CMSC th Lecture: Graph Theory: Trees.

Size: px
Start display at page:

Download "CMSC th Lecture: Graph Theory: Trees."

Transcription

1 CMSC th Lecture: Graph Theory: Trees. Lecturer: Janos Simon December 2, Trees Definition 1. A tree is an acyclic connected graph. Trees have many nice properties. Theorem 2. The following are equivalent for n-vertex graphs G = (V, E): (i) G is a tree. (ii) G is acyclic and has n 1 edges (iii) G is connected and has n 1 edges (iv) G is connected but e E G {e} is not connected (v) x, y V! path from x to y (! means there is a unique ) Proof. These are relatively easy proofs, and there is a strong intuition behind them. For example, (v) implies that deleting any edge will separate the graph into 2 connected components, since if we delete an edge incident on x it will disconnect it from y as there is a unique path from x to y. The trick is to make all these implications formal. They were assigned as homework... (Hint: make the implications a directed cycle (5 proofs) as opposed to a complete graph (at least 10 proofs)!) 1

2 Trees are important because they capture the connectivity in the simplest possible way. They have the smallest number of edges that still make the graph connected. A spanning tree of a graph has the same set of vertices as the graph (it is a spanning subgraph) and the same connectivity. (It is an easy observation that a graph is connected iff it has a spanning tree. A (bad) proof of this is the following inefficient algorithm: while the graph remains connected we keep throwing out edges that do not disconnect the graph. When we cannot do this any more, the remaining graph is a spanning tree.) If we want to connect a bunch of computers, and have costs for buying pairwise connections, the cheapest solution will be a spanning tree. We will study efficient algorithms for such problems in Algorithms. 2 Rooted Trees These are the trees you may be familiar with from Computer Science... Rosen uses the following definition: Consider a tree T, and choose a vertex a of T. It will be the root of the rooted tree. Now orient all edges of T so that all paths lead away from the root. This is a rooted tree with root a. The inductive definition below is more elegant, and much more useful for proving properties of rooted trees. Definition 3. (Rooted Tree) A vertex r is a rooted tree with root r. It has depth 0. Let T 1, T 2, be rooted trees with roots r 1, r 2, r k and depths d 1, d 2 d k respectively, and let d = max i d i. Let r be a new vertex, and add directed edges (r, r 1 ), (r, r 2 ), (r, r k ). The resulting directed tree is a rooted tree T with root r and depth d + 1. There are natural definitions of child, parent, descendant and ancestor. A leaf is a vertex with outdegree 0. Non-leaf vertices are called internal vertices. A subtree rooted at an internal vertex a is the rooted tree consisting of the vertices reachable by directed paths from a to a leaf in T. Rooted trees are very useful representation of hierarchies with each element having a single boss. Examples: 2

3 Hierarchies in an organization Linnæus Classification of Organisms File Systems The Library of Congress book classification system Algebraic Formulas US Code: Title 26 (IRS rules) Definition 4. An m-ary tree is one where every vertex has outdegree at most m. It is full if the number of children is m if the vertex is not a leaf, and complete if all leaves are at the same distance (number of edges traversed) from the root. It is called a binary tree if m = 2. Unless specifically defined otherwise, the children are ordered: in binary trees there is a LEFT child and a RIGHT child. An easy induction shows that the number of leaves of a complete m-ary tree of depth d is m d, in particular for binary trees this is 2 d. This implies that the number of internal vertices is 2 d 1 by noting that there are 2 i vertices at depth i (by the argument that yielded 2 d leaves at level d), and remembering that d 1 i=0 = 2d 1. For trees that are not complete, m d is only an upper bound. Exercise: Draw a binary tree of depth d with O(d) leaves. 3 Traversing Binary Trees In many algorithms one needs to visit all vertices of a binary tree. By visit we mean doing something at each node. For concrete examples, in a file system, checking that all file permissions include a given group,; in a library catalog, collecting statistics about the fraction of books printed before the year 1700 that are on the stacks in the library (one would need to follow pointers from each record to get this information.) We can think of a methodical way to traverse the tree by noting that a natural way to go through the tree will use recursion: when we arrive at a vertex v we will explore the left subtree of v, upon returning we will explore the right subtree, then return to the call that generated exploring 3

4 the subtree rooted at v (if a subtree is empty, the recursive call is not made, and when returning from the root of the tree we are done.) So we arrive at each vertex 3 times: we have a choice of which of these times we visit the vertex. If we choose to visit before exploring the left subtree the algorithm is a preorder traversal, if we do it after returning from the left subtree it is an inorder traversal, and if we do it after returning from the right subtree it is a postorder traversal. The respective algorithms, PRE(), IN() and POST() are given below. PRE(r) Visit(r) PRE(LEFTCHILD) PRE(RIGHTCHILD) return IN(r) IN(LEFTCHILD) Visit(r) IN(RIGHTCHILD) return POST(r) POST(LEFTCHILD) POST(RIGHTCHILD) Visit(r) return Exercise: Draw a binary tree. Assign distinct letters to all vertices. In the programs above, consider visit(r) to mean print the letter at node r. List the orderings of letters you get from each traversal. 3.1 Applications of Postorder traversal Consider the formula (((x + y) (z u)) + 7) where we used a parenthesis to enclose every binary operation. There is a natural binary tree associated with the formula, where the internal nodes are the binary operations and the leaves are variables or constants. Compilers 4

