GRAPH OF ANY GRAPH WITH PATH

Size: px
Start display at page:

Download "GRAPH OF ANY GRAPH WITH PATH"

Transcription

1 CHAPTER 4 b-coloring OF CORONA GRAPHS In this Chapter, the author finds that the b-chromatic number on corona graph of any graph G of order n0. with path P n, cycle C n and complete graph K n. Finally, they generalized the b-chromatic number on corona graph of any two graphs, each one on n vertices. 4.1 b-chromatic NUMBER ON CORONA GRAPH OF ANY GRAPH WITH PATH Theorem Let G be a simple graph on n vertices. Then n + 1; for n 3, ϕ(g P n ) = n; for n > 3. Proof. Let V (G) = {v 1, v 2,...,v n } and V (P n ) = {u 1, u 2,...,u n }. Let V (G P n ) = {v i : 1 : i n} {u ij : 1 i n; 1 j n}. By the definition of corona graph, each vertex of G is adjacent to every vertex of a copy of P n. i.e., every vertex v i V (G) is adjacent to every vertex from the set {u ij : 1 j n}. Assume first that n > 3 and assign the following n-coloring for G P n as b-chromatic: For 1 i n, assign the color c i to v i. 65

2 66 For 1 i n, assign the color c i to u 1i, i 1. For 1 i n, assign the color c i to u 2i, i 2. For 1 i n, assign the color c i to u 3i, i 3. For 1 i n, assign the color c i to u 4i, i For 1 i n, assign the color c i to u ni, i n. For 1 i n, assign to vertex u ii one of the allowed colors - such color exists, because 2 deg(u ii ) 3 and n > 3. Let us assume that ϕ(g P n ) is greater than n, i.e. ϕ(g P n ) = n + 1, n > 3, there must be at least n + 1 vertices of degree n in G P n, all with distinct colors, and each adjacent to vertices of all of the other colors. But then these must be the vertices v 1, v 2,...v n, since these are only ones with degree at least n. This is the contradiction, b-coloring with n+1 colors is impossible. Thus, we have ϕ(g P n ) n. Hence, ϕ(g P n ) = n, n > 3. Note that ϕ(g P 1 ) = 2 for graph G on one vertex and ϕ(g P 2 ) = 3 for graph G on two vertices. Indeed, let us notice that such graph G P 2 inculdes K 3. Now, let us define b-coloring of G P 3 ( V (G) ) = 3 with four colors in the following way: for 1 i 3, assign the color c i to v i, for 1 l 3, assign the color c l to u 1l, l 1, for 1 l 3, assign the color c l to u 2l, l 2, for 1 l 3, assign the color c l to u 3l, l 3 and for 1 l 3, assign the color c 4 to u ll. Therefore, ϕ(g P 3 ) 4. Let us assume that ϕ(g P 3 ) is greater than 4, i.e. ϕ(g P 3 ) = 5, there must be at least 5 vertices of degree 4 in G P 3, all with distinct colors, and each adjacent to vertices of all of the other colors. But then these must be the vertices v 1, v 2 and v 3, since these are only ones with degree at least 4. This is the

3 67 contradiction, b-coloring with 5 colors is impossible. Thus, we have ϕ(g P 3 ) 4. Therefore,ϕ(G P 3 ) = 4. Hence, ϕ(g P n ) = n + 1, n 3. Figure 4.1: b-coloring of G P 3 with four colors for G = P b-chromatic NUMBER ON CORONA GRAPH OF ANY GRAPH WITH CYCLE Theorem Let G be a simple graph on n vertices, n > 3. Then ϕ(g C n ) = n. Proof. Consider the coloring of G P n n > 3 introduced on the proof of Theorem An easy check shows that this coloring is a b - coloring of G C n n > 3. Thus, we have ϕ(g C n ) n. Hence, ϕ(g C n ) = n, n > 3. Note that ϕ(g C 3 ) = 4, since graph G C 3 includes graph K 4.

4 68 Figure 4.2: b-coloring of G C 3 with four colors for G = P b-chromatic NUMBER ON CORONA GRAPH OF ANY GRAPH WITH COMPLETE GRAPH Theorem Let G be a simple graph on n vertices. Then ϕ(g K n ) = n + 1. Proof. Let V (G) = {v 1, v 2,...,v n } and V (K n ) = {u 1, u 2,...,u n }. Let V (G K n ) = {v i : 1 i n} {u ij : 1 i n; 1 j n}. By the definition of corona graph, each vertex of G is adjacent to every vertex of a copy of K n. i.e.,every vertex v i V (G) is adjacent to every vertex from the set {u ij : 1 j n}. Assign the following n + 1-coloring for G K n as b-chromatic: For 1 i n, assign the color c i to v i. For 1 l n, assign color c l to u 1l, l 1. For 1 l n, assign color c l to u 2l, l 2.

