Development of an Incompressible SPH Method through SPARTACUS-2D

Size: px
Start display at page:

Download "Development of an Incompressible SPH Method through SPARTACUS-2D"

Transcription

1 Development of an Incompressible SPH Method through SPARTACUS-2D Eun-Sug Lee D. Laurence, C. Moulinec, P. Stansby, D. Violeau, Developing of truly incompressible method in SPH 1 / 28

2 1. Introduction: The need of Incompressible SPH method 2. Theory of Incompressible SPH method 3. Boundary conditions for pressure 4. ISPH applications - Dam breaking - Bluff body - Lid Driven Cavity Flow Developing of truly incompressible method in SPH 2 / 28

3 Scheme Limitations of the of configuration weakly compressible SPH Periodic condition in x-direction h = 0.01m, <u> = m s -1, Re = 10 Developing of truly incompressible method in SPH 3 / 28

4 By increasing the numerical speed of sound Developing of truly incompressible method in SPH 4 / 28

5 Pressure field p a γ ρ = B 0 1 ρa c B = ρ γ γ = 7 Developing of truly incompressible method in SPH 5 / 28

6 Theory of Incompressible SPH method Developing of truly incompressible method in SPH 6 / 28

7 Du Dt u = 0 1 ρ p ν 2 = + u + F e Incompressibility is solved by projection method u * u t n ν 2 n = u + u F e u t n+ 1 * 1 = p ρ Developing of truly incompressible method in SPH 7 / 28 u 1 = u p t ρ n+ 1 * n+ 1 n+ 1

8 t ρ n+ 1 * n+ 1 u = u = p 0 t u = ρ * n 1 p + 1 n+ 1 u p = ρ t = constant * 1 dρ 0 ρ dt + u = 1 n+ 1 ρ0 ρ* p = 2 ρ* ρ* t Developing of truly incompressible method in SPH 8 / 28

9 ! Exact Projection m m = a b ρb b c ( B A) B A w ( ) w ( ) r r c c b h bc a h ab c ρc Approximate Projection ρ B + ρ B A r r a 2 b ρaρb rab a a b b ab ( B A) m w ( ) b ab a h ab Developing of truly incompressible method in SPH 9 / 28

10 "#$% ISPH : Incompressible SPH WCSPH: Weakly Compressible SPH Method Pressure CFL condition Density ISPH Semi-implicit Pressure Poisson equation Maximal fluid velocity Constant WCSPH Fully explicit State equation Numerical speed of sound 1% fluctuation Developing of truly incompressible method in SPH 10 / 28

11 Study of Boundary conditions Developing of truly incompressible method in SPH 11 / 28

12 ! # Open channel p = 0 at surface (Dirichlet BC) dp/dn = 0 at the wall (Neumann BC) Use of dummy particles Developing of truly incompressible method in SPH 12 / 28

13 &'!# 1 n+ 1 u p = ρ t * Lp = B L; Laplacian B; Source term Initial condition p = 0 B = -1 ; fluid particles B = 0 ; edge and dummy particles Developing of truly incompressible method in SPH 13 / 28

14 ##$(''! # Boundary: p = 0 Developing of truly incompressible method in SPH 14 / 28

15 ##&''! # Extended domain in axial direction (1 by 4) Boundary: p = 0 (top, bottom), dp/dn=0 (left, right) p edge = p fluid Developing of truly incompressible method in SPH 15 / 28

16 ! # - top, bottom p = 0 - left, right dp/dn=0 Fictitious point M in the domain m p p w r = ( ) b M b h ab b ρb dp dn p a p M p M p a Developing of truly incompressible method in SPH 16 / 28

17 ##&''! # Developing of truly incompressible method in SPH 17 / 28

18 ##)&''! # B=0 for edge particles, -1 for fluid particles Boundary: p = 0 (top, bottom), Lp = 0 (left, right) Developing of truly incompressible method in SPH 18 / 28

19 ##*&''! # B=0 for edge particles, -1 for fluid particles Boundary: p = 0 (top, bottom), Lp = -1 (left, right) Developing of truly incompressible method in SPH 19 / 28

20 Applications: - dam breaking - bluff body - lid driven cavity flow Developing of truly incompressible method in SPH 20 / 28

21 ##+!'!,- ' ## ## Developing of truly incompressible method in SPH 21 / 28

22 ##+!'!,- ##!./# WCSPH (left), Smoothed WCSPH (centre), ISPH (right) Developing of truly incompressible method in SPH 22 / 28

23 ##+!'!,- ##!.0*# WCSPH (left), Smoothed WCSPH (centre), ISPH (right) Developing of truly incompressible method in SPH 23 / 28

24 ! # Constrains of using dummy particles for pressure Developing of truly incompressible method in SPH 24 / 28

25 ## ' ## ## Re=10, physical time = 31min. Developing of truly incompressible method in SPH 25 / 28

26 ##)+1+ "%!"23 Weakly compressible SPH (left) Incompressible SPH (right) Developing of truly incompressible method in SPH 26 / 28

27 2! '!,# Conclusions Smoother pressure field in Incompressible SPH Numerical stability increased and the code is more robust Future work Improve iteration solver (preconditioning..) Numerical study at boundaries Apply the incompressibility to the wave set-up on an idealised coral reef case Developing of truly incompressible method in SPH 27 / 28