5 transform expressions into their trees, which can be evaluated by the simple recursive program get the value of the left subtree get the value of the right subtree perform the operation Clearly, this corresponds to a postorder traversal of the tree. If we perform the Exercise proposed above on the tree, we will get the postorder listing xy + zu 7+ It should be clear that the notation above (expressions of the form operand1 operand2 operation ) is unambiguous and needs no parenthesis. It was invented by the Polish mathematician Lukasiewicz, and is known as Polish Notation (cf. Chinese Remainder Theorem ). It is an easy programming exercise to evaluate an expression given in Polish notation using a stack (Do it!). Nerdy comment: if we were taught Polish notation from elementary school, we would not need parenthesis More about binary tree traversal When traversing (rooted) binary trees, we need three pieces of information at each node: the LEFTCHILD pointer, the RIGHTCHILD pointer, and the PARENT pointer. Many algorithms do not need all three pointers. For example, if all we need is to go to the root given a leaf, we only need the PARENT pointer. In the traversal algorithms above, we avoided having explicitly the PAR- ENT pointer by using recursion (usually implemented by an additional stack.) Can we avoid using a stack? (of course we need to store this information somewhere, but we may be able to reuse to LEFTCHILD and RIGHTCHILD fields to hide the stack there... Challenging Hacking Question Using an extra bit per vertex, and having the ability to change the LEFTCHILD and RIGHTCHILD fields, write an algorithm that implements the postorder traversal algorithm POST() using only a constant number of registers. Even more challeging Implement an algorithm that will visit every vertex and return to the root. It may visit a vertex more than once, but it doesn t 5

6 use any extra bits at the vertices only the LEFTCHILD and RIGHTCHILD fields, and a constant number of external registers. 4 Representing Graphs in a Computer Adjacency Matrix Let G = (V, E). let V = v 1, v 2 v n. The adjacency matrix of G is an n n Boolean matrix A with A[i, j] = 1 iff (v i, v j ) E (for directed graphs for graphs A[i, j] = 1 iff {v i, v j } E.) Incidence Matrix Let G = (V, E). let V = v 1, v 2 v n and let E = e 1, e 2, e m. The incidence matrix I of G is an n m Boolean matrix with I[i, j] = 1 iff v i is incident with e j. For sparse graphs it is convenient to use an adjacency list: for every vertex v i we have a list of the vertices v k that v i is connected to. Adjacency lists are convenient because many graphs have o(n 2 ) edges, and an algorithm that uses an adjacency matrix must spend Ω(n 2 ) time to set up the adjacency matrix (A has n 2 entries.) Trees, planar graphs (graphs that one can draw on the plane without edges crossing), and many other interesting classes of graphs have a number of edges that is linear in the size of the graph, i.e. V + E which is Θ(n). There are many interesting linear (in n ) time algorithms for such graphs. 6

Section Summary. Introduction to Trees Rooted Trees Trees as Models Properties of Trees

Section Summary. Introduction to Trees Rooted Trees Trees as Models Properties of Trees Chapter 11 Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. Chapter Summary Introduction to Trees Applications

More information

Binary Trees

Binary Trees Binary Trees 4-7-2005 Opening Discussion What did we talk about last class? Do you have any code to show? Do you have any questions about the assignment? What is a Tree? You are all familiar with what

More information

Section 5.5. Left subtree The left subtree of a vertex V on a binary tree is the graph formed by the left child L of V, the descendents

Section 5.5. Left subtree The left subtree of a vertex V on a binary tree is the graph formed by the left child L of V, the descendents Section 5.5 Binary Tree A binary tree is a rooted tree in which each vertex has at most two children and each child is designated as being a left child or a right child. Thus, in a binary tree, each vertex

More information

Binary Trees, Binary Search Trees

Binary Trees, Binary Search Trees Binary Trees, Binary Search Trees Trees Linear access time of linked lists is prohibitive Does there exist any simple data structure for which the running time of most operations (search, insert, delete)

More information

Friday, March 30. Last time we were talking about traversal of a rooted ordered tree, having defined preorder traversal. We will continue from there.

Friday, March 30. Last time we were talking about traversal of a rooted ordered tree, having defined preorder traversal. We will continue from there. Friday, March 30 Last time we were talking about traversal of a rooted ordered tree, having defined preorder traversal. We will continue from there. Postorder traversal (recursive definition) If T consists

More information

Chapter Summary. Introduction to Trees Applications of Trees Tree Traversal Spanning Trees Minimum Spanning Trees

Chapter Summary. Introduction to Trees Applications of Trees Tree Traversal Spanning Trees Minimum Spanning Trees Trees Chapter 11 Chapter Summary Introduction to Trees Applications of Trees Tree Traversal Spanning Trees Minimum Spanning Trees Introduction to Trees Section 11.1 Section Summary Introduction to Trees

More information

March 20/2003 Jayakanth Srinivasan,

March 20/2003 Jayakanth Srinivasan, Definition : A simple graph G = (V, E) consists of V, a nonempty set of vertices, and E, a set of unordered pairs of distinct elements of V called edges. Definition : In a multigraph G = (V, E) two or

More information

7.1 Introduction. A (free) tree T is A simple graph such that for every pair of vertices v and w there is a unique path from v to w

7.1 Introduction. A (free) tree T is A simple graph such that for every pair of vertices v and w there is a unique path from v to w Chapter 7 Trees 7.1 Introduction A (free) tree T is A simple graph such that for every pair of vertices v and w there is a unique path from v to w Tree Terminology Parent Ancestor Child Descendant Siblings