5 69 For 1 l n, assign color c l to u 3l, l 3. For 1 l n, assign color c l to u 4l, l For 1 l n, assign the color c l to u nl, l n. For 1 l n, assign the color c n+1 to u ll. Therefore, ϕ(g K n ) n + 1. Let us assume that ϕ(g K n ) is greater than n+1, i.e., ϕ(g K n ) = n+2, there must be at least n + 2 vertices of degree n + 1 in G K n, all with distinct colors, and each adjacent to vertices of all of the other colors. But then these must be the vertices v 1, v 2,...v n, since these are only ones with degree at least n + 1. This is the contradiction, b-coloring with n + 2 colors is impossible. Thus, we have ϕ(g K n ) n + 1. Hence, ϕ(g K n ) = n b-chromatic NUMBER ON CORONA GRAPH OF STAR GRAPH WITH PATH Theorem Let n be a positive integer. Then ϕ(k 1,n P n ) = n + 1. Proof. Let V (K 1,n ) = {v 1, v 2,...,v n+1 } and V (P n ) = {u 1, u 2,...,u n }. Let v 1 be the central vertex of the star, v 1 is adjacent to each {v i : 2 i n}. Let V (K 1,n P n ) = {v i : 1 i n + 1} {u ij : 1 i n + 1; 1 j n}. By the definition of corona graph, each vertex of K 1,n is adjacent to every vertex of the corresponding

6 70 copy of P n. i.e., every vertex v i V (G) is adjacent to every vertex from the set {u ij : 1 j n}. Assign the following n + 1-coloring for K 1,n P n as b-chromatic: For 1 i n + 1, assign the color c i to v i. For 1 l n, assign color c l to u 1l, l 1. For 1 l n, assign color c l to u 2l, l 2. For 1 l n, assign color c l to u 3l, l 3. For 1 l n, assign color c l to u 4l, l For 1 l n, assign color c l to u nl, l n. For 1 l n, assign color c l to u n+1 l. For 1 l n, assign color c n+1 to u ll. Therefore, ϕ(k 1,n P n ) n + 1. Let us assume that ϕ(k 1,n P n ) is greater than n+1, i.e., ϕ(k 1,n P n ) = n+2, there must be at least n + 2 vertices of degree n + 1 in K 1,n P n, all with distinct colors, and each adjacent to vertices of all of the other colors. But then these must be the vertices v 1, v 2,...,v n+1, since these are only ones with degree at least n + 1. This is the contradiction, b-coloring with n + 2 colors is impossible. Thus, we have ϕ(k 1,n P n ) n + 1. Hence, ϕ(k 1,n P n ) = n + 1.

7 GENERALIZATION OF b-chromatic NUMBER ON CORONA GRAPH OF ANY TWO GRAPHS OF THE SAME OR- DER Theorem Let G and H be simple graphs, each one on n vertices. Then n ;if (H) < n 1, ϕ(g H) = n + 1; if (H) = n 1. Proof. Let V (G) = {v 1, v 2,...,v n } and V (H) = {u 1, u 2,...,u n }. Let V (G H) = {v i : 1 : i n} {u ij : 1 i n; 1 j n}. By the definition of corona graph, each vertex of G is adjacent to every vertex of a copy of H. i.e., every vertex v i V (G) is adjacent to every vertex from the set {u ij : 1 j n}. Let us rename vertices in ith copy of H in G H, i = 1, 2,...,n, in such a way that a vertex of maximum degree has a label u ii. Assign the following coloring for G H as b-chromatic: For 1 i n, assign the color c i to v i. For 1 i n, assign the color c i to u 1i, i 1. For 1 i n, assign the color c i to u 2i, i 2. For 1 i n, assign the color c i to u 3i, i 3. For 1 i n, assign the color c i to u 4i, i For 1 i n, assign the color c i to u ni, i n.

8 72 The following cases completes the proof: Case (i): (H) < n 1 For 1 i n, assign to vertex u ii one of the allowed colors - such color exists, because 1 deg(u ii ) < n. Therefore, ϕ(g H) n. Let us assume that ϕ(g H) is greater than n, i.e., ϕ(g H) = n + 1, there must be at least n + 1 vertices of degree n in G H, all with distinct colors, and each adjacent to vertices of all of the other colors. But then these must be the vertices v 1, v 2,...,v n, since these are only ones with degree at least n. This is the contradiction, b-coloring with n+1 colors is impossible. Thus, we have ϕ(g H) n. Hence, ϕ(g H) = n, if (H) < n 1. Case (ii): (H) = n 1 For 1 i n, assign the color c n+1 to u ii. Therefore, ϕ(g H) n + 1. Let us assume that ϕ(g H) is greater than n + 1, i.e., ϕ(g H) = n + 2, there must be at least n + 2 vertices of degree n + 1 in G H, all with distinct colors, and each adjacent to vertices of all of the other colors. But then these must be the vertices v 1, v 2,...,v n, since these are only ones with degree at least n. This is the contradiction, b-coloring with n + 2 colors is impossible. Thus, we have ϕ(g H) n + 1. Hence, ϕ(g H) = n + 1, if (H) = n 1.

9 73 Figure 4.3: b-coloring of G H = P6 W6 with seven colors. The case where (H) = n 1.

