N.J.P.L.S. An Introduction to LiDAR Concepts and Applications

Size: px
Start display at page:

Download "N.J.P.L.S. An Introduction to LiDAR Concepts and Applications"

Transcription

1 N.J.P.L.S. An Introduction to LiDAR Concepts and Applications

2 Presentation Outline LIDAR Data Capture Advantages of Lidar Technology Basics Intensity and Multiple Returns Lidar Accuracy

3 Airborne Laser Scanning ALS/LiDAR is an active remote sensing technology that measures distance with reflected laser light. LiDAR: Light Detection and Ranging or Laser Imaging Detection and Ranging) 1 st developed in 1960 by Hughes Aircraft inc. Modern computers and DGPS make it practical. Typically used in very accurate mapping of topography. New technologies and applications are currently being developed.

4 LiDAR Overview What LiDAR is... What LiDAR is not Light Detection And Ranging... highly accurate topographic data... Active Sensing System - Uses its own energy source, not reflected natural or naturally emitted radiation... Ranging of the reflecting object based on time difference between emission and reflection. (Multiple Returns per pulse of light)... Direct acquisition of terrain information... photography... A substitute for photography... All weather... Able to see through trees - if sunlight can reach a spot on the ground so can the laser; if sunlight can t reach the ground due to various vegetation, than neither can the laser Examples of LiDAR uses generate digital elevation models and contours for use in: engineering design and design reviews (irrigation design, pivots, pipelines, surge valves and livestock pipelines) conservation planning (HEL Determinations, practice design, landscape visualization) floodplain mapping hydrologic modeling Soil Survey Dam safety assessments (slope, aspect) Surface Feature Extraction (trees, shrubs, roads, buildings) Vegetation Mapping (Height, Density) Landform Extraction (ridges, benches, valleys)

5 ELEMENTS OF GIS: DATA TYPES Vector Data (Points, Lines, Polygons) Esri shapefile AutoCAD.dwg files Microstation.dgn files TIN (Triangular Irregular Network) Geodatabase Raster Data TIFF JPEG MrSID DEM (Digital Elevation Model) Lidar Light Detection And Ranging

6 LiDAR: How it works Each time the laser is pulsed: Laser generates an optical pulse Pulse is reflected off an object and returns to the system receiver High-speed counter measures the time of flight from the start pulse to the return pulse Time measurement is converted to a distance (the distance to the target and the position of the airplane is then used to determine the elevation and location) Multiple returns can be measured for each pulse Up to 200,000+ pulses/second Everything that can be seen from the aircraft is measured

7

8

9 Advantages of LiDAR Technology Provides a highly accurate means of elevation model collection for 1 or 2 contours Acquisition can take place day or night shadows that are problematic in mountainous areas are not an issue with LiDAR Unlike photography, acquisition can take place below cloud cover cloud shadows no issue Very cost effective for larger projects Does not provide break lines, nor is it imagery

10 Why is This Technology Exciting Time to Collect 1 Million Points Conventional Surveying: 15.5 years Photogrammetry: 1.5 years Lidar: khz Costs can be significantly less for the right projects

11 Aircraft Requirements Flying heights from 3,000 to 6,000 feet Speeds ranging from 90 to 130 knots Ability to carry equipment, personnel, and full fuel load

12 What it is not Photography We can shade the elevation and intensity data to create imagery Doesn t capture breaklines Doesn t capture planimetric features Advances in software may allow automatic feature extraction soon

13 Shading by Elevation

14

15

16 Urban LiDAR Layout

17

18 Why Remington & Vernick use Engineers a Laser? and Affiliates LiDAR takes advantage of two of the unique properties of laser light: 1. The laser is monochromatic. It is one specific wavelength of light. The wavelength of light is determined by the lasing material used. Advantage: We know how specific wavelengths interact with the atmosphere and with materials. 2. The light is very directional. A laser has a very narrow beam which remains concentrated over long distances. A flashlight (or Radar) on the other hand, releases energy in many directions, and the energy is weakened by diffusion. Advantage: The beam maintains its strength over long distances. 3mrad divergence = 3 m at 1 km and 15m at 5 km.

19 Issues with LiDAR Data LIDAR is indiscriminate it places elevation points on everything. This includes cars, houses, trees, etc. LIDAR only places mass points, or random xyz points. It does NOT pick up breaklines, or lines of abrupt change in the ground elevation LIDAR is NOT imagery. LIDAR data can be shaded, however, to offer a relief image

20 Bare Earth Model Significant editing must be employed to create a Bare Earth Model which models the natural ground Some automated procedures may be used. Imagery backdrop may be necessary In some cases, traditional photogrammetry may be necessary to add breaklines

21

22

23

24 Discrete Return Data: Millions of X,Y,Z points Area is approximately: 1 X 0.75mi. includes ~ 440,000 returns

25 Applications for Discrete-Return LIDAR Digital Elevation Model (DEM) 4m DEM of PREF Subset

26 From Point Clouds to 3-D Surface Models Points are used to create 3D surface models for applications. Triangular Irregular Networks (TIN)s are used to classify the points and to develop Digital Elevation Models (DEM)s. Points must be classified before use: bare earth points hit the ground ; other point categories include tree canopy and buildings. Correct identification of bare earth is critical for any lidar mapping application.