More information

Graph Algorithms Using Depth First Search

Graph Algorithms Using Depth First Search Graph Algorithms Using Depth First Search Analysis of Algorithms Week 8, Lecture 1 Prepared by John Reif, Ph.D. Distinguished Professor of Computer Science Duke University Graph Algorithms Using Depth

More information

Introduction to Computers and Programming. Concept Question

Introduction to Computers and Programming. Concept Question Introduction to Computers and Programming Prof. I. K. Lundqvist Lecture 7 April 2 2004 Concept Question G1(V1,E1) A graph G(V, where E) is V1 a finite = {}, nonempty E1 = {} set of G2(V2,E2) vertices and

More information

Topics. Trees Vojislav Kecman. Which graphs are trees? Terminology. Terminology Trees as Models Some Tree Theorems Applications of Trees CMSC 302

Topics. Trees Vojislav Kecman. Which graphs are trees? Terminology. Terminology Trees as Models Some Tree Theorems Applications of Trees CMSC 302 Topics VCU, Department of Computer Science CMSC 302 Trees Vojislav Kecman Terminology Trees as Models Some Tree Theorems Applications of Trees Binary Search Tree Decision Tree Tree Traversal Spanning Trees

More information

Chapter 4 Trees. Theorem A graph G has a spanning tree if and only if G is connected.

Chapter 4 Trees. Theorem A graph G has a spanning tree if and only if G is connected. Chapter 4 Trees 4-1 Trees and Spanning Trees Trees, T: A simple, cycle-free, loop-free graph satisfies: If v and w are vertices in T, there is a unique simple path from v to w. Eg. Trees. Spanning trees:

More information

Graphs V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

Graphs V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Graphs and Trees 1 Graphs (simple) graph G = (V, ) consists of V, a nonempty set of vertices and, a set of unordered pairs of distinct vertices called edges. xamples V={,,,,} ={ (,),(,),(,), (,),(,),(,)}

More information

License. Discrete Mathematics. Tree. Topics. Definition tree: connected graph with no cycle. examples. c T. Uyar, A. Yayımlı, E.

License. Discrete Mathematics. Tree. Topics. Definition tree: connected graph with no cycle. examples. c T. Uyar, A. Yayımlı, E. License c 2001-2016 T. Uyar, A. Yayımlı, E. Harmancı Discrete Mathematics Trees H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı 2001-2016 You are free to: Share copy and redistribute the material

More information

Data Structure Lecture#10: Binary Trees (Chapter 5) U Kang Seoul National University

Data Structure Lecture#10: Binary Trees (Chapter 5) U Kang Seoul National University Data Structure Lecture#10: Binary Trees (Chapter 5) U Kang Seoul National University U Kang (2016) 1 In This Lecture The concept of binary tree, its terms, and its operations Full binary tree theorem Idea

More information

Trees : Part 1. Section 4.1. Theory and Terminology. A Tree? A Tree? Theory and Terminology. Theory and Terminology

Trees : Part 1. Section 4.1. Theory and Terminology. A Tree? A Tree? Theory and Terminology. Theory and Terminology Trees : Part Section. () (2) Preorder, Postorder and Levelorder Traversals Definition: A tree is a connected graph with no cycles Consequences: Between any two vertices, there is exactly one unique path

More information

Chapter 10: Trees. A tree is a connected simple undirected graph with no simple circuits.

Chapter 10: Trees. A tree is a connected simple undirected graph with no simple circuits. Chapter 10: Trees A tree is a connected simple undirected graph with no simple circuits. Properties: o There is a unique simple path between any 2 of its vertices. o No loops. o No multiple edges. Example

More information

Trees. Introduction & Terminology. February 05, 2018 Cinda Heeren / Geoffrey Tien 1

Trees. Introduction & Terminology. February 05, 2018 Cinda Heeren / Geoffrey Tien 1 Trees Introduction & Terminology Cinda Heeren / Geoffrey Tien 1 Review: linked lists Linked lists are constructed out of nodes, consisting of a data element a pointer to another node Lists are constructed

More information

Trees. Q: Why study trees? A: Many advance ADTs are implemented using tree-based data structures.

Trees. Q: Why study trees? A: Many advance ADTs are implemented using tree-based data structures. Trees Q: Why study trees? : Many advance DTs are implemented using tree-based data structures. Recursive Definition of (Rooted) Tree: Let T be a set with n 0 elements. (i) If n = 0, T is an empty tree,

More information

Lecture Notes 16 - Trees CSS 501 Data Structures and Object-Oriented Programming Professor Clark F. Olson

Lecture Notes 16 - Trees CSS 501 Data Structures and Object-Oriented Programming Professor Clark F. Olson Lecture Notes 16 - Trees CSS 501 Data Structures and Object-Oriented Programming Professor Clark F. Olson Reading: Carrano, Chapter 15 Introduction to trees The data structures we have seen so far to implement

More information

Binary search trees. Binary search trees are data structures based on binary trees that support operations on dynamic sets.

Binary search trees. Binary search trees are data structures based on binary trees that support operations on dynamic sets. COMP3600/6466 Algorithms 2018 Lecture 12 1 Binary search trees Reading: Cormen et al, Sections 12.1 to 12.3 Binary search trees are data structures based on binary trees that support operations on dynamic

More information

3. According to universal addressing, what is the address of vertex d? 4. According to universal addressing, what is the address of vertex f?

3. According to universal addressing, what is the address of vertex d? 4. According to universal addressing, what is the address of vertex f? 1. Prove: A full m-ary tree with i internal vertices contains n = mi + 1 vertices. 2. For a full m-ary tree with n vertices, i internal vertices, and l leaves, prove: (i) i = (n 1)/m and l = [(m 1)n +

More information

UNIT IV -NON-LINEAR DATA STRUCTURES 4.1 Trees TREE: A tree is a finite set of one or more nodes such that there is a specially designated node called the Root, and zero or more non empty sub trees T1,

More information

Why Do We Need Trees?