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism CHAPTER 2 Graphs 1. Introduction to Graphs and Graph Isomorphism 1.1. The Graph Menagerie. Definition 1.1.1. A simple graph G = (V, E) consists of a set V of vertices and a set E of edges, represented

More information

Graph Algorithms. Chromatic Polynomials. Graph Algorithms

Graph Algorithms. Chromatic Polynomials. Graph Algorithms Graph Algorithms Chromatic Polynomials Graph Algorithms Chromatic Polynomials Definition G a simple labelled graph with n vertices and m edges. k a positive integer. P G (k) number of different ways of

More information

2. CONNECTIVITY Connectivity

2. CONNECTIVITY Connectivity 2. CONNECTIVITY 70 2. Connectivity 2.1. Connectivity. Definition 2.1.1. (1) A path in a graph G = (V, E) is a sequence of vertices v 0, v 1, v 2,..., v n such that {v i 1, v i } is an edge of G for i =

More information

CHAPTER 6 ODD MEAN AND EVEN MEAN LABELING OF GRAPHS

CHAPTER 6 ODD MEAN AND EVEN MEAN LABELING OF GRAPHS 92 CHAPTER 6 ODD MEAN AND EVEN MEAN LABELING OF GRAPHS In this chapter we introduce even and odd mean labeling,prime labeling,strongly Multiplicative labeling and Strongly * labeling and related results

More information

Class Six: Coloring Planar Graphs

Class Six: Coloring Planar Graphs Class Six: Coloring Planar Graphs A coloring of a graph is obtained by assigning every vertex a color such that if two vertices are adjacent, then they receive different colors. Drawn below are three different

More information

11.4 Bipartite Multigraphs

11.4 Bipartite Multigraphs 11.4 Bipartite Multigraphs Introduction Definition A graph G is bipartite if we can partition the vertices into two disjoint subsets U and V such that every edge of G has one incident vertex in U and the

More information

Math236 Discrete Maths with Applications

Math236 Discrete Maths with Applications Math236 Discrete Maths with Applications P. Ittmann UKZN, Pietermaritzburg Semester 1, 2012 Ittmann (UKZN PMB) Math236 2012 1 / 19 Degree Sequences Let G be a graph with vertex set V (G) = {v 1, v 2, v

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

1. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

1. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time: 1. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time: Input: A CNF formula ϕ with n variables x 1, x 2,..., x n. Output: True if there is an

More information

The b-chromatic Number of Bistar Graph

The b-chromatic Number of Bistar Graph Applied Mathematical Sciences, Vol. 8, 2014, no. 116, 5795-5800 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.47529 The b-chromatic Number of Bistar Graph Immanuel T. San Diego and Frederick

More information

CHAPTER 5. b-colouring of Line Graph and Line Graph of Central Graph

CHAPTER 5. b-colouring of Line Graph and Line Graph of Central Graph CHAPTER 5 b-colouring of Line Graph and Line Graph of Central Graph In this Chapter, the b-chromatic number of L(K 1,n ), L(C n ), L(P n ), L(K m,n ), L(K 1,n,n ), L(F 2,k ), L(B n,n ), L(P m ӨS n ), L[C(K

More information

Bounds on graphs with high girth and high chromatic number

Bounds on graphs with high girth and high chromatic number Bounds on graphs with high girth and high chromatic number joint work with Daniel Bath and Zequn Li INTEGERS 2013: The Erdős Centennial Conference October 26, 2013 Some Definitions Graph Theory Chromatic

More information

1. The following graph is not Eulerian. Make it into an Eulerian graph by adding as few edges as possible.

1. The following graph is not Eulerian. Make it into an Eulerian graph by adding as few edges as possible. 1. The following graph is not Eulerian. Make it into an Eulerian graph by adding as few edges as possible. A graph is Eulerian if it has an Eulerian circuit, which occurs if the graph is connected and

More information

Complete Cototal Domination

Complete Cototal Domination Chapter 5 Complete Cototal Domination Number of a Graph Published in Journal of Scientific Research Vol. () (2011), 547-555 (Bangladesh). 64 ABSTRACT Let G = (V,E) be a graph. A dominating set D V is said

More information

ON THE STRONGLY REGULAR GRAPH OF PARAMETERS

ON THE STRONGLY REGULAR GRAPH OF PARAMETERS ON THE STRONGLY REGULAR GRAPH OF PARAMETERS (99, 14, 1, 2) SUZY LOU AND MAX MURIN Abstract. In an attempt to find a strongly regular graph of parameters (99, 14, 1, 2) or to disprove its existence, we

More information

More NP-complete Problems. CS255 Chris Pollett May 3, 2006.

More NP-complete Problems. CS255 Chris Pollett May 3, 2006. More NP-complete Problems CS255 Chris Pollett May 3, 2006. Outline More NP-Complete Problems Hamiltonian Cycle Recall a hamiltonian cycle is a permutation of the vertices v i_1,, v i_n of a graph G so

More information

Math 575 Exam 3. (t). What is the chromatic number of G?

Math 575 Exam 3. (t). What is the chromatic number of G? Math 575 Exam 3 Name 1 (a) Draw the Grötsch graph See your notes (b) Suppose that G is a graph having 6 vertices and 9 edges and that the chromatic polynomial of G is given below Fill in the missing coefficients

More information

λ -Harmonious Graph Colouring

λ -Harmonious Graph Colouring λ -Harmonious Graph Colouring Lauren DeDieu McMaster University Southwestern Ontario Graduate Mathematics Conference June 4th, 201 What is a graph? What is vertex colouring? 1 1 1 2 2 Figure : Proper Colouring.