28 2 3, 3!"#!!#! Scheme of the configuration based on Gourlay (1996) (unit: m) Developing of truly incompressible method in SPH 28 / 28

Divergence-Free Smoothed Particle Hydrodynamics

Divergence-Free Smoothed Particle Hydrodynamics Copyright of figures and other materials in the paper belongs to original authors. Divergence-Free Smoothed Particle Hydrodynamics Bender et al. SCA 2015 Presented by MyungJin Choi 2016-11-26 1. Introduction

More information

Technical Report TR

Technical Report TR Technical Report TR-2015-09 Boundary condition enforcing methods for smoothed particle hydrodynamics Arman Pazouki 1, Baofang Song 2, Dan Negrut 1 1 University of Wisconsin-Madison, Madison, WI, 53706-1572,

More information

Available online at ScienceDirect. Procedia Engineering 126 (2015 )

Available online at   ScienceDirect. Procedia Engineering 126 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 6 (05 ) 660 664 7th International Conference on Fluid Mechanics, ICFM7 Simulate wave body interaction based on the incompressible

More information

Characteristic Aspects of SPH Solutions

Characteristic Aspects of SPH Solutions Characteristic Aspects of SPH Solutions for Free Surface Problems: Source and Possible Treatment of High Frequency Numerical Oscillations of Local Loads. A. Colagrossi*, D. Le Touzé & G.Colicchio* *INSEAN

More information

Numerical modeling of flood waves in a bumpy channel with the different boundary conditions

Numerical modeling of flood waves in a bumpy channel with the different boundary conditions Numerical modeling of flood waves in a bumpy channel with the different boundary conditions Sajedeh Farmani 1*, Gholamabbas Barani 2, Mahnaz Ghaeini-Hessaroeyeh 3, Rasoul Memarzadeh 4 1 Ph.D Candidate,

More information

IMPROVED WALL BOUNDARY CONDITIONS WITH IMPLICITLY DEFINED WALLS FOR PARTICLE BASED FLUID SIMULATION

IMPROVED WALL BOUNDARY CONDITIONS WITH IMPLICITLY DEFINED WALLS FOR PARTICLE BASED FLUID SIMULATION 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 1115 June 2018, Glasgow, UK IMPROVED WALL BOUNDARY CONDITIONS WITH IMPLICITLY

More information

A stable moving-particle semi-implicit method for free surface flows

A stable moving-particle semi-implicit method for free surface flows Fluid Dynamics Research 38 (2006) 241 256 A stable moving-particle semi-implicit method for free surface flows B. Ataie-Ashtiani, Leila Farhadi Department of Civil Engineering, Sharif University of Technology,

More information

SPH: Towards the simulation of wave-body interactions in extreme seas

SPH: Towards the simulation of wave-body interactions in extreme seas SPH: Towards the simulation of wave-body interactions in extreme seas Guillaume Oger, Mathieu Doring, Bertrand Alessandrini, and Pierre Ferrant Fluid Mechanics Laboratory (CNRS UMR6598) Ecole Centrale

More information

This is a repository copy of Incompressible SPH simulation of open channel flow over smooth bed.

This is a repository copy of Incompressible SPH simulation of open channel flow over smooth bed. This is a repository copy of Incompressible SPH simulation of open channel flow over smooth bed. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/90419/ Version: Accepted Version

More information

Lattice Boltzmann with CUDA

Lattice Boltzmann with CUDA Lattice Boltzmann with CUDA Lan Shi, Li Yi & Liyuan Zhang Hauptseminar: Multicore Architectures and Programming Page 1 Outline Overview of LBM An usage of LBM Algorithm Implementation in CUDA and Optimization

More information

Pressure Correction Scheme for Incompressible Fluid Flow

Pressure Correction Scheme for Incompressible Fluid Flow AALTO UNIVERSITY School of Chemical Technology CHEM-E7160 Fluid Flow in Process Units Pressure Correction Scheme for Incompressible Fluid Flow Ong Chin Kai 620503 Lee De Ming Benedict 620448 Page 1 Abstract

More information

Comparison between incompressible SPH solvers

Comparison between incompressible SPH solvers 2017 21st International Conference on Control Systems and Computer Science Comparison between incompressible SPH solvers Claudiu Baronea, Adrian Cojocaru, Mihai Francu, Anca Morar, Victor Asavei Computer

More information

Example 13 - Shock Tube

Example 13 - Shock Tube Example 13 - Shock Tube Summary This famous experiment is interesting for observing the shock-wave propagation. Moreover, this case uses the representation of perfect gas and compares the different formulations:

More information

Smoothed particle simulation of gravity waves in a multifluid

Smoothed particle simulation of gravity waves in a multifluid Proceedings of the Institution of Civil Engineers Engineering and Computational Mechanics 166 March 213 Issue EM1 Pages 32 39 http://dx.doi.org/1.168/eacm.1.26 Paper 126 Received 11/5/21 Accepted 3/9/21

More information

Realistic Animation of Fluids

Realistic Animation of Fluids 1 Realistic Animation of Fluids Nick Foster and Dimitris Metaxas Presented by Alex Liberman April 19, 2005 2 Previous Work Used non physics-based methods (mostly in 2D) Hard to simulate effects that rely