Why Do We Need Trees? CSE 373 Lecture 6: Trees Today s agenda: Trees: Definition and terminology Traversing trees Binary search trees Inserting into and deleting from trees Covered in Chapter 4 of the text Why Do We Need Trees?

More information

Trees. 3. (Minimally Connected) G is connected and deleting any of its edges gives rise to a disconnected graph.

Trees. 3. (Minimally Connected) G is connected and deleting any of its edges gives rise to a disconnected graph. Trees 1 Introduction Trees are very special kind of (undirected) graphs. Formally speaking, a tree is a connected graph that is acyclic. 1 This definition has some drawbacks: given a graph it is not trivial

More information

4 Basics of Trees. Petr Hliněný, FI MU Brno 1 FI: MA010: Trees and Forests

4 Basics of Trees. Petr Hliněný, FI MU Brno 1 FI: MA010: Trees and Forests 4 Basics of Trees Trees, actually acyclic connected simple graphs, are among the simplest graph classes. Despite their simplicity, they still have rich structure and many useful application, such as in

More information

CS204 Discrete Mathematics. 11 Trees. 11 Trees

CS204 Discrete Mathematics. 11 Trees. 11 Trees 11.1 Introduction to Trees Def. 1 A tree T = (V, E) is a connected undirected graph with no simple circuits. acyclic connected graph. forest a set of trees. A vertex of degree one is called leaf. Thm.

More information

Definition of Graphs and Trees. Representation of Trees.

Definition of Graphs and Trees. Representation of Trees. Definition of Graphs and Trees. Representation of Trees. Chapter 6 Definition of graphs (I) A directed graph or digraph is a pair G = (V,E) s.t.: V is a finite set called the set of vertices of G. E V

More information

Trees Algorhyme by Radia Perlman

Trees Algorhyme by Radia Perlman Algorhyme by Radia Perlman I think that I shall never see A graph more lovely than a tree. A tree whose crucial property Is loop-free connectivity. A tree which must be sure to span. So packets can reach

More information

BACKGROUND: A BRIEF INTRODUCTION TO GRAPH THEORY

BACKGROUND: A BRIEF INTRODUCTION TO GRAPH THEORY BACKGROUND: A BRIEF INTRODUCTION TO GRAPH THEORY General definitions; Representations; Graph Traversals; Topological sort; Graphs definitions & representations Graph theory is a fundamental tool in sparse

More information

CSC148 Week 6. Larry Zhang

CSC148 Week 6. Larry Zhang CSC148 Week 6 Larry Zhang 1 Announcements Test 1 coverage: trees (topic of today and Wednesday) are not covered Assignment 1 slides posted on the course website. 2 Data Structures 3 Data Structures A data

More information

Trees. CSE 373 Data Structures

Trees. CSE 373 Data Structures Trees CSE 373 Data Structures Readings Reading Chapter 7 Trees 2 Why Do We Need Trees? Lists, Stacks, and Queues are linear relationships Information often contains hierarchical relationships File directories

More information

Trees. (Trees) Data Structures and Programming Spring / 28

Trees. (Trees) Data Structures and Programming Spring / 28 Trees (Trees) Data Structures and Programming Spring 2018 1 / 28 Trees A tree is a collection of nodes, which can be empty (recursive definition) If not empty, a tree consists of a distinguished node r

More information

Data Structure. IBPS SO (IT- Officer) Exam 2017

Data Structure. IBPS SO (IT- Officer) Exam 2017 Data Structure IBPS SO (IT- Officer) Exam 2017 Data Structure: In computer science, a data structure is a way of storing and organizing data in a computer s memory so that it can be used efficiently. Data

More information

Elements of Graph Theory

Elements of Graph Theory Elements of Graph Theory Quick review of Chapters 9.1 9.5, 9.7 (studied in Mt1348/2008) = all basic concepts must be known New topics we will mostly skip shortest paths (Chapter 9.6), as that was covered

More information

Jana Kosecka. Red-Black Trees Graph Algorithms. Many slides here are based on E. Demaine, D. Luebke slides

Jana Kosecka. Red-Black Trees Graph Algorithms. Many slides here are based on E. Demaine, D. Luebke slides Jana Kosecka Red-Black Trees Graph Algorithms Many slides here are based on E. Demaine, D. Luebke slides Binary Search Trees (BSTs) are an important data structure for dynamic sets In addition to satellite

More information

Lec 17 April 8. Topics: binary Trees expression trees. (Chapter 5 of text)

Lec 17 April 8. Topics: binary Trees expression trees. (Chapter 5 of text) Lec 17 April 8 Topics: binary Trees expression trees Binary Search Trees (Chapter 5 of text) Trees Linear access time of linked lists is prohibitive Heap can t support search in O(log N) time. (takes O(N)

More information

CSCI2100B Data Structures Trees

CSCI2100B Data Structures Trees CSCI2100B Data Structures Trees Irwin King king@cse.cuhk.edu.hk http://www.cse.cuhk.edu.hk/~king Department of Computer Science & Engineering The Chinese University of Hong Kong Introduction General Tree