27 LIDAR Mapping of Forest Structure

28 Intensity and Multiple Returns Most units today have the ability to measure multiple returns and the intensity of the returned signal for each This enables specialized applications using the LIDAR data

29

30

31 Aerial Photo

32 Intensity Plot

33 LIDAR Surfacing

34 Lidar Returns and Cloud Cover

35 LiDAR Applications LIDAR has significant fixed cost but can be very cost effective for large projects Appropriate for a wide range of projects including forestry, corridor studies, obstruction mapping, flood studies, city/county mapping, and transportation projects Required accuracy must be carefully evaluated

36 Value of Noise in the Data Comair Jet Interstate

37 River 470 Tall

38

39 LiDAR Accuracy Quality of the hardware and software Knowledge of the planners, operators, office staff Flying height Scan angle (also important for vegetation penetration) GPS configuration (PDOP and Number of SVs) Distance from base station to aerial platform Laser power Laser rep rate Laser rep rate

40

41 LiDAR Accuracy Accuracy of elevation in range of 6 to 30 centimeters (0.20 to 0.98 feet) Accuracy of XY position in range of 10 to 46 centimeters (0.33 to 1.51 feet) Accuracy depends on pulse rate, flying height, GPS configuration, location of ground stations, and position of the scanner with respect to nadir r rep rate

42 GIS Resources in New Jersey Using available GIS resource data can conserve costs The New Jersey Department of Environmental Protection offers aerial photography, LiDAR and GIS datasets The data is available at no cost GIS data can also be obtained at the County, Agency level Meadowlands DVRPC USGS A data sharing agreement is generally needed

43 Raster Remington & Vernick Processing Engineers and Affiliates Contour Generation at set Intervals

44 USGS DEM Lidar DEM

45 Advanced Remington & Vernick Engineers Analytics and Affiliates Watershed Analysis - Drainage Basin Calculation for Discharge Points

46 Where Do We Go From Here? Improve Accuracy Software Processing Automated Feature Classification - Building Footprints - Roof Types - Pervious/Impervious -Vegetation Data Fusion

47 WHAT IS METADATA? Metadata describes Content, quality, condition and other characteristics about data Who, what, where, why and how of a data set Metadata includes information you need to Determine which data exist for a geographic location Determine if a set meets your need Acquire the set you identified Process and use the set Metadata answers questions Who created and maintains the data? Why were the data created? What is the content and structure of the data? When collected? When published? Where s the geographic location? How were the data produced?

48 LiDAR Summary Simply another tool in our toolbox It is not right for every project, but it can provide substantial cost savings for the right project Large-scale, high-accuracy projects still require conventional mapping solution LIDAR and the software we use in processing will continue to improve with time

49 QUESTIONS & ANSWERS Thank you!

Airborne Laser Scanning: Remote Sensing with LiDAR

Airborne Laser Scanning: Remote Sensing with LiDAR Airborne Laser Scanning: Remote Sensing with LiDAR ALS / LIDAR OUTLINE Laser remote sensing background Basic components of an ALS/LIDAR system Two distinct families of ALS systems Waveform Discrete Return

More information

LIDAR MAPPING FACT SHEET

LIDAR MAPPING FACT SHEET 1. LIDAR THEORY What is lidar? Lidar is an acronym for light detection and ranging. In the mapping industry, this term is used to describe an airborne laser profiling system that produces location and

More information

2010 LiDAR Project. GIS User Group Meeting June 30, 2010

2010 LiDAR Project. GIS User Group Meeting June 30, 2010 2010 LiDAR Project GIS User Group Meeting June 30, 2010 LiDAR = Light Detection and Ranging Technology that utilizes lasers to determine the distance to an object or surface Measures the time delay between

More information

CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS

CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL CAMERA THERMAL (e.g. TIMS) VIDEO CAMERA MULTI- SPECTRAL SCANNERS VISIBLE & NIR MICROWAVE HYPERSPECTRAL (e.g. AVIRIS) SLAR Real Aperture

More information

Overview. 1. Aerial LiDAR in Wisconsin (20 minutes) 2. Demonstration of data in CAD (30 minutes) 3. High Density LiDAR (20 minutes)

Overview. 1. Aerial LiDAR in Wisconsin (20 minutes) 2. Demonstration of data in CAD (30 minutes) 3. High Density LiDAR (20 minutes) Overview 1. Aerial LiDAR in Wisconsin (20 minutes) 2. Demonstration of data in CAD (30 minutes) 3. High Density LiDAR (20 minutes) 4. Aerial lidar technology advancements (15 minutes) 5. Q & A 1. Aerial

More information

APPENDIX E2. Vernal Pool Watershed Mapping

APPENDIX E2. Vernal Pool Watershed Mapping APPENDIX E2 Vernal Pool Watershed Mapping MEMORANDUM To: U.S. Fish and Wildlife Service From: Tyler Friesen, Dudek Subject: SSHCP Vernal Pool Watershed Analysis Using LIDAR Data Date: February 6, 2014

More information

Light Detection and Ranging (LiDAR)

Light Detection and Ranging (LiDAR) Light Detection and Ranging (LiDAR) http://code.google.com/creative/radiohead/ Types of aerial sensors passive active 1 Active sensors for mapping terrain Radar transmits microwaves in pulses determines

More information

Hamilton County Enhances GIS Base Mapping with 1-foot Contours

Hamilton County Enhances GIS Base Mapping with 1-foot Contours Hamilton County Enhances GIS Base Mapping with 1-foot Contours Presented by Larry Stout, Hamilton County GIS Manager Brad Fugate, Woolpert Inc. Today s Presentation Hamilton County s 2004 Base Mapping

More information

An Introduction to Lidar & Forestry May 2013

An Introduction to Lidar & Forestry May 2013 An Introduction to Lidar & Forestry May 2013 Introduction to Lidar & Forestry Lidar technology Derivatives from point clouds Applied to forestry Publish & Share Futures Lidar Light Detection And Ranging

More information

Terrain Modeling and Mapping for Telecom Network Installation Using Scanning Technology. Maziana Muhamad

Terrain Modeling and Mapping for Telecom Network Installation Using Scanning Technology. Maziana Muhamad Terrain Modeling and Mapping for Telecom Network Installation Using Scanning Technology Maziana Muhamad Summarising LiDAR (Airborne Laser Scanning) LiDAR is a reliable survey technique, capable of: acquiring

More information

COMPUTING SOLAR ENERGY POTENTIAL OF URBAN AREAS USING AIRBORNE LIDAR AND ORTHOIMAGERY

COMPUTING SOLAR ENERGY POTENTIAL OF URBAN AREAS USING AIRBORNE LIDAR AND ORTHOIMAGERY COMPUTING SOLAR ENERGY POTENTIAL OF URBAN AREAS USING AIRBORNE LIDAR AND ORTHOIMAGERY Ryan Hippenstiel The Pennsylvania State University John A. Dutton e-education Institute 2217 Earth & Engineering Sciences