More information

INTRODUCTION TO GRAPH THEORY. 1. Definitions

INTRODUCTION TO GRAPH THEORY. 1. Definitions INTRODUCTION TO GRAPH THEORY D. JAKOBSON 1. Definitions A graph G consists of vertices {v 1, v 2,..., v n } and edges {e 1, e 2,..., e m } connecting pairs of vertices. An edge e = (uv) is incident with

More information

Grades 7 & 8, Math Circles 31 October/1/2 November, Graph Theory

Grades 7 & 8, Math Circles 31 October/1/2 November, Graph Theory Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grades 7 & 8, Math Circles 31 October/1/2 November, 2017 Graph Theory Solutions Example 1 1. To represent

More information

arxiv: v1 [math.co] 4 Apr 2011

arxiv: v1 [math.co] 4 Apr 2011 arxiv:1104.0510v1 [math.co] 4 Apr 2011 Minimal non-extensible precolorings and implicit-relations José Antonio Martín H. Abstract. In this paper I study a variant of the general vertex coloring problem

More information

Math 776 Graph Theory Lecture Note 1 Basic concepts

Math 776 Graph Theory Lecture Note 1 Basic concepts Math 776 Graph Theory Lecture Note 1 Basic concepts Lectured by Lincoln Lu Transcribed by Lincoln Lu Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved

More information

On Rainbow Cycles in Edge Colored Complete Graphs. S. Akbari, O. Etesami, H. Mahini, M. Mahmoody. Abstract

On Rainbow Cycles in Edge Colored Complete Graphs. S. Akbari, O. Etesami, H. Mahini, M. Mahmoody. Abstract On Rainbow Cycles in Edge Colored Complete Graphs S. Akbari, O. Etesami, H. Mahini, M. Mahmoody Abstract In this paper we consider optimal edge colored complete graphs. We show that in any optimal edge

More information

1 Matchings in Graphs

1 Matchings in Graphs Matchings in Graphs J J 2 J 3 J 4 J 5 J J J 6 8 7 C C 2 C 3 C 4 C 5 C C 7 C 8 6 J J 2 J 3 J 4 J 5 J J J 6 8 7 C C 2 C 3 C 4 C 5 C C 7 C 8 6 Definition Two edges are called independent if they are not adjacent

More information

Lecture 4: Petersen Graph 2/2; also, Friendship is Magic!

Lecture 4: Petersen Graph 2/2; also, Friendship is Magic! Spectral Graph Theory Instructor: Padraic Bartlett Lecture 4: Petersen Graph /; also, Friendship is Magic! Week 4 Mathcamp 0 We did a ton of things yesterday! Here s a quick recap:. If G is a n, k, λ,

More information

Graph Definitions. In a directed graph the edges have directions (ordered pairs). A weighted graph includes a weight function.

Graph Definitions. In a directed graph the edges have directions (ordered pairs). A weighted graph includes a weight function. Graph Definitions Definition 1. (V,E) where An undirected graph G is a pair V is the set of vertices, E V 2 is the set of edges (unordered pairs) E = {(u, v) u, v V }. In a directed graph the edges have

More information

Ma/CS 6b Class 26: Art Galleries and Politicians

Ma/CS 6b Class 26: Art Galleries and Politicians Ma/CS 6b Class 26: Art Galleries and Politicians By Adam Sheffer The Art Gallery Problem Problem. We wish to place security cameras at a gallery, such that they cover it completely. Every camera can cover

More information

Discharging and reducible configurations

Discharging and reducible configurations Discharging and reducible configurations Zdeněk Dvořák March 24, 2018 Suppose we want to show that graphs from some hereditary class G are k- colorable. Clearly, we can restrict our attention to graphs

More information

Proposition 1. The edges of an even graph can be split (partitioned) into cycles, no two of which have an edge in common.

Proposition 1. The edges of an even graph can be split (partitioned) into cycles, no two of which have an edge in common. Math 3116 Dr. Franz Rothe June 5, 2012 08SUM\3116_2012t1.tex Name: Use the back pages for extra space 1 Solution of Test 1.1 Eulerian graphs Proposition 1. The edges of an even graph can be split (partitioned)

More information

Math 778S Spectral Graph Theory Handout #2: Basic graph theory

Math 778S Spectral Graph Theory Handout #2: Basic graph theory Math 778S Spectral Graph Theory Handout #: Basic graph theory Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved the Königsberg Bridge problem: Is it possible

More information

Homework 3 Solutions

Homework 3 Solutions CS3510 Design & Analysis of Algorithms Section A Homework 3 Solutions Released: 7pm, Wednesday Nov 8, 2017 This homework has a total of 4 problems on 4 pages. Solutions should be submitted to GradeScope

More information

Some bounds on chromatic number of NI graphs

Some bounds on chromatic number of NI graphs International Journal of Mathematics and Soft Computing Vol.2, No.2. (2012), 79 83. ISSN 2249 3328 Some bounds on chromatic number of NI graphs Selvam Avadayappan Department of Mathematics, V.H.N.S.N.College,

More information

A Vizing-like theorem for union vertex-distinguishing edge coloring

A Vizing-like theorem for union vertex-distinguishing edge coloring A Vizing-like theorem for union vertex-distinguishing edge coloring Nicolas Bousquet, Antoine Dailly, Éric Duchêne, Hamamache Kheddouci, Aline Parreau Abstract We introduce a variant of the vertex-distinguishing

More information

The Achromatic and b- Chromatic Colouring of Central Graph of Book Graph and Shadow graph of Path graph

The Achromatic and b- Chromatic Colouring of Central Graph of Book Graph and Shadow graph of Path graph Volume No. 0, 9 ISSN: -00 (printed version); ISSN: -9 (on-line version) url: http://www.ijpam.eu ijpam.eu The Achromatic and b- Chromatic Colouring of Central Graph of Book Graph and Shadow graph of Path