More information

Lecture 2 - Graph Theory Fundamentals - Reachability and Exploration 1

Lecture 2 - Graph Theory Fundamentals - Reachability and Exploration 1 CME 305: Discrete Mathematics and Algorithms Instructor: Professor Aaron Sidford (sidford@stanford.edu) January 11, 2018 Lecture 2 - Graph Theory Fundamentals - Reachability and Exploration 1 In this lecture

More information

CE 221 Data Structures and Algorithms

CE 221 Data Structures and Algorithms CE 221 Data Structures and Algorithms Chapter 4: Trees (Binary) Text: Read Weiss, 4.1 4.2 Izmir University of Economics 1 Preliminaries - I (Recursive) Definition: A tree is a collection of nodes. The

More information

Binary search trees 3. Binary search trees. Binary search trees 2. Reading: Cormen et al, Sections 12.1 to 12.3

Binary search trees 3. Binary search trees. Binary search trees 2. Reading: Cormen et al, Sections 12.1 to 12.3 Binary search trees Reading: Cormen et al, Sections 12.1 to 12.3 Binary search trees 3 Binary search trees are data structures based on binary trees that support operations on dynamic sets. Each element

More information

Hamilton paths & circuits. Gray codes. Hamilton Circuits. Planar Graphs. Hamilton circuits. 10 Nov 2015

Hamilton paths & circuits. Gray codes. Hamilton Circuits. Planar Graphs. Hamilton circuits. 10 Nov 2015 Hamilton paths & circuits Def. A path in a multigraph is a Hamilton path if it visits each vertex exactly once. Def. A circuit that is a Hamilton path is called a Hamilton circuit. Hamilton circuits Constructing

More information

COMP 250 Fall binary trees Oct. 27, 2017

COMP 250 Fall binary trees Oct. 27, 2017 The order of a (rooted) tree is the maximum number of children of any node. A tree of order n is called an n-ary tree. It is very common to use trees of order 2. These are called binary trees. Binary Trees

More information

Tree. A path is a connected sequence of edges. A tree topology is acyclic there is no loop.

Tree. A path is a connected sequence of edges. A tree topology is acyclic there is no loop. Tree A tree consists of a set of nodes and a set of edges connecting pairs of nodes. A tree has the property that there is exactly one path (no more, no less) between any pair of nodes. A path is a connected

More information

Trees. Truong Tuan Anh CSE-HCMUT

Trees. Truong Tuan Anh CSE-HCMUT Trees Truong Tuan Anh CSE-HCMUT Outline Basic concepts Trees Trees A tree consists of a finite set of elements, called nodes, and a finite set of directed lines, called branches, that connect the nodes

More information

Data Structure - Binary Tree 1 -

Data Structure - Binary Tree 1 - Data Structure - Binary Tree 1 - Hanyang University Jong-Il Park Basic Tree Concepts Logical structures Chap. 2~4 Chap. 5 Chap. 6 Linear list Tree Graph Linear structures Non-linear structures Linear Lists

More information

Garbage Collection: recycling unused memory

Garbage Collection: recycling unused memory Outline backtracking garbage collection trees binary search trees tree traversal binary search tree algorithms: add, remove, traverse binary node class 1 Backtracking finding a path through a maze is an

More information

This course is intended for 3rd and/or 4th year undergraduate majors in Computer Science.

This course is intended for 3rd and/or 4th year undergraduate majors in Computer Science. Lecture 9 Graphs This course is intended for 3rd and/or 4th year undergraduate majors in Computer Science. You need to be familiar with the design and use of basic data structures such as Lists, Stacks,

More information

Programming II (CS300)

Programming II (CS300) 1 Programming II (CS300) Chapter 11: Binary Search Trees MOUNA KACEM mouna@cs.wisc.edu Fall 2018 General Overview of Data Structures 2 Introduction to trees 3 Tree: Important non-linear data structure

More information

Chapter 20: Binary Trees

Chapter 20: Binary Trees Chapter 20: Binary Trees 20.1 Definition and Application of Binary Trees Definition and Application of Binary Trees Binary tree: a nonlinear linked list in which each node may point to 0, 1, or two other

More information

Upcoming ACM Events Linux Crash Course Date: Time: Location: Weekly Crack the Coding Interview Date:

Upcoming ACM Events Linux Crash Course Date: Time: Location: Weekly Crack the Coding Interview Date: Upcoming ACM Events Linux Crash Course Date: Oct. 2nd and 3rd Time: 1:15 pm - 3:15 pm Location: UW1-210 (10/02) and UW1-221 (10/03) Weekly Crack the Coding Interview Date: Weekly Fridays from Oct. 5th

More information

COSC 2007 Data Structures II Final Exam. Part 1: multiple choice (1 mark each, total 30 marks, circle the correct answer)

COSC 2007 Data Structures II Final Exam. Part 1: multiple choice (1 mark each, total 30 marks, circle the correct answer) COSC 2007 Data Structures II Final Exam Thursday, April 13 th, 2006 This is a closed book and closed notes exam. There are total 3 parts. Please answer the questions in the provided space and use back

More information

There are many other applications like constructing the expression tree from the postorder expression. I leave you with an idea as how to do it.

There are many other applications like constructing the expression tree from the postorder expression. I leave you with an idea as how to do it. Programming, Data Structures and Algorithms Prof. Hema Murthy Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 49 Module 09 Other applications: expression tree

More information

Warm Up. Use Kruskal s algorithm to find the minimum spanning tree and it s weight.