More information

Alaska Department of Transportation Roads to Resources Project LiDAR & Imagery Quality Assurance Report Juneau Access South Corridor

Alaska Department of Transportation Roads to Resources Project LiDAR & Imagery Quality Assurance Report Juneau Access South Corridor Alaska Department of Transportation Roads to Resources Project LiDAR & Imagery Quality Assurance Report Juneau Access South Corridor Written by Rick Guritz Alaska Satellite Facility Nov. 24, 2015 Contents

More information

MODULE 1 BASIC LIDAR TECHNIQUES

MODULE 1 BASIC LIDAR TECHNIQUES MODULE SCENARIO One of the first tasks a geographic information systems (GIS) department using lidar data should perform is to check the quality of the data delivered by the data provider. The department

More information

UTILIZACIÓN DE DATOS LIDAR Y SU INTEGRACIÓN CON SISTEMAS DE INFORMACIÓN GEOGRÁFICA

UTILIZACIÓN DE DATOS LIDAR Y SU INTEGRACIÓN CON SISTEMAS DE INFORMACIÓN GEOGRÁFICA UTILIZACIÓN DE DATOS LIDAR Y SU INTEGRACIÓN CON SISTEMAS DE INFORMACIÓN GEOGRÁFICA Aurelio Castro Cesar Piovanetti Geographic Mapping Technologies Corp. (GMT) Consultores en GIS info@gmtgis.com Geographic

More information

Should Contours Be Generated from Lidar Data, and Are Breaklines Required? Lidar data provides the most

Should Contours Be Generated from Lidar Data, and Are Breaklines Required? Lidar data provides the most Should Contours Be Generated from Lidar Data, and Are Breaklines Required? Lidar data provides the most accurate and reliable representation of the topography of the earth. As lidar technology advances

More information

Light Detection and Ranging (LiDAR) Radiohead House of Cards

Light Detection and Ranging (LiDAR) Radiohead House of Cards Light Detection and Ranging (LiDAR) Radiohead House of Cards http://the-moni-blog.blogspot.com/2009/03/lidar-is-going-mainstream-mtv-baby.html h =? Laser Vision GPS + IMU θ H X a h Types of aerial sensors

More information

Terrestrial GPS setup Fundamentals of Airborne LiDAR Systems, Collection and Calibration. JAMIE YOUNG Senior Manager LiDAR Solutions

Terrestrial GPS setup Fundamentals of Airborne LiDAR Systems, Collection and Calibration. JAMIE YOUNG Senior Manager LiDAR Solutions Terrestrial GPS setup Fundamentals of Airborne LiDAR Systems, Collection and Calibration JAMIE YOUNG Senior Manager LiDAR Solutions Topics Terrestrial GPS reference Planning and Collection Considerations

More information

Esri International User Conference. July San Diego Convention Center. Lidar Solutions. Clayton Crawford

Esri International User Conference. July San Diego Convention Center. Lidar Solutions. Clayton Crawford Esri International User Conference July 23 27 San Diego Convention Center Lidar Solutions Clayton Crawford Outline Data structures, tools, and workflows Assessing lidar point coverage and sample density

More information

ALS40 Airborne Laser Scanner

ALS40 Airborne Laser Scanner ALS40 Airborne Laser Scanner Airborne LIDAR for Professionals High Performance Laser Scanning Direct Measurement of Ground Surface from the Air The ALS40 Airborne Laser Scanner measures the topography

More information

Aerial and Mobile LiDAR Data Fusion

Aerial and Mobile LiDAR Data Fusion Creating Value Delivering Solutions Aerial and Mobile LiDAR Data Fusion Dr. Srini Dharmapuri, CP, PMP What You Will Learn About LiDAR Fusion Mobile and Aerial LiDAR Technology Components & Parameters Project

More information

LIDAR and Terrain Models: In 3D!

LIDAR and Terrain Models: In 3D! LIDAR and Terrain Models: In 3D! Stuart.green@teagasc.ie http://www.esri.com/library/whitepapers/pdfs/lidar-analysis-forestry.pdf http://www.csc.noaa.gov/digitalcoast/_/pdf/refinement_of_topographic_lidar_to_create_a_bare_e

More information

Reality Check: Processing LiDAR Data. A story of data, more data and some more data

Reality Check: Processing LiDAR Data. A story of data, more data and some more data Reality Check: Processing LiDAR Data A story of data, more data and some more data Red River of the North Red River of the North Red River of the North Red River of the North Introduction and Background

More information

Existing Elevation Data Sets. Quality Level 2 (QL2) Lidar Data Sets. Better Land Characterization More Accurate Results!

Existing Elevation Data Sets. Quality Level 2 (QL2) Lidar Data Sets. Better Land Characterization More Accurate Results! Existing Elevation Data Sets Out of Date: Most > 40 yrs old Data range from 15 yrs old to > 70 yrs old Spatial Resolution: 33 ft (10 m) or coarser Vertical Accuracy: 3.3 ft 6.6 ft (1 2 m) or worse Quality

More information

Airborne LiDAR Data Acquisition for Forestry Applications. Mischa Hey WSI (Corvallis, OR)

Airborne LiDAR Data Acquisition for Forestry Applications. Mischa Hey WSI (Corvallis, OR) Airborne LiDAR Data Acquisition for Forestry Applications Mischa Hey WSI (Corvallis, OR) WSI Services Corvallis, OR Airborne Mapping: Light Detection and Ranging (LiDAR) Thermal Infrared Imagery 4-Band

More information

Course Outline (1) #6 Data Acquisition for Built Environment. Fumio YAMAZAKI

Course Outline (1) #6 Data Acquisition for Built Environment. Fumio YAMAZAKI AT09.98 Applied GIS and Remote Sensing for Disaster Mitigation #6 Data Acquisition for Built Environment 9 October, 2002 Fumio YAMAZAKI yamazaki@ait.ac.th http://www.star.ait.ac.th/~yamazaki/ Course Outline