More information

AQUAgpusph, a free 3D SPH solver accelerated with OpenCL

AQUAgpusph, a free 3D SPH solver accelerated with OpenCL AQUAgpusph, a free 3D SPH solver accelerated with OpenCL J.L. Cercos-Pita, A. Souto-Iglesias, L.M. Gonzalez, F. Macià Model Basin Research Group (CEHINAV), Naval Architecture Dept.(ETSIN), Technical University

More information

Transfer and pouring processes of casting by smoothed particle. hydrodynamic method

Transfer and pouring processes of casting by smoothed particle. hydrodynamic method Transfer and pouring processes of casting by smoothed particle hydrodynamic method M. Kazama¹, K. Ogasawara¹, *T. Suwa¹, H. Ito 2, and Y. Maeda 2 1 Application development div., Next generation technical

More information

CUDA. Fluid simulation Lattice Boltzmann Models Cellular Automata

CUDA. Fluid simulation Lattice Boltzmann Models Cellular Automata CUDA Fluid simulation Lattice Boltzmann Models Cellular Automata Please excuse my layout of slides for the remaining part of the talk! Fluid Simulation Navier Stokes equations for incompressible fluids

More information

Divergence-Free Smoothed Particle Hydrodynamics

Divergence-Free Smoothed Particle Hydrodynamics Divergence-Free Smoothed Particle Hydrodynamics Jan Bender Dan Koschier Graduate School CE TU Darmstadt Figure 1: Our new SPH method allows a stable simulation of incompressible fluids with high velocities

More information

A detailed study of lid-driven cavity flow at moderate Reynolds numbers using Incompressible SPH

A detailed study of lid-driven cavity flow at moderate Reynolds numbers using Incompressible SPH INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2014; 76:653 668 Published online 28 August 2014 in Wiley Online Library (wileyonlinelibrary.com)..3949 A detailed study

More information

A brief description of the particle finite element method (PFEM2). Extensions to free surface

A brief description of the particle finite element method (PFEM2). Extensions to free surface A brief description of the particle finite element method (PFEM2). Extensions to free surface flows. Juan M. Gimenez, L.M. González, CIMEC Universidad Nacional del Litoral (UNL) Santa Fe, Argentina Universidad

More information

MODELLING WATER ENTRY OF A WEDGE BY MULTIPHASE SPH METHOD. Kai GONG, Benlong WANG and Hua LIU 1

MODELLING WATER ENTRY OF A WEDGE BY MULTIPHASE SPH METHOD. Kai GONG, Benlong WANG and Hua LIU 1 MODELLING WATER ENTRY OF A WEDGE BY MULTIPHASE SPH METHOD Kai GONG, Benlong WANG and Hua LIU The hydrodynamic problem of two-dimensional wedge entering water is studied based on SPH model. A nonreflection

More information

PARALLEL SIMULATION OF A FLUID FLOW BY MEANS OF THE SPH METHOD: OPENMP VS. MPI COMPARISON. Pawe l Wróblewski, Krzysztof Boryczko

PARALLEL SIMULATION OF A FLUID FLOW BY MEANS OF THE SPH METHOD: OPENMP VS. MPI COMPARISON. Pawe l Wróblewski, Krzysztof Boryczko Computing and Informatics, Vol. 28, 2009, 139 150 PARALLEL SIMULATION OF A FLUID FLOW BY MEANS OF THE SPH METHOD: OPENMP VS. MPI COMPARISON Pawe l Wróblewski, Krzysztof Boryczko Department of Computer

More information

Computer Project 3. AA Computational Fluid Dyanmics University of Washington. Mishaal Aleem March 17, 2015

Computer Project 3. AA Computational Fluid Dyanmics University of Washington. Mishaal Aleem March 17, 2015 Computer Project 3 AA 543 - Computational Fluid Dyanmics University of Washington Mishaal Aleem March 17, 2015 Contents Introduction........................................... 1 3.1 Grid Generator.......................................

More information

Support for Multi physics in Chrono

Support for Multi physics in Chrono Support for Multi physics in Chrono The Story Ahead Overview of multi physics strategy in Chrono Summary of handling rigid/flexible body dynamics using Lagrangian approach Summary of handling fluid, and

More information

The Immersed Interface Method

The Immersed Interface Method The Immersed Interface Method Numerical Solutions of PDEs Involving Interfaces and Irregular Domains Zhiiin Li Kazufumi Ito North Carolina State University Raleigh, North Carolina Society for Industrial

More information

Possibility of Implicit LES for Two-Dimensional Incompressible Lid-Driven Cavity Flow Based on COMSOL Multiphysics

Possibility of Implicit LES for Two-Dimensional Incompressible Lid-Driven Cavity Flow Based on COMSOL Multiphysics Possibility of Implicit LES for Two-Dimensional Incompressible Lid-Driven Cavity Flow Based on COMSOL Multiphysics Masanori Hashiguchi 1 1 Keisoku Engineering System Co., Ltd. 1-9-5 Uchikanda, Chiyoda-ku,

More information

Oblique Shock Reflection From Wall

Oblique Shock Reflection From Wall Reflected Waves Already examined what happens when normal shock hits a boundary if incident shock hits solid wall, get reflected (normal) shock - required to satisfy velocity (bc) boundary condition (v=0)

More information

LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA.

LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA. 12 th International LS-DYNA Users Conference FSI/ALE(1) LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA Part 1 Facundo Del

More information

Simple and Fast Fluids

Simple and Fast Fluids Simple and Fast Fluids Martin Guay, Fabrice Colin, Richard Egli To cite this version: Martin Guay, Fabrice Colin, Richard Egli. Simple and Fast Fluids. GPU Pro, A.K. Peters, Ltd., 2011, GPU Pro, pp.433-444.

More information

Abstract SPH Simulations of Floating Bodies in Waves M. ORING, G. OGER, B. ALESSANRINI, P. FERRANT Fluid Mechanics Laboratory (CNRS UMR6598), Ecole Centrale de Nantes mathieu.doring@ec-nantes.fr Water

More information

Robust Simulation of Sparsely Sampled Thin Features in SPH-Based Free Surface Flows

Robust Simulation of Sparsely Sampled Thin Features in SPH-Based Free Surface Flows Copyright of figures and other materials in the paper belong to original authors. Robust Simulation of Sparsely Sampled Thin Features in SPH-Based Free Surface Flows Xiaowei He et al. ACM SIGGRAPH 2015

More information

Particle-based Fluid Simulation

Particle-based Fluid Simulation Simulation in Computer Graphics Particle-based Fluid Simulation Matthias Teschner Computer Science Department University of Freiburg Application (with Pixar) 10 million fluid + 4 million rigid particles,

More information

3D Simulation of Dam-break effect on a Solid Wall using Smoothed Particle Hydrodynamic

3D Simulation of Dam-break effect on a Solid Wall using Smoothed Particle Hydrodynamic ISCS 2013 Selected Papers Dam-break effect on a Solid Wall 1 3D Simulation of Dam-break effect on a Solid Wall using Smoothed Particle Hydrodynamic Suprijadi a,b, F. Faizal b, C.F. Naa a and A.Trisnawan

More information

FINITE POINTSET METHOD FOR 2D DAM-BREAK PROBLEM WITH GPU-ACCELERATION. M. Panchatcharam 1, S. Sundar 2

FINITE POINTSET METHOD FOR 2D DAM-BREAK PROBLEM WITH GPU-ACCELERATION. M. Panchatcharam 1, S. Sundar 2 International Journal of Applied Mathematics Volume 25 No. 4 2012, 547-557 FINITE POINTSET METHOD FOR 2D DAM-BREAK PROBLEM WITH GPU-ACCELERATION M. Panchatcharam 1, S. Sundar 2 1,2 Department of Mathematics

More information

Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics Particle methods Part 1 Smoothed Particle Hydrodynamics Nathan Quinlan Mechanical Engineering 1: SPH 2: Truncation error and consistency of particle methods 3: FVPM CFD is mature Kroll et al. (2002) lift

More information

A COUPLED FINITE VOLUME SOLVER FOR THE SOLUTION OF LAMINAR TURBULENT INCOMPRESSIBLE AND COMPRESSIBLE FLOWS

A COUPLED FINITE VOLUME SOLVER FOR THE SOLUTION OF LAMINAR TURBULENT INCOMPRESSIBLE AND COMPRESSIBLE FLOWS A COUPLED FINITE VOLUME SOLVER FOR THE SOLUTION OF LAMINAR TURBULENT INCOMPRESSIBLE AND COMPRESSIBLE FLOWS L. Mangani Maschinentechnik CC Fluidmechanik und Hydromaschinen Hochschule Luzern Technik& Architektur

More information

4D-PIV advances to visualize sound generation by air flows

4D-PIV advances to visualize sound generation by air flows 4D-PIV advances to visualize sound generation by air flows Fulvio Scarano Delft University of Technology Aerospace Engineering Department Aerodynamics Section f.scarano@tudelft.nl Aero-acoustics Investigation

More information

The Development of a Navier-Stokes Flow Solver with Preconditioning Method on Unstructured Grids

The Development of a Navier-Stokes Flow Solver with Preconditioning Method on Unstructured Grids Proceedings of the International MultiConference of Engineers and Computer Scientists 213 Vol II, IMECS 213, March 13-15, 213, Hong Kong The Development of a Navier-Stokes Flow Solver with Preconditioning

More information

A Hybrid Technique Using Particle and Boundary-Element Methods for Wave-Body Interaction Problems

A Hybrid Technique Using Particle and Boundary-Element Methods for Wave-Body Interaction Problems 9th International Conference on Numerical Ship Hydrodynamics Ann Arbor, Michigan, August 5-8, 27 A Hybrid Technique Using Particle and Boundary-Element Methods for Wave-Body Interaction Problems Makoto

More information

Steady Flow: Lid-Driven Cavity Flow

Steady Flow: Lid-Driven Cavity Flow STAR-CCM+ User Guide Steady Flow: Lid-Driven Cavity Flow 2 Steady Flow: Lid-Driven Cavity Flow This tutorial demonstrates the performance of STAR-CCM+ in solving a traditional square lid-driven cavity

More information

midas NFX 2017R1 Release Note

midas NFX 2017R1 Release Note Total Solution for True Analysis-driven Design midas NFX 2017R1 Release Note 1 midas NFX R E L E A S E N O T E 2 0 1 7 R 1 Major Improvements Midas NFX is an integrated finite element analysis program

More information

SPH: Why and what for?