Warm Up. Use Kruskal s algorithm to find the minimum spanning tree and it s weight. Warm Up Use Kruskal s algorithm to find the minimum spanning tree and it s weight. Edge Weight (1,4) 1 (6,7) 1 (1,2) 2 (3,4) 2 (2,4) 3 (1,3) 4 (4,7) 4 (3,6) 5 (5,7) 6 1 Section 5.6 Binary Trees, Expression

More information

BBM 201 Data structures

BBM 201 Data structures BBM 201 Data structures Lecture 11: Trees 2018-2019 Fall Content Terminology The Binary Tree The Binary Search Tree Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, 2013

More information

implementing the breadth-first search algorithm implementing the depth-first search algorithm

implementing the breadth-first search algorithm implementing the depth-first search algorithm Graph Traversals 1 Graph Traversals representing graphs adjacency matrices and adjacency lists 2 Implementing the Breadth-First and Depth-First Search Algorithms implementing the breadth-first search algorithm

More information

Abstract Data Structures IB Computer Science. Content developed by Dartford Grammar School Computer Science Department

Abstract Data Structures IB Computer Science. Content developed by Dartford Grammar School Computer Science Department Abstract Data Structures IB Computer Science Content developed by Dartford Grammar School Computer Science Department HL Topics 1-7, D1-4 1: System design 2: Computer Organisation 3: Networks 4: Computational

More information

Discrete mathematics

Discrete mathematics Discrete mathematics Petr Kovář petr.kovar@vsb.cz VŠB Technical University of Ostrava DiM 470-2301/02, Winter term 2018/2019 About this file This file is meant to be a guideline for the lecturer. Many

More information

Algorithms and Data Structures (INF1) Lecture 8/15 Hua Lu

Algorithms and Data Structures (INF1) Lecture 8/15 Hua Lu Algorithms and Data Structures (INF1) Lecture 8/15 Hua Lu Department of Computer Science Aalborg University Fall 2007 This Lecture Trees Basics Rooted trees Binary trees Binary tree ADT Tree traversal

More information

Trees and Graphs Shabsi Walfish NYU - Fundamental Algorithms Summer 2006

Trees and Graphs Shabsi Walfish NYU - Fundamental Algorithms Summer 2006 Trees and Graphs Basic Definitions Tree: Any connected, acyclic graph G = (V,E) E = V -1 n-ary Tree: Tree s/t all vertices of degree n+1 A root has degree n Binary Search Tree: A binary tree such that

More information

Binary Trees. Height 1

Binary Trees. Height 1 Binary Trees Definitions A tree is a finite set of one or more nodes that shows parent-child relationship such that There is a special node called root Remaining nodes are portioned into subsets T1,T2,T3.

More information

Trees and Tree Traversals. Binary Trees. COMP 210: Object-Oriented Programming Lecture Notes 8. Based on notes by Logan Mayfield

Trees and Tree Traversals. Binary Trees. COMP 210: Object-Oriented Programming Lecture Notes 8. Based on notes by Logan Mayfield OMP 210: Object-Oriented Programming Lecture Notes 8 Trees and Tree Traversals ased on notes by Logan Mayfield In these notes we look at inary Trees and how to traverse them. inary Trees Imagine a list.

More information

Search Trees. Undirected graph Directed graph Tree Binary search tree

Search Trees. Undirected graph Directed graph Tree Binary search tree Search Trees Undirected graph Directed graph Tree Binary search tree 1 Binary Search Tree Binary search key property: Let x be a node in a binary search tree. If y is a node in the left subtree of x, then

More information

Why Use Binary Trees? Data Structures - Binary Trees 1. Trees (Contd.) Trees

Why Use Binary Trees? Data Structures - Binary Trees 1. Trees (Contd.) Trees Why Use Binary Trees? - Binary Trees 1 Dr. TGI Fernando 1 2 February 24, 2012 Fundamental data structure Combines the advantages of an ordered array and a linked list. You can search an ordered array quickly

More information

Data Structures - Binary Trees 1

Data Structures - Binary Trees 1 Data Structures - Binary Trees 1 Dr. TGI Fernando 1 2 February 24, 2012 1 Email: gishantha@dscs.sjp.ac.lk 2 URL: http://tgifernando.wordpress.com/ Dr. TGI Fernando () Data Structures - Binary Trees 1 February

More information

Trees! Ellen Walker! CPSC 201 Data Structures! Hiram College!

Trees! Ellen Walker! CPSC 201 Data Structures! Hiram College! Trees! Ellen Walker! CPSC 201 Data Structures! Hiram College! ADTʼs Weʼve Studied! Position-oriented ADT! List! Stack! Queue! Value-oriented ADT! Sorted list! All of these are linear! One previous item;

More information

Tree Structures. A hierarchical data structure whose point of entry is the root node

Tree Structures. A hierarchical data structure whose point of entry is the root node Binary Trees 1 Tree Structures A tree is A hierarchical data structure whose point of entry is the root node This structure can be partitioned into disjoint subsets These subsets are themselves trees and

More information

Lecture 3: Graphs and flows

Lecture 3: Graphs and flows Chapter 3 Lecture 3: Graphs and flows Graphs: a useful combinatorial structure. Definitions: graph, directed and undirected graph, edge as ordered pair, path, cycle, connected graph, strongly connected

More information

CSI33 Data Structures

CSI33 Data Structures Outline Department of Mathematics and Computer Science Bronx Community College November 13, 2017 Outline Outline 1 C++ Supplement.1: Trees Outline C++ Supplement.1: Trees 1 C++ Supplement.1: Trees Uses

More information

Binary Tree. Preview. Binary Tree. Binary Tree. Binary Search Tree 10/2/2017. Binary Tree