More information

Workshops funded by the Minnesota Environment and Natural Resources Trust Fund

Workshops funded by the Minnesota Environment and Natural Resources Trust Fund Workshops funded by the Minnesota Environment and Natural Resources Trust Fund Conservation Applications of LiDAR Data Workshops funded by: Minnesota Environment and Natural Resources Trust Fund Presented

More information

Contents of Lecture. Surface (Terrain) Data Models. Terrain Surface Representation. Sampling in Surface Model DEM

Contents of Lecture. Surface (Terrain) Data Models. Terrain Surface Representation. Sampling in Surface Model DEM Lecture 13: Advanced Data Models: Terrain mapping and Analysis Contents of Lecture Surface Data Models DEM GRID Model TIN Model Visibility Analysis Geography 373 Spring, 2006 Changjoo Kim 11/29/2006 1

More information

EXTRACTING SURFACE FEATURES OF THE NUECES RIVER DELTA USING LIDAR POINTS INTRODUCTION

EXTRACTING SURFACE FEATURES OF THE NUECES RIVER DELTA USING LIDAR POINTS INTRODUCTION EXTRACTING SURFACE FEATURES OF THE NUECES RIVER DELTA USING LIDAR POINTS Lihong Su, Post-Doctoral Research Associate James Gibeaut, Associate Research Professor Harte Research Institute for Gulf of Mexico

More information

LiDAR Remote Sensing Data Collection: Yaquina and Elk Creek Watershed, Leaf-On Acquisition

LiDAR Remote Sensing Data Collection: Yaquina and Elk Creek Watershed, Leaf-On Acquisition LiDAR Remote Sensing Data Collection: Yaquina and Elk Creek Watershed, Leaf-On Acquisition Submitted by: 4605 NE Fremont, Suite 211 Portland, Oregon 97213 April, 2006 Table of Contents LIGHT DETECTION

More information

About LIDAR Data. What Are LIDAR Data? How LIDAR Data Are Collected

About LIDAR Data. What Are LIDAR Data? How LIDAR Data Are Collected 1 of 6 10/7/2006 3:24 PM Project Overview Data Description GIS Tutorials Applications Coastal County Maps Data Tools Data Sets & Metadata Other Links About this CD-ROM Partners About LIDAR Data What Are

More information

Learning Objectives LIGHT DETECTION AND RANGING. Sensing. Blacksburg, VA July 24 th 30 th, 2010 LiDAR: Mapping the world in 3-D Page 1

Learning Objectives LIGHT DETECTION AND RANGING. Sensing. Blacksburg, VA July 24 th 30 th, 2010 LiDAR: Mapping the world in 3-D Page 1 LiDAR: Mapping the world in 3-D Val Thomas Department of Forest Resources & Environmental Conservation July 29, 2010 Learning Objectives Part 1: Lidar theory What is lidar? How does lidar work? What are

More information

Lidar and GIS: Applications and Examples. Dan Hedges Clayton Crawford

Lidar and GIS: Applications and Examples. Dan Hedges Clayton Crawford Lidar and GIS: Applications and Examples Dan Hedges Clayton Crawford Outline Data structures, tools, and workflows Assessing lidar point coverage and sample density Creating raster DEMs and DSMs Data area

More information

Lidar Technical Report

Lidar Technical Report Lidar Technical Report Oregon Department of Forestry Sites Presented to: Oregon Department of Forestry 2600 State Street, Building E Salem, OR 97310 Submitted by: 3410 West 11st Ave. Eugene, OR 97402 April

More information

Technical Considerations and Best Practices in Imagery and LiDAR Project Procurement

Technical Considerations and Best Practices in Imagery and LiDAR Project Procurement Technical Considerations and Best Practices in Imagery and LiDAR Project Procurement Presented to the 2014 WV GIS Conference By Brad Arshat, CP, EIT Date: June 4, 2014 Project Accuracy A critical decision

More information

High resolution survey and orthophoto project of the Dosso-Gaya region in the Republic of Niger. by Tim Leary, Woolpert Inc.

High resolution survey and orthophoto project of the Dosso-Gaya region in the Republic of Niger. by Tim Leary, Woolpert Inc. High resolution survey and orthophoto project of the Dosso-Gaya region in the Republic of Niger by Tim Leary, Woolpert Inc. Geospatial Solutions Photogrammetry & Remote Sensing LiDAR Professional Surveying

More information

Volumetric Calculations. Sample Data

Volumetric Calculations. Sample Data Volumetric Calculations Sample Data Stockpiles of industrial materials are often difficult to measure accurately. LiDAR offers a fast and extremely accurate solution for taking periodical inventory of

More information

QUALITY CONTROL METHOD FOR FILTERING IN AERIAL LIDAR SURVEY

QUALITY CONTROL METHOD FOR FILTERING IN AERIAL LIDAR SURVEY QUALITY CONTROL METHOD FOR FILTERING IN AERIAL LIDAR SURVEY Y. Yokoo a, *, T. Ooishi a, a Kokusai Kogyo CO., LTD.,Base Information Group, 2-24-1 Harumicho Fuchu-shi, Tokyo, 183-0057, JAPAN - (yasuhiro_yokoo,

More information

Merging LiDAR Data with Softcopy Photogrammetry Data

Merging LiDAR Data with Softcopy Photogrammetry Data Merging LiDAR Data with Softcopy Photogrammetry Data Cindy McCallum WisDOT\Bureau of Technical Services Surveying & Mapping Section Photogrammetry Unit Overview Terms and processes Why use data from LiDAR

More information

Airborne and Mobile LiDAR for Transport Corridor Survey Dr. Bharat Lohani Director, Geokno India Pvt. Ltd. & Professor, Geoinformatics IIT Kanpur

Airborne and Mobile LiDAR for Transport Corridor Survey Dr. Bharat Lohani Director, Geokno India Pvt. Ltd. & Professor, Geoinformatics IIT Kanpur www.geokno.com Airborne and Mobile LiDAR for Transport Corridor Survey Dr. Bharat Lohani Director, Geokno India Pvt. Ltd. & Professor, Geoinformatics IIT Kanpur Geokno has executed and is executing multiple