SPH: Why and what for? SPH: Why and what for? 4 th SPHERIC training day David Le Touzé, Fluid Mechanics Laboratory, Ecole Centrale de Nantes / CNRS SPH What for and why? How it works? Why not for everything? Duality of SPH SPH

More information

Multi-Resolution MPS Method for Free Surface Flows

Multi-Resolution MPS Method for Free Surface Flows International Journal of Computational Methods Vol. 13, No. 4 (2016) 1641018 (17 pages) c World Scientific Publishing Company DOI: 10.1142/S0219876216410188 Multi-Resolution MPS Method for Free Surface

More information

A Regularized Lagrangian Finite Point Method for the Simulation of Incompressible Viscous Flows

A Regularized Lagrangian Finite Point Method for the Simulation of Incompressible Viscous Flows A Regularized Lagrangian Finite Point Method for the Simulation of Incompressible Viscous Flows Jiannong Fang, Aurèle Parriaux Ecole Polytechnique Fédérale de Lausanne (EPFL), Engineering and Environmental

More information

Precise FEM solution of corner singularity using adjusted mesh applied to 2D flow

Precise FEM solution of corner singularity using adjusted mesh applied to 2D flow Precise FEM solution of corner singularity using adjusted mesh applied to 2D flow Jakub Šístek, Pavel Burda, Jaroslav Novotný Department of echnical Mathematics, Czech echnical University in Prague, Faculty

More information

PHYSICALLY BASED ANIMATION

PHYSICALLY BASED ANIMATION PHYSICALLY BASED ANIMATION CS148 Introduction to Computer Graphics and Imaging David Hyde August 2 nd, 2016 WHAT IS PHYSICS? the study of everything? WHAT IS COMPUTATION? the study of everything? OUTLINE

More information

Solving Partial Differential Equations on Overlapping Grids

Solving Partial Differential Equations on Overlapping Grids **FULL TITLE** ASP Conference Series, Vol. **VOLUME**, **YEAR OF PUBLICATION** **NAMES OF EDITORS** Solving Partial Differential Equations on Overlapping Grids William D. Henshaw Centre for Applied Scientific

More information

An added mass partitioned algorithm for rigid bodies and incompressible flows

An added mass partitioned algorithm for rigid bodies and incompressible flows An added mass partitioned algorithm for rigid bodies and incompressible flows Jeff Banks Rensselaer Polytechnic Institute Overset Grid Symposium Mukilteo, WA October 19, 216 Collaborators Bill Henshaw,

More information

CMPT 898 Final Report. Adam L. Preuss. Numerical Simulation Laboratory. Department of Computer Science. University of Saskatchewan

CMPT 898 Final Report. Adam L. Preuss. Numerical Simulation Laboratory. Department of Computer Science. University of Saskatchewan A GPU implementation of massively parallel direction splitting for the incompressible Navier Stokes equations CMPT 898 Final Report Adam L. Preuss Numerical Simulation Laboratory Department of Computer

More information

CHAPTER 3. Elementary Fluid Dynamics

CHAPTER 3. Elementary Fluid Dynamics CHAPTER 3. Elementary Fluid Dynamics - Understanding the physics of fluid in motion - Derivation of the Bernoulli equation from Newton s second law Basic Assumptions of fluid stream, unless a specific

More information

Particleworks: Particle-based CAE Software fully ported to GPU

Particleworks: Particle-based CAE Software fully ported to GPU Particleworks: Particle-based CAE Software fully ported to GPU Introduction PrometechVideo_v3.2.3.wmv 3.5 min. Particleworks Why the particle method? Existing methods FEM, FVM, FLIP, Fluid calculation

More information

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering Debojyoti Ghosh Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering To study the Dynamic Stalling of rotor blade cross-sections Unsteady Aerodynamics: Time varying

More information

Numerical Methods for PDEs. SSC Workgroup Meetings Juan J. Alonso October 8, SSC Working Group Meetings, JJA 1

Numerical Methods for PDEs. SSC Workgroup Meetings Juan J. Alonso October 8, SSC Working Group Meetings, JJA 1 Numerical Methods for PDEs SSC Workgroup Meetings Juan J. Alonso October 8, 2001 SSC Working Group Meetings, JJA 1 Overview These notes are meant to be an overview of the various memory access patterns

More information

Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics

Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics I. Pantle Fachgebiet Strömungsmaschinen Karlsruher Institut für Technologie KIT Motivation

More information

Overview of Traditional Surface Tracking Methods

Overview of Traditional Surface Tracking Methods Liquid Simulation With Mesh-Based Surface Tracking Overview of Traditional Surface Tracking Methods Matthias Müller Introduction Research lead of NVIDIA PhysX team PhysX GPU acc. Game physics engine www.nvidia.com\physx

More information

Acknowledgements. Prof. Dan Negrut Prof. Darryl Thelen Prof. Michael Zinn. SBEL Colleagues: Hammad Mazar, Toby Heyn, Manoj Kumar

Acknowledgements. Prof. Dan Negrut Prof. Darryl Thelen Prof. Michael Zinn. SBEL Colleagues: Hammad Mazar, Toby Heyn, Manoj Kumar Philipp Hahn Acknowledgements Prof. Dan Negrut Prof. Darryl Thelen Prof. Michael Zinn SBEL Colleagues: Hammad Mazar, Toby Heyn, Manoj Kumar 2 Outline Motivation Lumped Mass Model Model properties Simulation