Binary Tree. Preview. Binary Tree. Binary Tree. Binary Search Tree 10/2/2017. Binary Tree 0/2/ Preview Binary Tree Tree Binary Tree Property functions In-order walk Pre-order walk Post-order walk Search Tree Insert an element to the Tree Delete an element form the Tree A binary tree is a tree

More information

12/5/17. trees. CS 220: Discrete Structures and their Applications. Trees Chapter 11 in zybooks. rooted trees. rooted trees

12/5/17. trees. CS 220: Discrete Structures and their Applications. Trees Chapter 11 in zybooks. rooted trees. rooted trees trees CS 220: Discrete Structures and their Applications A tree is an undirected graph that is connected and has no cycles. Trees Chapter 11 in zybooks rooted trees Rooted trees. Given a tree T, choose

More information

12 Abstract Data Types

12 Abstract Data Types 12 Abstract Data Types 12.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: Define the concept of an abstract data type (ADT). Define

More information

Algorithms and Data Structures

Algorithms and Data Structures Lesson 3: trees and visits Luciano Bononi http://www.cs.unibo.it/~bononi/ (slide credits: these slides are a revised version of slides created by Dr. Gabriele D Angelo) International

More information

CSI 604 Elementary Graph Algorithms

CSI 604 Elementary Graph Algorithms CSI 604 Elementary Graph Algorithms Ref: Chapter 22 of the text by Cormen et al. (Second edition) 1 / 25 Graphs: Basic Definitions Undirected Graph G(V, E): V is set of nodes (or vertices) and E is the

More information

CSCE f(n) = Θ(g(n)), if f(n) = O(g(n)) and f(n) = Ω(g(n)).

CSCE f(n) = Θ(g(n)), if f(n) = O(g(n)) and f(n) = Ω(g(n)). CSCE 3110 Asymptotic Notations Let f and g be functions on real numbers. Then: f(n) = O(g(n)), if there are constants c and n 0 so that f(n) cg(n)), for n n 0. f(n) = Ω(g(n)), if there are constants c

More information

Data Structures Question Bank Multiple Choice

Data Structures Question Bank Multiple Choice Section 1. Fundamentals: Complexity, Algorthm Analysis 1. An algorithm solves A single problem or function Multiple problems or functions Has a single programming language implementation 2. A solution

More information

4 Fractional Dimension of Posets from Trees

4 Fractional Dimension of Posets from Trees 57 4 Fractional Dimension of Posets from Trees In this last chapter, we switch gears a little bit, and fractionalize the dimension of posets We start with a few simple definitions to develop the language

More information

Chapter 3 Trees. Theorem A graph T is a tree if, and only if, every two distinct vertices of T are joined by a unique path.

Chapter 3 Trees. Theorem A graph T is a tree if, and only if, every two distinct vertices of T are joined by a unique path. Chapter 3 Trees Section 3. Fundamental Properties of Trees Suppose your city is planning to construct a rapid rail system. They want to construct the most economical system possible that will meet the

More information

CS61B Lecture #20: Trees. Last modified: Mon Oct 8 21:21: CS61B: Lecture #20 1

CS61B Lecture #20: Trees. Last modified: Mon Oct 8 21:21: CS61B: Lecture #20 1 CS61B Lecture #20: Trees Last modified: Mon Oct 8 21:21:22 2018 CS61B: Lecture #20 1 A Recursive Structure Trees naturally represent recursively defined, hierarchical objects with more than one recursive

More information

Computer Science 210 Data Structures Siena College Fall Topic Notes: Trees

Computer Science 210 Data Structures Siena College Fall Topic Notes: Trees Computer Science 0 Data Structures Siena College Fall 08 Topic Notes: Trees We ve spent a lot of time looking at a variety of structures where there is a natural linear ordering of the elements in arrays,

More information

Outline. Preliminaries. Binary Trees Binary Search Trees. What is Tree? Implementation of Trees using C++ Tree traversals and applications

Outline. Preliminaries. Binary Trees Binary Search Trees. What is Tree? Implementation of Trees using C++ Tree traversals and applications Trees 1 Outline Preliminaries What is Tree? Implementation of Trees using C++ Tree traversals and applications Binary Trees Binary Search Trees Structure and operations Analysis 2 What is a Tree? A tree

More information

CHAPTER 11 Trees. 294 Chapter 11 Trees. f) This is a tree since it is connected and has no simple circuits.

CHAPTER 11 Trees. 294 Chapter 11 Trees. f) This is a tree since it is connected and has no simple circuits. 294 Chapter 11 Trees SECTION 11.1 Introduction to Trees CHAPTER 11 Trees 2. a) This is a tree since it is connected and has no simple circuits. b) This is a tree since it is connected and has no simple

More information

Binary Trees. BSTs. For example: Jargon: Data Structures & Algorithms. root node. level: internal node. edge.