More information

BRIEF EXAMPLES OF PRACTICAL USES OF LIDAR

BRIEF EXAMPLES OF PRACTICAL USES OF LIDAR BRIEF EXAMPLES OF PRACTICAL USES OF LIDAR PURDUE ROAD SCHOOL - 3/9/2016 CHRIS MORSE USDA-NRCS, STATE GIS COORDINATOR LIDAR/DEM SOURCE DATES LiDAR and its derivatives (DEMs) have a collection date for data

More information

Geomatic & Information Technologies for Ports and Navigable Waterways. Expanding Our Global Opportunities

Geomatic & Information Technologies for Ports and Navigable Waterways. Expanding Our Global Opportunities Geomatic & Information Technologies for Ports and Navigable Waterways Airborne Remote Sensing Susan Jackson Tetra Tech Geomatics BD Director Hydrographic Surveying Robert Feldpausch Tetra Tech Principal

More information

Automated Feature Extraction from Aerial Imagery for Forestry Projects

Automated Feature Extraction from Aerial Imagery for Forestry Projects Automated Feature Extraction from Aerial Imagery for Forestry Projects Esri UC 2015 UC706 Tuesday July 21 Bart Matthews - Photogrammetrist US Forest Service Southwestern Region Brad Weigle Sr. Program

More information

Terrestrial Laser Scanning: Applications in Civil Engineering Pauline Miller

Terrestrial Laser Scanning: Applications in Civil Engineering Pauline Miller Terrestrial Laser Scanning: Applications in Civil Engineering Pauline Miller School of Civil Engineering & Geosciences Newcastle University Overview Laser scanning overview Research applications geometric

More information

LIDAR an Introduction and Overview

LIDAR an Introduction and Overview LIDAR an Introduction and Overview Rooster Rock State Park & Crown Point. Oregon DOGAMI Lidar Project Presented by Keith Marcoe GEOG581, Fall 2007. Portland State University. Light Detection And Ranging

More information

Municipal Projects in Cambridge Using a LiDAR Dataset. NEURISA Day 2012 Sturbridge, MA

Municipal Projects in Cambridge Using a LiDAR Dataset. NEURISA Day 2012 Sturbridge, MA Municipal Projects in Cambridge Using a LiDAR Dataset NEURISA Day 2012 Sturbridge, MA October 15, 2012 Jeff Amero, GIS Manager, City of Cambridge Presentation Overview Background on the LiDAR dataset Solar

More information

LiDAR Engineering and Design Applications. Sample Data

LiDAR Engineering and Design Applications. Sample Data LiDAR Engineering and Design Applications Sample Data High density LiDAR will return points on any visible part of a structure. Modeling of Existing Structures 2 The distance between any two positions

More information

High Resolution Laserscanning, not only for 3D-City Models

High Resolution Laserscanning, not only for 3D-City Models Lohr 133 High Resolution Laserscanning, not only for 3D-City Models UWE LOHR, Ravensburg ABSTRACT The TopoSys laserscanner system is designed to produce digital elevation models (DEMs) of the environment

More information

Image Services for Elevation Data

Image Services for Elevation Data Image Services for Elevation Data Peter Becker Need for Elevation Using Image Services for Elevation Data sources Creating Elevation Service Requirement: GIS and Imagery, Integrated and Accessible Field

More information

Cooperating Technical Partners Information Exchange. LIDAR QA/QC and Extracting Building Footprints

Cooperating Technical Partners Information Exchange. LIDAR QA/QC and Extracting Building Footprints Cooperating Technical Partners Information Exchange LIDAR QA/QC and Extracting Building Footprints Audio and Web Settings Participation Open and hide your control panel using the orange arrow button at

More information

LiDAR Technical Report NE Washington LiDAR Production 2017

LiDAR Technical Report NE Washington LiDAR Production 2017 LiDAR Technical Report NE Washington LiDAR Production 2017 Presented to: Washington DNR 1111 Washington Street SE Olympia, Washington 98504 Submitted by: 860 McKinley St Eugene, OR 97402 July 26, 2017

More information

Assimilation of Break line and LiDAR Data within ESRI s Terrain Data Structure (TDS) for creating a Multi-Resolution Terrain Model

Assimilation of Break line and LiDAR Data within ESRI s Terrain Data Structure (TDS) for creating a Multi-Resolution Terrain Model Assimilation of Break line and LiDAR Data within ESRI s Terrain Data Structure (TDS) for creating a Multi-Resolution Terrain Model Tarig A. Ali Department of Civil Engineering American University of Sharjah,

More information

LiDAR Applications. Examples of LiDAR applications. forestry hydrology geology urban applications

LiDAR Applications. Examples of LiDAR applications. forestry hydrology geology urban applications LiDAR Applications Examples of LiDAR applications forestry hydrology geology urban applications 1 Forestry applications canopy heights individual tree and crown mapping estimated DBH and leaf area index

More information

Adrian Cosmin Ghimbaşan 1 Cornel Cristian Tereşneu 1 Iosif Vorovencii 1

Adrian Cosmin Ghimbaşan 1 Cornel Cristian Tereşneu 1 Iosif Vorovencii 1 Adrian Cosmin Ghimbaşan 1 Cornel Cristian Tereşneu 1 Iosif Vorovencii 1 1 Forest Management Planning and Terrestrial Measurements Department, Faculty of Silviculture and Forest Engineering, Transilvania

More information

Lecture 11. LiDAR, RADAR

Lecture 11. LiDAR, RADAR NRMT 2270, Photogrammetry/Remote Sensing Lecture 11 Calculating the Number of Photos and Flight Lines in a Photo Project LiDAR, RADAR Tomislav Sapic GIS Technologist Faculty of Natural Resources Management

More information

Lecture 4: Digital Elevation Models

Lecture 4: Digital Elevation Models Lecture 4: Digital Elevation Models GEOG413/613 Dr. Anthony Jjumba 1 Digital Terrain Modeling Terms: DEM, DTM, DTEM, DSM, DHM not synonyms. The concepts they illustrate are different Digital Terrain Modeling

More information

Applications of LiDAR in seismic acquisition and processing Mark Wagaman and Ron Sfara, Veritas DGC