More information

Fluid-Structure-Interaction Using SPH and GPGPU Technology

Fluid-Structure-Interaction Using SPH and GPGPU Technology IMPETUS AFEA SOLVER Fluid-Structure-Interaction Using SPH and GPGPU Technology Jérôme Limido Jean Luc Lacome Wayne L. Mindle GTC May 2012 IMPETUS AFEA SOLVER 1 2D Sloshing Water in Tank IMPETUS AFEA SOLVER

More information

Auto Injector Syringe. A Fluent Dynamic Mesh 1DOF Tutorial

Auto Injector Syringe. A Fluent Dynamic Mesh 1DOF Tutorial Auto Injector Syringe A Fluent Dynamic Mesh 1DOF Tutorial 1 2015 ANSYS, Inc. June 26, 2015 Prerequisites This tutorial is written with the assumption that You have attended the Introduction to ANSYS Fluent

More information

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Vol. 12, Issue 1/2016, 63-68 DOI: 10.1515/cee-2016-0009 MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Juraj MUŽÍK 1,* 1 Department of Geotechnics, Faculty of Civil Engineering, University

More information

The 3D DSC in Fluid Simulation

The 3D DSC in Fluid Simulation The 3D DSC in Fluid Simulation Marek K. Misztal Informatics and Mathematical Modelling, Technical University of Denmark mkm@imm.dtu.dk DSC 2011 Workshop Kgs. Lyngby, 26th August 2011 Governing Equations

More information

Introduction to Aerodynamic Shape Optimization

Introduction to Aerodynamic Shape Optimization Introduction to Aerodynamic Shape Optimization 1. Aircraft Process 2. Aircraft Methods a. Inverse Surface Methods b. Inverse Field Methods c. Numerical Optimization Methods Aircraft Process Conceptual

More information

Simulating three-dimensional turbulence with SPH

Simulating three-dimensional turbulence with SPH Center for Turbulence Research Proceedings of the Summer Program 2012 177 Simulating three-dimensional turbulence with SPH By S. Adami, X.Y. Hu AND N.A. Adams In this paper, we have investigated the ability

More information

1.7.1 Laplacian Smoothing

1.7.1 Laplacian Smoothing 1.7.1 Laplacian Smoothing 320491: Advanced Graphics - Chapter 1 434 Theory Minimize energy functional total curvature estimate by polynomial-fitting non-linear (very slow!) 320491: Advanced Graphics -

More information

A review on approaches to solving Poisson s equation in projection-based meshless methods for modelling strongly nonlinear water waves

A review on approaches to solving Poisson s equation in projection-based meshless methods for modelling strongly nonlinear water waves J. Ocean Eng. Mar. Energy (2016) 2:279 299 DOI 10.1007/s40722-016-0063-5 REVIEW ARTICLE A review on approaches to solving Poisson s equation in projection-based meshless methods for modelling strongly

More information

Facundo DEL PIN / Iñaki ÇALDICHOURY / Rodrigo PAZ / / Livermore Software Technology Corporation

Facundo DEL PIN / Iñaki ÇALDICHOURY / Rodrigo PAZ / / Livermore Software Technology Corporation LS-DYNA R R7 : Strong Fluid Structure Interaction (FSI) capabilities and associated meshing tools for the incompressible CFD solver (ICFD), applications and examples Facundo DEL PIN / Iñaki ÇALDICHOURY

More information

RBF Morph An Add-on Module for Mesh Morphing in ANSYS Fluent

RBF Morph An Add-on Module for Mesh Morphing in ANSYS Fluent RBF Morph An Add-on Module for Mesh Morphing in ANSYS Fluent Gilles Eggenspieler Senior Product Manager 1 Morphing & Smoothing A mesh morpher is a tool capable of performing mesh modifications in order

More information

A laboratory-dualsphysics modelling approach to support landslide-tsunami hazard assessment

A laboratory-dualsphysics modelling approach to support landslide-tsunami hazard assessment A laboratory-dualsphysics modelling approach to support landslide-tsunami hazard assessment Lake Lucerne case, Switzerland, 2007 Dr. Valentin Heller (www.drvalentinheller.com) Geohazards and Earth Processes

More information

Computational Fluid Dynamics using OpenCL a Practical Introduction

Computational Fluid Dynamics using OpenCL a Practical Introduction 19th International Congress on Modelling and Simulation, Perth, Australia, 12 16 December 2011 http://mssanz.org.au/modsim2011 Computational Fluid Dynamics using OpenCL a Practical Introduction T Bednarz

More information

Hardware Accelerated Real-Time Fluid Surface Simulation

Hardware Accelerated Real-Time Fluid Surface Simulation Hardware Accelerated Real-Time Fluid Surface Simulation Björn Hellstrandh bjornh@cs.umu.se Jesper Byström c99jbm@cs.umu.se July 1, 2008 Master s Thesis in Computing Science, 2*30 ECTS credits Supervisor

More information

Imagery for 3D geometry design: application to fluid flows.