Binary Trees. BSTs. For example: Jargon: Data Structures & Algorithms. root node. level: internal node. edge. Binary Trees 1 A binary tree is either empty, or it consists of a node called the root together with two binary trees called the left subtree and the right subtree of the root, which are disjoint from

More information

Binary Tree. Binary tree terminology. Binary tree terminology Definition and Applications of Binary Trees

Binary Tree. Binary tree terminology. Binary tree terminology Definition and Applications of Binary Trees Binary Tree (Chapter 0. Starting Out with C++: From Control structures through Objects, Tony Gaddis) Le Thanh Huong School of Information and Communication Technology Hanoi University of Technology 11.1

More information

TREES. Trees - Introduction

TREES. Trees - Introduction TREES Chapter 6 Trees - Introduction All previous data organizations we've studied are linear each element can have only one predecessor and successor Accessing all elements in a linear sequence is O(n)

More information

Data Structures. Trees. By Dr. Mohammad Ali H. Eljinini. M.A. Eljinini, PhD

Data Structures. Trees. By Dr. Mohammad Ali H. Eljinini. M.A. Eljinini, PhD Data Structures Trees By Dr. Mohammad Ali H. Eljinini Trees Are collections of items arranged in a tree like data structure (none linear). Items are stored inside units called nodes. However: We can use

More information

Course Review for. Cpt S 223 Fall Cpt S 223. School of EECS, WSU

Course Review for. Cpt S 223 Fall Cpt S 223. School of EECS, WSU Course Review for Midterm Exam 1 Cpt S 223 Fall 2011 1 Midterm Exam 1 When: Friday (10/14) 1:10-2pm Where: in class Closed book, closed notes Comprehensive Material for preparation: Lecture slides & in-class

More information

We will show that the height of a RB tree on n vertices is approximately 2*log n. In class I presented a simple structural proof of this claim:

We will show that the height of a RB tree on n vertices is approximately 2*log n. In class I presented a simple structural proof of this claim: We have seen that the insert operation on a RB takes an amount of time proportional to the number of the levels of the tree (since the additional operations required to do any rebalancing require constant

More information

v V Question: How many edges are there in a graph with 10 vertices each of degree 6?

v V Question: How many edges are there in a graph with 10 vertices each of degree 6? ECS20 Handout Graphs and Trees March 4, 2015 (updated 3/9) Notion of a graph 1. A graph G = (V,E) consists of V, a nonempty set of vertices (or nodes) and E, a set of pairs of elements of V called edges.

More information

Binary Trees. Examples:

Binary Trees. Examples: Binary Trees A tree is a data structure that is made of nodes and pointers, much like a linked list. The difference between them lies in how they are organized: In a linked list each node is connected

More information

Figure 4.1: The evolution of a rooted tree.

Figure 4.1: The evolution of a rooted tree. 106 CHAPTER 4. INDUCTION, RECURSION AND RECURRENCES 4.6 Rooted Trees 4.6.1 The idea of a rooted tree We talked about how a tree diagram helps us visualize merge sort or other divide and conquer algorithms.

More information

Trees and Binary Trees

Trees and Binary Trees Trees and Binary Trees Become Rich Force Others to be Poor Rob Banks Stock Fraud The class notes are a compilation and edition from many sources. The instructor does not claim intellectual property or

More information

CS 234. Module 5. October 18, CS 234 Module 5 ADTS with items related by structure 1 / 25

CS 234. Module 5. October 18, CS 234 Module 5 ADTS with items related by structure 1 / 25 CS 234 Module 5 October 18, 2018 CS 234 Module 5 ADTS with items related by structure 1 / 25 ADTs representing structure We have seen ADTs where: There is no relation among items. Items are orderable types

More information

Prelim 2. CS 2110, November 20, 2014, 7:30 PM Extra Total Question True/False Short Answer

Prelim 2. CS 2110, November 20, 2014, 7:30 PM Extra Total Question True/False Short Answer Prelim 2 CS 2110, November 20, 2014, 7:30 PM 1 2 3 4 5 Extra Total Question True/False Short Answer Complexity Induction Trees Graphs Extra Credit Max 20 10 15 25 30 5 100 Score Grader The exam is closed

More information

Binary Heaps in Dynamic Arrays

Binary Heaps in Dynamic Arrays Yufei Tao ITEE University of Queensland We have already learned that the binary heap serves as an efficient implementation of a priority queue. Our previous discussion was based on pointers (for getting

More information

Announcements. HW3 is graded. Average is 81%

Announcements. HW3 is graded. Average is 81% CSC263 Week 9 Announcements HW3 is graded. Average is 81% Announcements Problem Set 4 is due this Tuesday! Due Tuesday (Nov 17) Recap The Graph ADT definition and data structures BFS gives us single-source

More information

CSE 417: Algorithms and Computational Complexity. 3.1 Basic Definitions and Applications. Goals. Chapter 3. Winter 2012 Graphs and Graph Algorithms

CSE 417: Algorithms and Computational Complexity. 3.1 Basic Definitions and Applications. Goals. Chapter 3. Winter 2012 Graphs and Graph Algorithms Chapter 3 CSE 417: Algorithms and Computational Complexity Graphs Reading: 3.1-3.6 Winter 2012 Graphs and Graph Algorithms Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

More information

Foundations of Discrete Mathematics

Foundations of Discrete Mathematics Foundations of Discrete Mathematics Chapter 12 By Dr. Dalia M. Gil, Ph.D. Trees Tree are useful in computer science, where they are employed in a wide range of algorithms. They are used to construct efficient

More information

Foundations of Computer Science Spring Mathematical Preliminaries

Foundations of Computer Science Spring Mathematical Preliminaries Foundations of Computer Science Spring 2017 Equivalence Relation, Recursive Definition, and Mathematical Induction Mathematical Preliminaries Mohammad Ashiqur Rahman Department of Computer Science College

More information

Lecture 32. No computer use today. Reminders: Homework 11 is due today. Project 6 is due next Friday. Questions?

Lecture 32. No computer use today. Reminders: Homework 11 is due today. Project 6 is due next Friday. Questions? Lecture 32 No computer use today. Reminders: Homework 11 is due today. Project 6 is due next Friday. Questions? Friday, April 1 CS 215 Fundamentals of Programming II - Lecture 32 1 Outline Introduction

More information