More information

HW Graph Theory SOLUTIONS (hbovik) - Q

HW Graph Theory SOLUTIONS (hbovik) - Q 1, Diestel 9.3: An arithmetic progression is an increasing sequence of numbers of the form a, a+d, a+ d, a + 3d.... Van der Waerden s theorem says that no matter how we partition the natural numbers into

More information

On vertex types of graphs

On vertex types of graphs On vertex types of graphs arxiv:1705.09540v1 [math.co] 26 May 2017 Pu Qiao, Xingzhi Zhan Department of Mathematics, East China Normal University, Shanghai 200241, China Abstract The vertices of a graph

More information

Lesson 19: The Graph of a Linear Equation in Two Variables Is a Line

Lesson 19: The Graph of a Linear Equation in Two Variables Is a Line The Graph of a Linear Equation in Two Variables Is a Line Classwork Exercises THEOREM: The graph of a linear equation yy = mmmm + bb is a non-vertical line with slope mm and passing through (0, bb), where

More information

Mobius Graphs. N. Vasumathi and S. Vangipuram

Mobius Graphs. N. Vasumathi and S. Vangipuram Journal of Informatics and Mathematical Sciences Volume 1 (2009), Number 1, pp. 55 60 RGN Publications Mobius Graphs N. Vasumathi and S. Vangipuram Abstract. The study of graphs on natural numbers as its

More information

ON THE STRONG METRIC DIMENSION OF BROKEN FAN GRAPH, STARBARBELL GRAPH, AND C m k P n GRAPH

ON THE STRONG METRIC DIMENSION OF BROKEN FAN GRAPH, STARBARBELL GRAPH, AND C m k P n GRAPH ON THE STRONG METRIC DIMENSION OF BROKEN FAN GRAPH, STARBARBELL GRAPH, AND C m k P n GRAPH Ratih Yunia Mayasari, Tri Atmojo Kusmayadi, Santoso Budi Wiyono Department of Mathematics Faculty of Mathematics

More information

The Structure of Bull-Free Perfect Graphs

The Structure of Bull-Free Perfect Graphs The Structure of Bull-Free Perfect Graphs Maria Chudnovsky and Irena Penev Columbia University, New York, NY 10027 USA May 18, 2012 Abstract The bull is a graph consisting of a triangle and two vertex-disjoint

More information

Complementary Acyclic Weak Domination Preserving Sets

Complementary Acyclic Weak Domination Preserving Sets International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 30-9364, ISSN (Print): 30-9356 ijresorg Volume 4 Issue 7 ǁ July 016 ǁ PP 44-48 Complementary Acyclic Weak Domination

More information

Generalized Pebbling Number

Generalized Pebbling Number International Mathematical Forum, 5, 2010, no. 27, 1331-1337 Generalized Pebbling Number A. Lourdusamy Department of Mathematics St. Xavier s College (Autonomous) Palayamkottai - 627 002, India lourdugnanam@hotmail.com

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 6 Basic concepts and definitions of graph theory By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com

More information

1. Lecture notes on bipartite matching

1. Lecture notes on bipartite matching Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans February 5, 2017 1. Lecture notes on bipartite matching Matching problems are among the fundamental problems in

More information

Ma/CS 6b Class 5: Graph Connectivity

Ma/CS 6b Class 5: Graph Connectivity Ma/CS 6b Class 5: Graph Connectivity By Adam Sheffer Communications Network We are given a set of routers and wish to connect pairs of them to obtain a connected communications network. The network should

More information

On the packing chromatic number of some lattices

On the packing chromatic number of some lattices On the packing chromatic number of some lattices Arthur S. Finbow Department of Mathematics and Computing Science Saint Mary s University Halifax, Canada BH C art.finbow@stmarys.ca Douglas F. Rall Department

More information

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G.

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G. MAD 3105 Spring 2006 Solutions for Review for Test 2 1. Define a graph G with V (G) = {a, b, c, d, e}, E(G) = {r, s, t, u, v, w, x, y, z} and γ, the function defining the edges, is given by the table ɛ

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

Vertex, Edge and Total Coloring. in Spider Graphs

Vertex, Edge and Total Coloring. in Spider Graphs Applied Mathematical Sciences, Vol. 3, 2009, no. 18, 877-881 Vertex, Edge and Total Coloring in Spider Graphs Sadegh Rahimi Sharebaf Department of Mathematics Shahrood University of Technology, Shahrood,

More information

PAIRED-DOMINATION. S. Fitzpatrick. Dalhousie University, Halifax, Canada, B3H 3J5. and B. Hartnell. Saint Mary s University, Halifax, Canada, B3H 3C3

PAIRED-DOMINATION. S. Fitzpatrick. Dalhousie University, Halifax, Canada, B3H 3J5. and B. Hartnell. Saint Mary s University, Halifax, Canada, B3H 3C3 Discussiones Mathematicae Graph Theory 18 (1998 ) 63 72 PAIRED-DOMINATION S. Fitzpatrick Dalhousie University, Halifax, Canada, B3H 3J5 and B. Hartnell Saint Mary s University, Halifax, Canada, B3H 3C3

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 2 (Week 9) 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 2 (Week 9) 2008 The University of Sydney MATH99/09 Graph Theory Tutorial (Week 9) 00. Show that the graph on the left is Hamiltonian, but that the other two are not. To show that the graph is Hamiltonian, simply find