Imagery for 3D geometry design: application to fluid flows. Imagery for 3D geometry design: application to fluid flows. C. Galusinski, C. Nguyen IMATH, Université du Sud Toulon Var, Supported by ANR Carpeinter May 14, 2010 Toolbox Ginzburg-Landau. Skeleton 3D extension

More information

T6: Position-Based Simulation Methods in Computer Graphics. Jan Bender Miles Macklin Matthias Müller

T6: Position-Based Simulation Methods in Computer Graphics. Jan Bender Miles Macklin Matthias Müller T6: Position-Based Simulation Methods in Computer Graphics Jan Bender Miles Macklin Matthias Müller Jan Bender Organizer Professor at the Visual Computing Institute at Aachen University Research topics

More information

Solution Recording and Playback: Vortex Shedding

Solution Recording and Playback: Vortex Shedding STAR-CCM+ User Guide 6663 Solution Recording and Playback: Vortex Shedding This tutorial demonstrates how to use the solution recording and playback module for capturing the results of transient phenomena.

More information

Introduction to Actran for Acoustics Radiation Analysis

Introduction to Actran for Acoustics Radiation Analysis Introduction to Actran for Acoustics Radiation Analysis November 21 st, 2012 Chanhee Jeong Agenda Introduction to Actran Acoustic Radiation Analysis with Actran Weakly Coupled Vibro-Acoustics Computational

More information

Realtime Water Simulation on GPU. Nuttapong Chentanez NVIDIA Research

Realtime Water Simulation on GPU. Nuttapong Chentanez NVIDIA Research 1 Realtime Water Simulation on GPU Nuttapong Chentanez NVIDIA Research 2 3 Overview Approaches to realtime water simulation Hybrid shallow water solver + particles Hybrid 3D tall cell water solver + particles

More information

Comparison Between Different Immersed Boundary Conditions for Simulation of Complex Fluid Flows

Comparison Between Different Immersed Boundary Conditions for Simulation of Complex Fluid Flows Copyright 2011 Tech Science Press FDMP, vol.7, no.3, pp.241-258, 2011 Comparison Between Different Immersed Boundary Conditions for Simulation of Complex Fluid Flows A. Mark 1 2, R. Rundqvist 1 and F.

More information

Implementing third order compressible flow solver for hexahedral meshes in OpenFoam

Implementing third order compressible flow solver for hexahedral meshes in OpenFoam Tutorial/Report in OpenFoam Course 8 Implementing third order compressible flow solver for hexahedral meshes in OpenFoam Martin Olausson, Chalmers University of Technology, SE-1 9 Gothenburg, Sweden Abstract

More information

Numerical study on mitigating tsunami force on bridges by an SPH model

Numerical study on mitigating tsunami force on bridges by an SPH model J. Ocean Eng. Mar. Energy (216) 2:365 38 DOI 1.17/s4722-16-54-6 RESEARCH ARTICLE Numerical study on mitigating tsunami force on bridges by an SPH model Zhangping Wei 1 Robert A. Dalrymple 1 Received: 13

More information

On the regularizing power of multigrid-type algorithms. Marco Donatelli. Stefano Serra Capizzano

On the regularizing power of multigrid-type algorithms. Marco Donatelli. Stefano Serra Capizzano On the regularizing power of multigrid-type algorithms Marco Donatelli Stefano Serra Capizzano Università dell Insubria, Dip. Fisica e Matematica - Sede di Como Via Valleggio 11-22100 Como, Italy (donatelli@uninsubria.it)

More information

EXPLICIT MOVING PARTICLE SIMULATION METHOD ON GPU CLUSTERS. of São Paulo

EXPLICIT MOVING PARTICLE SIMULATION METHOD ON GPU CLUSTERS. of São Paulo Blucher Mechanical Engineering Proceedings May 2014, vol. 1, num. 1 www.proceedings.blucher.com.br/evento/10wccm EXPLICIT MOVING PARTICLE SIMULATION METHOD ON GPU CLUSTERS D. Taniguchi 1, L. M. Sato 1,

More information

Using a Single Rotating Reference Frame

Using a Single Rotating Reference Frame Tutorial 9. Using a Single Rotating Reference Frame Introduction This tutorial considers the flow within a 2D, axisymmetric, co-rotating disk cavity system. Understanding the behavior of such flows is

More information

Navier-Stokes & Flow Simulation

Navier-Stokes & Flow Simulation Last Time? Navier-Stokes & Flow Simulation Pop Worksheet! Teams of 2. Hand in to Jeramey after we discuss. Sketch the first few frames of a 2D explicit Euler mass-spring simulation for a 2x3 cloth network

More information

Realistic Animation of Fluids

Realistic Animation of Fluids Realistic Animation of Fluids p. 1/2 Realistic Animation of Fluids Nick Foster and Dimitri Metaxas Realistic Animation of Fluids p. 2/2 Overview Problem Statement Previous Work Navier-Stokes Equations

More information

GPU Simulations of Violent Flows with Smooth Particle Hydrodynamics (SPH) Method

GPU Simulations of Violent Flows with Smooth Particle Hydrodynamics (SPH) Method Available online at www.prace-ri.eu Partnership for Advanced Computing in Europe GPU Simulations of Violent Flows with Smooth Particle Hydrodynamics (SPH) Method T. Arslan a*, M. Özbulut b a Norwegian

More information

Implicit surface tension model for stimulation of interfacial flows

Implicit surface tension model for stimulation of interfacial flows surface tension model for stimulation of interfacial flows Vinh The University of Massachusetts Dartmouth March 3rd, 2011 About my project Project Advisor Dr. Mehdi Raessi Department of Mechanical Engineering

