Drill Exercise -. Find the distance between the pair of points, (a sin, b cos ) and ( a cos, b sin ).. Prove that the points (a, 4a) (a, 6a) and (a + 3 a, 5a) are the vertices of an equilateral triangle.

More information

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations Lecture 15 Lecturer: Prof. Sergei Fedotov 10131 - Calculus and Vectors Length of a Curve and Parametric Equations Sergei Fedotov (University of Manchester) MATH10131 2011 1 / 5 Lecture 15 1 Length of a

More information

3-6 Lines in the Coordinate Plane

3-6 Lines in the Coordinate Plane 3-6 Lines in the Coordinate Plane Warm Up Lesson Presentation Lesson Quiz Geometry Warm Up Substitute the given values of m, x, and y into the equation y = mx + b and solve for b. 1. m = 2, x = 3, and

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below:

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below: Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

Updated: August 24, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University

Updated: August 24, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University Updated: August 24, 216 Calculus III Section 1.2 Math 232 Calculus III Brian Veitch Fall 215 Northern Illinois University 1.2 Calculus with Parametric Curves Definition 1: First Derivative of a Parametric

More information

Preliminary Mathematics Extension 1

Preliminary Mathematics Extension 1 Phone: (0) 8007 684 Email: info@dc.edu.au Web: dc.edu.au 018 HIGHER SCHOOL CERTIFICATE COURSE MATERIALS Preliminary Mathematics Extension 1 Parametric Equations Term 1 Week 1 Name. Class day and time Teacher

More information

2.1. Rectangular Coordinates and Graphs. 2.1 Rectangular Coordinates and Graphs 2.2 Circles 2.3 Functions 2.4 Linear Functions. Graphs and Functions

2.1. Rectangular Coordinates and Graphs. 2.1 Rectangular Coordinates and Graphs 2.2 Circles 2.3 Functions 2.4 Linear Functions. Graphs and Functions 2 Graphs and Functions 2 Graphs and Functions 2.1 Rectangular Coordinates and Graphs 2.2 Circles 2.3 Functions 2.4 Linear Functions Sections 2.1 2.4 2008 Pearson Addison-Wesley. All rights reserved Copyright

More information