More information

11.1. Definitions. 11. Domination in Graphs

11.1. Definitions. 11. Domination in Graphs 11. Domination in Graphs Some definitions Minimal dominating sets Bounds for the domination number. The independent domination number Other domination parameters. 11.1. Definitions A vertex v in a graph

More information

Solutions to Assignment# 4

Solutions to Assignment# 4 Solutions to Assignment# 4 Liana Yepremyan 1 Nov.12: Text p. 651 problem 1 Solution: (a) One example is the following. Consider the instance K = 2 and W = {1, 2, 1, 2}. The greedy algorithm would load

More information

The self-minor conjecture for infinite trees

The self-minor conjecture for infinite trees The self-minor conjecture for infinite trees Julian Pott Abstract We prove Seymour s self-minor conjecture for infinite trees. 1. Introduction P. D. Seymour conjectured that every infinite graph is a proper

More information

Extremal Graph Theory. Ajit A. Diwan Department of Computer Science and Engineering, I. I. T. Bombay.

Extremal Graph Theory. Ajit A. Diwan Department of Computer Science and Engineering, I. I. T. Bombay. Extremal Graph Theory Ajit A. Diwan Department of Computer Science and Engineering, I. I. T. Bombay. Email: aad@cse.iitb.ac.in Basic Question Let H be a fixed graph. What is the maximum number of edges

More information

Graphs. Pseudograph: multiple edges and loops allowed

Graphs. Pseudograph: multiple edges and loops allowed Graphs G = (V, E) V - set of vertices, E - set of edges Undirected graphs Simple graph: V - nonempty set of vertices, E - set of unordered pairs of distinct vertices (no multiple edges or loops) Multigraph:

More information

Let v be a vertex primed by v i (s). Then the number f(v) of neighbours of v which have

Let v be a vertex primed by v i (s). Then the number f(v) of neighbours of v which have Let v be a vertex primed by v i (s). Then the number f(v) of neighbours of v which have been red in the sequence up to and including v i (s) is deg(v)? s(v), and by the induction hypothesis this sequence

More information

Discrete Applied Mathematics. A revision and extension of results on 4-regular, 4-connected, claw-free graphs

Discrete Applied Mathematics. A revision and extension of results on 4-regular, 4-connected, claw-free graphs Discrete Applied Mathematics 159 (2011) 1225 1230 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam A revision and extension of results

More information

MATH20902: Discrete Maths, Solutions to Problem Set 1. These solutions, as well as the corresponding problems, are available at

MATH20902: Discrete Maths, Solutions to Problem Set 1. These solutions, as well as the corresponding problems, are available at MATH20902: Discrete Maths, Solutions to Problem Set 1 These solutions, as well as the corresponding problems, are available at https://bit.ly/mancmathsdiscrete.. (1). The upper panel in the figure below

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. An Introduction to Graph Theory

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. An Introduction to Graph Theory SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mathematics An Introduction to Graph Theory. Introduction. Definitions.. Vertices and Edges... The Handshaking Lemma.. Connected Graphs... Cut-Points and Bridges.

More information

Characterizations of graph classes by forbidden configurations

Characterizations of graph classes by forbidden configurations Characterizations of graph classes by forbidden configurations Zdeněk Dvořák September 14, 2015 We consider graph classes that can be described by excluding some fixed configurations. Let us give some

More information

5 Matchings in Bipartite Graphs and Their Applications

5 Matchings in Bipartite Graphs and Their Applications 5 Matchings in Bipartite Graphs and Their Applications 5.1 Matchings Definition 5.1 A matching M in a graph G is a set of edges of G, none of which is a loop, such that no two edges in M have a common

More information

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorithms I Lecture 3-A Graphs Graphs A directed graph (or digraph) G is a pair (V, E), where V is a finite set, and E is a binary relation on V The set V: Vertex set of G The set E: Edge set of

More information

8.2 Paths and Cycles

8.2 Paths and Cycles 8.2 Paths and Cycles Degree a b c d e f Definition The degree of a vertex is the number of edges incident to it. A loop contributes 2 to the degree of the vertex. (G) is the maximum degree of G. δ(g) is

More information

Characterizations of Trees

Characterizations of Trees Characterizations of Trees Lemma Every tree with at least two vertices has at least two leaves. Proof. 1. A connected graph with at least two vertices has an edge. 2. In an acyclic graph, an end point

More information

Basics of Graph Theory

Basics of Graph Theory Basics of Graph Theory 1 Basic notions A simple graph G = (V, E) consists of V, a nonempty set of vertices, and E, a set of unordered pairs of distinct elements of V called edges. Simple graphs have their

More information

The incidence game chromatic number

The incidence game chromatic number The incidence game chromatic number Stephan Dominique Andres Zentrum für angewandte Informatik Köln, University of Cologne, Weyertal 80, 50931 Köln, Germany Abstract We introduce the incidence game chromatic

More information

CONNECTIVITY AND NETWORKS

CONNECTIVITY AND NETWORKS CONNECTIVITY AND NETWORKS We begin with the definition of a few symbols, two of which can cause great confusion, especially when hand-written. Consider a graph G. (G) the degree of the vertex with smallest

More information

The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs

The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs Frankie Smith Nebraska Wesleyan University fsmith@nebrwesleyan.edu May 11, 2015 Abstract We will look at how to represent