More information

CS-184: Computer Graphics Lecture #21: Fluid Simulation II

CS-184: Computer Graphics Lecture #21: Fluid Simulation II CS-184: Computer Graphics Lecture #21: Fluid Simulation II Rahul Narain University of California, Berkeley Nov. 18 19, 2013 Grid-based fluid simulation Recap: Eulerian viewpoint Grid is fixed, fluid moves

More information

Considerations about level-set methods: Accuracy, interpolation and reinitialization

Considerations about level-set methods: Accuracy, interpolation and reinitialization Considerations about level-set methods: Accuracy, interpolation and reinitialization Gustavo C. Buscaglia Coll: E. Dari, R. Ausas, L. Ruspini Instituto de Ciências Matemáticas e de Computação Universidade

More information

Free Surface Flow Simulations

Free Surface Flow Simulations Free Surface Flow Simulations Hrvoje Jasak h.jasak@wikki.co.uk Wikki Ltd. United Kingdom 11/Jan/2005 Free Surface Flow Simulations p.1/26 Outline Objective Present two numerical modelling approaches for

More information

Computational Fluid Dynamics (CFD) using Graphics Processing Units

Computational Fluid Dynamics (CFD) using Graphics Processing Units Computational Fluid Dynamics (CFD) using Graphics Processing Units Aaron F. Shinn Mechanical Science and Engineering Dept., UIUC Accelerators for Science and Engineering Applications: GPUs and Multicores

More information

2.7 Cloth Animation. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter 2 123

2.7 Cloth Animation. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter 2 123 2.7 Cloth Animation 320491: Advanced Graphics - Chapter 2 123 Example: Cloth draping Image Michael Kass 320491: Advanced Graphics - Chapter 2 124 Cloth using mass-spring model Network of masses and springs

More information

Ansys Fluent R Michele Andreoli

Ansys Fluent R Michele Andreoli Ansys Fluent R 17.0 Michele Andreoli (m.andreoli@enginsoft.it) Table of contents User Interface Fluent Meshing Solver Numerics New features Innovative Solutions New User Interface: Ribbon-Driven Solver

More information

SPH Accuracy to Describe the Wave Impact on a Tall Structure (benchmark case 1)

SPH Accuracy to Describe the Wave Impact on a Tall Structure (benchmark case 1) SPH Accuracy to Describe the Wave Impact on a Tall Structure (benchmark case 1) M. GómezG mez-gesteira 1, A. J. C. Crespo 1, M. decastro 1 & R. A. Dalrymple 2 1 GRUPO DE FÍSICA DE LA ATMÓSFERA Y DEL OCÉANO,

More information

Numerical simulation of 3D violent free-surface flows by multi-resolution MPS method

Numerical simulation of 3D violent free-surface flows by multi-resolution MPS method J. Ocean Eng. Mar. Energy (2016) 2:355 364 DOI 10.1007/s40722-016-0062-6 RESEARCH ARTICLE Numerical simulation of 3D violent free-surface flows by multi-resolution MPS method Zhenyuan Tang 1 Decheng Wan

More information

Interactive Fluid Simulation using Augmented Reality Interface

Interactive Fluid Simulation using Augmented Reality Interface Interactive Fluid Simulation using Augmented Reality Interface Makoto Fuisawa 1, Hirokazu Kato 1 1 Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma,

More information

The Study of Ship Motions in Regular Waves using a Mesh-Free Numerical Method

The Study of Ship Motions in Regular Waves using a Mesh-Free Numerical Method The Study of Ship Motions in Regular Waves using a Mesh-Free Numerical Method by Bruce Kenneth Cartwright, B. Eng., M. Sc. Submitted in fulfilment of the requirements for the Degree of Master of Philosophy

More information

Interactive Fluid Simulation Using Augmented Reality Interface

Interactive Fluid Simulation Using Augmented Reality Interface Interactive Fluid Simulation Using Augmented Reality Interface Makoto Fuisawa and Hirokazu Kato Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma,

More information

Performance of Implicit Solver Strategies on GPUs

Performance of Implicit Solver Strategies on GPUs 9. LS-DYNA Forum, Bamberg 2010 IT / Performance Performance of Implicit Solver Strategies on GPUs Prof. Dr. Uli Göhner DYNAmore GmbH Stuttgart, Germany Abstract: The increasing power of GPUs can be used

More information

Scalability of Elliptic Solvers in NWP. Weather and Climate- Prediction

Scalability of Elliptic Solvers in NWP. Weather and Climate- Prediction Background Scaling results Tensor product geometric multigrid Summary and Outlook 1/21 Scalability of Elliptic Solvers in Numerical Weather and Climate- Prediction Eike Hermann Müller, Robert Scheichl

More information

Constraint fluids in Sprinkle. Dennis Gustafsson Mediocre

Constraint fluids in Sprinkle. Dennis Gustafsson Mediocre Constraint fluids in Sprinkle Dennis Gustafsson Mediocre Sprinkle. Sequel. Put out fires. Makeshift firetruck. Distant moon of Saturn. Fluid sim used at the core. Not only to put out fires -> move obstacles,

More information

Multigrid Solvers in CFD. David Emerson. Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK

Multigrid Solvers in CFD. David Emerson. Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK Multigrid Solvers in CFD David Emerson Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK david.emerson@stfc.ac.uk 1 Outline Multigrid: general comments Incompressible

More information