Applications of LiDAR in seismic acquisition and processing Mark Wagaman and Ron Sfara, Veritas DGC Applications of LiDAR in seismic acquisition and processing Mark Wagaman and Ron Sfara, Veritas DGC Abstract With its ability to provide accurate land surface elevations, the LiDAR (Light Detection And

More information

SLR, Climate Change, Infrastructure Solutions, Adaption and GIS

SLR, Climate Change, Infrastructure Solutions, Adaption and GIS Presenters: Francisco D Elia B.S., M.Sc. Geographic Information Systems Franciscodelia@miamibeachfl.gov Nestor Navarro, GISP, MCSA GIS Manager Nestornavarro@miamibeachfl.gov Data Acquisition, Integration

More information

An Introduction to Using Lidar with ArcGIS and 3D Analyst

An Introduction to Using Lidar with ArcGIS and 3D Analyst FedGIS Conference February 24 25, 2016 Washington, DC An Introduction to Using Lidar with ArcGIS and 3D Analyst Jim Michel Outline Lidar Intro Lidar Management Las files Laz, zlas, conversion tools Las

More information

Trends in Digital Aerial Acquisition Systems

Trends in Digital Aerial Acquisition Systems Trends in Digital Aerial Acquisition Systems Ernest Yap Regional Sales Manager, Airborne-Americas eyap@applanix.com 1 Medium Format Digital Cameras Medium Format Digital Cameras Where does the Medium

More information

UAS based laser scanning for forest inventory and precision farming

UAS based laser scanning for forest inventory and precision farming UAS based laser scanning for forest inventory and precision farming M. Pfennigbauer, U. Riegl, P. Rieger, P. Amon RIEGL Laser Measurement Systems GmbH, 3580 Horn, Austria Email: mpfennigbauer@riegl.com,

More information

Mayden VP of Business Development Surdex Corporation

Mayden VP of Business Development Surdex Corporation Making Sense of Sensors Randy Mayden, Mayden VP of Business Development Surdex Corporation randym@surdex.com EARLYAERIAL PHOTOGRAPHY 2 FIRSTAERIAL CAMERA 3 AERIAL CAMERA SYSTEM DEVELOPMENT Aerial Camera

More information

Using ArcGIS Server Data to Assist in Planimetric Update Process. Jim Stout - IMAGIS Rick Hammond Woolpert

Using ArcGIS Server Data to Assist in Planimetric Update Process. Jim Stout - IMAGIS Rick Hammond Woolpert Using ArcGIS Server Data to Assist in Planimetric Update Process Jim Stout - IMAGIS Rick Hammond Woolpert Using ArcGIS Server Data to Assist in Planimetric Update Process Jim Stout - IMAGIS Rick Hammond

More information

Alberta's LiDAR Experience Lessons Learned Cosmin Tansanu

Alberta's LiDAR Experience Lessons Learned Cosmin Tansanu Alberta's LiDAR Experience Lessons Learned Cosmin Tansanu Analysis Forester Alberta Environment and Sustainable Resource Development We are mandated to provide environmental leadership. We need to push

More information

Quinnipiac Post Flight Aerial Acquisition Report

Quinnipiac Post Flight Aerial Acquisition Report Quinnipiac Post Flight Aerial Acquisition Report August 2011 Post-Flight Aerial Acquisition and Calibration Report FEMA REGION 1 Quinnipiac Watershed, Connecticut, Massachusesetts FEDERAL EMERGENCY MANAGEMENT

More information

COMPONENTS. The web interface includes user administration tools, which allow companies to efficiently distribute data to internal or external users.

COMPONENTS. The web interface includes user administration tools, which allow companies to efficiently distribute data to internal or external users. COMPONENTS LASERDATA LIS is a software suite for LiDAR data (TLS / MLS / ALS) management and analysis. The software is built on top of a GIS and supports both point and raster data. The following software

More information

LIDAR Workshop IPSRS Commission 1

LIDAR Workshop IPSRS Commission 1 LIDAR Workshop IPSRS Commission 1 2-Jul-2007, Ljubliana, Slovenia Arthur Rohrbach, Leica Geosystems, Switzerland Presentation topics 1. Basics of Airborne LIDAR Sensing Technology 2. Typical Applications

More information

QUANTIFICATION OF AVAILABLE SOLAR IRRADIATION ON ROOFTOPS USING ORTHOPHOTOGRAPH AND LIDAR DATA

QUANTIFICATION OF AVAILABLE SOLAR IRRADIATION ON ROOFTOPS USING ORTHOPHOTOGRAPH AND LIDAR DATA August 11 13, QUANTIFICATION OF AVAILABLE SOLAR IRRADIATION ON ROOFTOPS USING ORTHOPHOTOGRAPH AND LIDAR DATA Chanikarn Yimprayoon 1, Mojtaba Navvab 1 1 University of Michigan, Ann Arbor, MI ABSTRACT Residential

More information

Digital Raster Acquisition Project Eastern Ontario (DRAPE) 2014 Digital Surface Model and Digital Terrain Model

Digital Raster Acquisition Project Eastern Ontario (DRAPE) 2014 Digital Surface Model and Digital Terrain Model Digital Raster Acquisition Project Eastern Ontario (DRAPE) 2014 Digital Surface Model and Digital Terrain Model User Guide Provincial Mapping Unit Mapping and Information Resources Branch Corporate Management

More information

LiDAR data overview. Dr. Keiko Saito Global Facility for Disaster Reduction and Recovery (GFDRR)

LiDAR data overview. Dr. Keiko Saito Global Facility for Disaster Reduction and Recovery (GFDRR) LiDAR data overview Dr. Keiko Saito Global Facility for Disaster Reduction and Recovery (GFDRR) LiDAR (Light Detecting And Ranging) 3D height profile Laser emitted from sensor onboard aircraft to measure

More information

Outline of Presentation. Introduction to Overwatch Geospatial Software Feature Analyst and LIDAR Analyst Software

Outline of Presentation. Introduction to Overwatch Geospatial Software Feature Analyst and LIDAR Analyst Software Outline of Presentation Automated Feature Extraction from Terrestrial and Airborne LIDAR Presented By: Stuart Blundell Overwatch Geospatial - VLS Ops Co-Author: David W. Opitz Overwatch Geospatial - VLS