More information

Graph Algorithms. Tours in Graphs. Graph Algorithms

Graph Algorithms. Tours in Graphs. Graph Algorithms Graph Algorithms Tours in Graphs Graph Algorithms Special Paths and Cycles in Graphs Euler Path: A path that traverses all the edges of the graph exactly once. Euler Cycle: A cycle that traverses all the

More information

Gracefulness of a New Class from Copies of kc 4 P 2n and P 2 * nc 3

Gracefulness of a New Class from Copies of kc 4 P 2n and P 2 * nc 3 International Journal of Fuzzy Mathematics and Systems. ISSN 2248-9940 Volume 2, Number 1 (2012), pp. 75-81 Research India Publications http://www.ripublication.com Gracefulness of a New Class from Copies

More information

Counting. Andreas Klappenecker

Counting. Andreas Klappenecker Counting Andreas Klappenecker Counting k = 0; for(int i=1; i

More information

11.2 Eulerian Trails

11.2 Eulerian Trails 11.2 Eulerian Trails K.. onigsberg, 1736 Graph Representation A B C D Do You Remember... Definition A u v trail is a u v walk where no edge is repeated. Do You Remember... Definition A u v trail is a u

More information

Lesson 19: The Graph of a Linear Equation in Two Variables is a Line

Lesson 19: The Graph of a Linear Equation in Two Variables is a Line Lesson 19: The Graph of a Linear Equation in Two Variables is a Line Classwork Exercises Theorem: The graph of a linear equation y = mx + b is a non-vertical line with slope m and passing through (0, b),

More information

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PAUL BALISTER Abstract It has been shown [Balister, 2001] that if n is odd and m 1,, m t are integers with m i 3 and t i=1 m i = E(K n) then K n can be decomposed

More information

Chapter 4. Triangular Sum Labeling

Chapter 4. Triangular Sum Labeling Chapter 4 Triangular Sum Labeling 32 Chapter 4. Triangular Sum Graphs 33 4.1 Introduction This chapter is focused on triangular sum labeling of graphs. As every graph is not a triangular sum graph it is

More information

Adjacent Vertex Distinguishing Incidence Coloring of the Cartesian Product of Some Graphs

Adjacent Vertex Distinguishing Incidence Coloring of the Cartesian Product of Some Graphs Journal of Mathematical Research & Exposition Mar., 2011, Vol. 31, No. 2, pp. 366 370 DOI:10.3770/j.issn:1000-341X.2011.02.022 Http://jmre.dlut.edu.cn Adjacent Vertex Distinguishing Incidence Coloring

More information

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur Lecture : Graphs Rajat Mittal IIT Kanpur Combinatorial graphs provide a natural way to model connections between different objects. They are very useful in depicting communication networks, social networks

More information

[Ramalingam, 4(12): December 2017] ISSN DOI /zenodo Impact Factor

[Ramalingam, 4(12): December 2017] ISSN DOI /zenodo Impact Factor GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES FORCING VERTEX TRIANGLE FREE DETOUR NUMBER OF A GRAPH S. Sethu Ramalingam * 1, I. Keerthi Asir 2 and S. Athisayanathan 3 *1,2 & 3 Department of Mathematics,

More information

2009 HMMT Team Round. Writing proofs. Misha Lavrov. ARML Practice 3/2/2014

2009 HMMT Team Round. Writing proofs. Misha Lavrov. ARML Practice 3/2/2014 Writing proofs Misha Lavrov ARML Practice 3/2/2014 Warm-up / Review 1 (From my research) If x n = 2 1 x n 1 for n 2, solve for x n in terms of x 1. (For a more concrete problem, set x 1 = 2.) 2 (From this

More information

Discrete Mathematics I So Practice Sheet Solutions 1

Discrete Mathematics I So Practice Sheet Solutions 1 Discrete Mathematics I So 2016 Tibor Szabó Shagnik Das Practice Sheet Solutions 1 Provided below are possible solutions to the questions from the practice sheet issued towards the end of the course. Exercise

More information

Erdös-Gallai-type results for conflict-free connection of graphs

Erdös-Gallai-type results for conflict-free connection of graphs Erdös-Gallai-type results for conflict-free connection of graphs Meng Ji 1, Xueliang Li 1,2 1 Center for Combinatorics and LPMC arxiv:1812.10701v1 [math.co] 27 Dec 2018 Nankai University, Tianjin 300071,

More information

14 More Graphs: Euler Tours and Hamilton Cycles

14 More Graphs: Euler Tours and Hamilton Cycles 14 More Graphs: Euler Tours and Hamilton Cycles 14.1 Degrees The degree of a vertex is the number of edges coming out of it. The following is sometimes called the First Theorem of Graph Theory : Lemma

More information

Varying Applications (examples)

Varying Applications (examples) Graph Theory Varying Applications (examples) Computer networks Distinguish between two chemical compounds with the same molecular formula but different structures Solve shortest path problems between cities

More information

Chapter 3: Paths and Cycles

Chapter 3: Paths and Cycles Chapter 3: Paths and Cycles 5 Connectivity 1. Definitions: Walk: finite sequence of edges in which any two consecutive edges are adjacent or identical. (Initial vertex, Final vertex, length) Trail: walk

More information

Problem Set 3. MATH 776, Fall 2009, Mohr. November 30, 2009

Problem Set 3. MATH 776, Fall 2009, Mohr. November 30, 2009 Problem Set 3 MATH 776, Fall 009, Mohr November 30, 009 1 Problem Proposition 1.1. Adding a new edge to a maximal planar graph of order at least 6 always produces both a T K 5 and a T K 3,3 subgraph. Proof.

More information

Bipartite Coverings and the Chromatic Number

Bipartite Coverings and the Chromatic Number Bipartite Coverings and the Chromatic Number Dhruv Mubayi Sundar Vishwanathan Department of Mathematics, Department of Computer Science Statistics, and Computer Science Indian Institute of Technology University

More information

The b-chromatic number of cubic graphs

The b-chromatic number of cubic graphs The b-chromatic number of cubic graphs Marko Jakovac Faculty of Natural Sciences and Mathematics, University of Maribor Koroška 60, 000 Maribor, Slovenia marko.jakovac@uni-mb.si Sandi Klavžar Faculty of

More information

LOCAL CONNECTIVE CHROMATIC NUMBER OF DIRECT PRODUCT OF PATHS AND CYCLES

LOCAL CONNECTIVE CHROMATIC NUMBER OF DIRECT PRODUCT OF PATHS AND CYCLES BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 303-4874, ISSN (o) 303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 7(017), 561-57 DOI: 10.751/BIMVI1703561Ç Former BULLETIN OF THE

More information

EDGE MAXIMAL GRAPHS CONTAINING NO SPECIFIC WHEELS. Jordan Journal of Mathematics and Statistics (JJMS) 8(2), 2015, pp I.

EDGE MAXIMAL GRAPHS CONTAINING NO SPECIFIC WHEELS. Jordan Journal of Mathematics and Statistics (JJMS) 8(2), 2015, pp I. EDGE MAXIMAL GRAPHS CONTAINING NO SPECIFIC WHEELS M.S.A. BATAINEH (1), M.M.M. JARADAT (2) AND A.M.M. JARADAT (3) A. Let k 4 be a positive integer. Let G(n; W k ) denote the class of graphs on n vertices

More information

Zagreb Radio Indices of Graphs

Zagreb Radio Indices of Graphs Volume 118 No. 10 018, 343-35 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.173/ijpam.v118i10.75 ijpam.eu Zagreb Radio Indices of Graphs Joseph Varghese

More information

Minimum Number of Palettes in Edge Colorings

Minimum Number of Palettes in Edge Colorings Graphs and Combinatorics (2014) 30:619 626 DOI 10.1007/s00373-013-1298-8 ORIGINAL PAPER Minimum Number of Palettes in Edge Colorings Mirko Horňák Rafał Kalinowski Mariusz Meszka Mariusz Woźniak Received:

More information

Signed domination numbers of a graph and its complement

Signed domination numbers of a graph and its complement Discrete Mathematics 283 (2004) 87 92 www.elsevier.com/locate/disc Signed domination numbers of a graph and its complement Ruth Haas a, Thomas B. Wexler b a Department of Mathematics, Smith College, Northampton,

More information

CHAPTER 7. b-colouring of Middle Graph and Middle Graph of Central Graph

CHAPTER 7. b-colouring of Middle Graph and Middle Graph of Central Graph CHAPTER 7 b-colouring of Middle Graph and Middle Graph of Central Graph In this Chapter, the structural properties of Cycle, Path, Star graph, Fan graph, Sunlet graph, Double Star graph, Bistar, Complete

More information

Math 170- Graph Theory Notes

Math 170- Graph Theory Notes 1 Math 170- Graph Theory Notes Michael Levet December 3, 2018 Notation: Let n be a positive integer. Denote [n] to be the set {1, 2,..., n}. So for example, [3] = {1, 2, 3}. To quote Bud Brown, Graph theory

More information

On a perfect problem

On a perfect problem R u t c o r Research R e p o r t On a perfect problem Igor E. Zverovich a RRR 26-2005, September 2005 RUTCOR Rutgers Center for Operations Research Rutgers University 640 Bartholomew Road Piscataway, New

More information

Partitioning Complete Multipartite Graphs by Monochromatic Trees

Partitioning Complete Multipartite Graphs by Monochromatic Trees Partitioning Complete Multipartite Graphs by Monochromatic Trees Atsushi Kaneko, M.Kano 1 and Kazuhiro Suzuki 1 1 Department of Computer and Information Sciences Ibaraki University, Hitachi 316-8511 Japan

More information

Vertex-Mean Graphs. A.Lourdusamy. (St.Xavier s College (Autonomous), Palayamkottai, India) M.Seenivasan

Vertex-Mean Graphs. A.Lourdusamy. (St.Xavier s College (Autonomous), Palayamkottai, India) M.Seenivasan International J.Math. Combin. Vol. (0), -0 Vertex-Mean Graphs A.Lourdusamy (St.Xavier s College (Autonomous), Palayamkottai, India) M.Seenivasan (Sri Paramakalyani College, Alwarkurichi-67, India) E-mail:

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 The University of Sydney MTH 009 GRPH THEORY Tutorial solutions 00. Show that the graph on the left is Hamiltonian, but that the other two are not. To show that the graph is Hamiltonian, simply find a

More information

Using Euler s Theorem

Using Euler s Theorem Using Euler s Theorem Suppose that a connected, planar graph has 249 vertices and 57 faces. How many edges does it have? A: 106 B: 194 C: 304 D: 306 E: We don t have enough information Using Euler s Theorem

More information