More information

LiDAR Derived Contours

LiDAR Derived Contours LiDAR Derived Contours Final Delivery June 10, 2009 Prepared for: Prepared by: Metro 600 NE Grand Avenue Portland, OR 97232 Watershed Sciences, Inc. 529 SW Third Avenue, Suite 300 Portland, OR 97204 Metro

More information

Leica ALS70. Airborne Laser Scanners Performance for diverse Applications

Leica ALS70. Airborne Laser Scanners Performance for diverse Applications Leica ALS70 Airborne Laser Scanners Performance for diverse Applications Three Models, One Result. Highest Productivity in all Applications. Imagine an affordable 500 khz pulse rate city-mapping LIDAR

More information

ENY-C2005 Geoinformation in Environmental Modeling Lecture 4b: Laser scanning

ENY-C2005 Geoinformation in Environmental Modeling Lecture 4b: Laser scanning 1 ENY-C2005 Geoinformation in Environmental Modeling Lecture 4b: Laser scanning Petri Rönnholm Aalto University 2 Learning objectives To recognize applications of laser scanning To understand principles

More information

1. LiDAR System Description and Specifications

1. LiDAR System Description and Specifications High Point Density LiDAR Survey of Mayapan, MX PI: Timothy S. Hare, Ph.D. Timothy S. Hare, Ph.D. Associate Professor of Anthropology Institute for Regional Analysis and Public Policy Morehead State University

More information

Plantation Resource Mapping using LiDAR

Plantation Resource Mapping using LiDAR IFA Symposium Improving Plantation Productivity Mt Gambier, 12-14 May 2014 Field Day Tour Plantation Resource Mapping using LiDAR Christine Stone (NSW DPI) and Jan Rombouts (ForestrySA) Airborne Laser

More information

Representing Geography

Representing Geography Data models and axioms Chapters 3 and 7 Representing Geography Road map Representing the real world Conceptual models: objects vs fields Implementation models: vector vs raster Vector topological model

More information

Creating raster DEMs and DSMs from large lidar point collections. Summary. Coming up with a plan. Using the Point To Raster geoprocessing tool

Creating raster DEMs and DSMs from large lidar point collections. Summary. Coming up with a plan. Using the Point To Raster geoprocessing tool Page 1 of 5 Creating raster DEMs and DSMs from large lidar point collections ArcGIS 10 Summary Raster, or gridded, elevation models are one of the most common GIS data types. They can be used in many ways

More information

EXAMINING THE ADVANTAGES OF AIRBORNE LIDAR INTEGRATED WITH GIS IN HYDROLOGIC MODELLING

EXAMINING THE ADVANTAGES OF AIRBORNE LIDAR INTEGRATED WITH GIS IN HYDROLOGIC MODELLING EXAMINING THE ADVANTAGES OF AIRBORNE LIDAR INTEGRATED WITH GIS IN HYDROLOGIC MODELLING Hakan Celik* 1, H.Gonca Coskun 1, Nuray Bas 1, Oyku Alkan 1 1 Department of Geomatics,, Ayazaga Campus, 34469,. e-

More information

A Method to Create a Single Photon LiDAR based Hydro-flattened DEM

A Method to Create a Single Photon LiDAR based Hydro-flattened DEM A Method to Create a Single Photon LiDAR based Hydro-flattened DEM Sagar Deshpande 1 and Alper Yilmaz 2 1 Surveying Engineering, Ferris State University 2 Department of Civil, Environmental, and Geodetic

More information

UAV Surveying II. Precision. Accuracy. Reliability

UAV Surveying II. Precision. Accuracy. Reliability UAV Surveying II Precision. Accuracy. Reliability Part One: Project Lifecycle Deliverables Part Two: Evaluation of UAV Data Accuracy and Examples of Error Part Three: AGENDA Review of Results Examples

More information

LIDAR 101 & 2014 MO/AR LIDAR PARTNERS PROJECT. NEMO GIS Workshop

LIDAR 101 & 2014 MO/AR LIDAR PARTNERS PROJECT. NEMO GIS Workshop LIDAR 101 & 2014 MO/AR LIDAR PARTNERS PROJECT NEMO GIS Workshop May 22, 2014 PRESENTER Tim Donze Business Development Surdex Corporation PRESENTATION TOPICS What is LiDAR? Why is LiDAR Valuable? Missouri

More information

NATIONWIDE POINT CLOUDS AND 3D GEO- INFORMATION: CREATION AND MAINTENANCE GEORGE VOSSELMAN

NATIONWIDE POINT CLOUDS AND 3D GEO- INFORMATION: CREATION AND MAINTENANCE GEORGE VOSSELMAN NATIONWIDE POINT CLOUDS AND 3D GEO- INFORMATION: CREATION AND MAINTENANCE GEORGE VOSSELMAN OVERVIEW National point clouds Airborne laser scanning in the Netherlands Quality control Developments in lidar

More information

Lidar Talking Points Status of lidar collection in Pennsylvania Estimated cost and timeline

Lidar Talking Points Status of lidar collection in Pennsylvania Estimated cost and timeline Lidar Talking Points Pennsylvania has an immediate need for new lidar (topographic) data coverage. Some uses of the data are enumerated later in this document. USGS has calculated an average return on

More information

HAWAII KAUAI Survey Report. LIDAR System Description and Specifications

HAWAII KAUAI Survey Report. LIDAR System Description and Specifications HAWAII KAUAI Survey Report LIDAR System Description and Specifications This survey used an Optech GEMINI Airborne Laser Terrain Mapper (ALTM) serial number 06SEN195 mounted in a twin-engine Navajo Piper

More information

LiDAR for Urban Change Detection. Keith W. Cunningham, PhD Alaska Satellite Facility November 13, 2009

LiDAR for Urban Change Detection. Keith W. Cunningham, PhD Alaska Satellite Facility November 13, 2009 LiDAR for Urban Change Detection Keith W. Cunningham, PhD Alaska Satellite Facility November 13, 2009 LiDAR LiDAR Light Detection and Ranging Building Footprints GIS outlines (planimetrics) GIS Geographic

More information

New Requirements for the Relief in the Topographic Databases of the Institut Cartogràfic de Catalunya

New Requirements for the Relief in the Topographic Databases of the Institut Cartogràfic de Catalunya New Requirements for the Relief in the Topographic Databases of the Institut Cartogràfic de Catalunya Blanca Baella, Maria Pla Institut Cartogràfic de Catalunya, Barcelona, Spain Abstract Since 1983 the

More information

UAV Flight Operations for Mapping. Precision. Accuracy. Reliability

UAV Flight Operations for Mapping. Precision. Accuracy. Reliability UAV Flight Operations for Mapping Precision. Accuracy. Reliability Part One: Why is Mapping different? Part Two: What about accuracy and precision? Part Three: What is the Workflow? Part Four: AGENDA What

More information

LiDAR QA/QC - Quantitative and Qualitative Assessment report -

LiDAR QA/QC - Quantitative and Qualitative Assessment report - LiDAR QA/QC - Quantitative and Qualitative Assessment report - CT T0009_LiDAR September 14, 2007 Submitted to: Roald Haested Inc. Prepared by: Fairfax, VA EXECUTIVE SUMMARY This LiDAR project covered approximately

More information

AIRBORNE LIDAR TECHNOLOGY FOR UTILITY MAPPING

AIRBORNE LIDAR TECHNOLOGY FOR UTILITY MAPPING GROUND DATA SOLUTIONS R&D SDN BHD Co. No-710842-H AIRBORNE LASER MAPPING REMOTE SENSING GEOGRAPHIC INFORMATION SYSTEM (GIS) ENGINEERING SURVEY AIRBORNE LIDAR TECHNOLOGY FOR UTILITY MAPPING PRESENTATION

More information

Surface Analysis with 3D Analyst

Surface Analysis with 3D Analyst 2013 Esri International User Conference July 8 12, 2013 San Diego, California Technical Workshop Surface Analysis with 3D Analyst Khalid H. Duri Esri UC2013. Technical Workshop. Why use 3D GIS? Because

More information

Mapping Project Report Table of Contents

Mapping Project Report Table of Contents LiDAR Estimation of Forest Leaf Structure, Terrain, and Hydrophysiology Airborne Mapping Project Report Principal Investigator: Katherine Windfeldt University of Minnesota-Twin cities 115 Green Hall 1530

More information

Managing Lidar and Photogrammetric Point Clouds. Lindsay Weitz Cody Benkelman

Managing Lidar and Photogrammetric Point Clouds. Lindsay Weitz Cody Benkelman and Photogrammetric Point Clouds Lindsay Weitz Cody Benkelman Presentation Context What is lidar, and how does it work? Not this presentation! What can you do with lidar in ArcGIS? What does Esri recommend

More information

AIRBORNE GEIGER MODE LIDAR - LATEST ADVANCEMENTS IN REMOTE SENSING APPLICATIONS RANDY RHOADS

AIRBORNE GEIGER MODE LIDAR - LATEST ADVANCEMENTS IN REMOTE SENSING APPLICATIONS RANDY RHOADS Place image here (10 x 3.5 ) AIRBORNE GEIGER MODE LIDAR - LATEST ADVANCEMENTS IN REMOTE SENSING APPLICATIONS RANDY RHOADS Geospatial Industry Manager HARRIS.COM #HARRISCORP Harris Company Information SECURITY

More information

Geological Society, London, Special Publications

Geological Society, London, Special Publications Geological Society, London, Special Publications LiDAR basics for natural resource mapping applications James D. Giglierano Geological Society, London, Special Publications 2010; v. 345; p. 103-115 doi:

More information

LiDAR Applications in Surveying and Engineering

LiDAR Applications in Surveying and Engineering LiDAR Applications in Surveying and Engineering 2013 NC GIS Conference Raleigh, NC Frank A. Alex Rankin, III PE, PLS What is LiDAR? Light Detection and Ranging Analogous to RADAR, but using a different

More information

LiDAR Remote Sensing Data Collection: Salmon River Study Area, Oregon

LiDAR Remote Sensing Data Collection: Salmon River Study Area, Oregon LiDAR Remote Sensing Data Collection: Salmon River Study Area, Oregon Submitted to: Barbara Ellis-Sugai USDA Forest Service Siuslaw National Forest 4077 SW Research Way Corvallis, Oregon 541.750.7056 Submitted

More information

Lidar Sensors, Today & Tomorrow. Christian Sevcik RIEGL Laser Measurement Systems

Lidar Sensors, Today & Tomorrow. Christian Sevcik RIEGL Laser Measurement Systems Lidar Sensors, Today & Tomorrow Christian Sevcik RIEGL Laser Measurement Systems o o o o Online Waveform technology Stand alone operation no field computer required Remote control through wireless network

More information

MODELLING FOREST CANOPY USING AIRBORNE LIDAR DATA

MODELLING FOREST CANOPY USING AIRBORNE LIDAR DATA MODELLING FOREST CANOPY USING AIRBORNE LIDAR DATA Jihn-Fa JAN (Taiwan) Associate Professor, Department of Land Economics National Chengchi University 64, Sec. 2, Chih-Nan Road, Taipei 116, Taiwan Telephone:

More information

Project Report Nooksack South Fork Lummi Indian Nation. Report Presented to:

Project Report Nooksack South Fork Lummi Indian Nation. Report Presented to: June 5, 2005 Project Report Nooksack South Fork Lummi Indian Nation Contract #2291-H Report Presented to: Lummi Indian Nation Natural Resources Department 2616 Kwina Road Bellingham, WA 98226 Point of

More information

Experiments on Generation of 3D Virtual Geographic Environment Based on Laser Scanning Technique

Experiments on Generation of 3D Virtual Geographic Environment Based on Laser Scanning Technique Experiments on Generation of 3D Virtual Geographic Environment Based on Laser Scanning Technique Jie Du 1, Fumio Yamazaki 2 Xiaoyong Chen 3 Apisit Eiumnoh 4, Michiro Kusanagi 3, R.P. Shrestha 4 1 School

More information