Math Parametric Surfaces

Size: px
Start display at page:

Download "Math Parametric Surfaces"

Transcription

1 Math 13 - Parametric Surfaces Peter A. Perry University of Kentucky April 15, 019

2 Homework Homework D is due Wednesday Work on Stewart problems for 16.6: 1-5 odd, 33, odd Read section 16.7 for Wednesday, Aprll 17 Remember that Dr. Perry will be out of the office April Your lecturer will be Mr. Shane Clark

3 Unit IV: Vector Calculus Lecture 36 Lecture 37 Lecture 38 Lecture 39 Lecture 40 Lecture 41 Lecture 4 Curl and Divergence Parametric Surfaces Surface Integrals Stokes Theorem The Divergence Theorem Final Review, Part I Final Review, Part II

4 Goals of the Day This lecture is about parametric surfaces. You ll learn: How to define and visualize parametric surfaces How to find the tangent plane to a parametric surface at a point How to compute the surface area of a parametric surface using double integrals

5 Parametric Curves and Parametric Surfaces Parametric Curve Parametric Surface A parametric curve in R 3 is given by r(t) = x(t)i + y(t)j + z(t)k where a t b There is one parameter, because a curve is a one-dimensional object There are three component functions, because the curve lives in threedimensional space. A parametric surface in R 3 is given by r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k where (u, v) lie in a region D of the uv plane. There are two parameters, because a surface is a two-dimensional object There are three component functions, because the surface lives in threedimensional space.

6 You Are Living on a Parametric Surface Let u be your latitude (in radians, for this course) Let v be your longitude (in radians) Let R be the surface of the Earth Your position is r(u, v) = R cos(v) cos(u)i + R cos(v) sin(u)j + R sin(v)k π/ v 0 π u π/

7 More Parameterized Surfaces: Planes z y Find a parameteric representation for the plane through 1, 0, 1 that contains the vectors, 0, 1 and 0,, 0 x

8 More Parameterized Surfaces: Planes z y Find a parameteric representation for the plane through 1, 0, 1 that contains the vectors, 0, 1 and 0,, 0 Solution: Let r 0 = 1, 0, 1. Any point in the plane is given by r(s, t) = 1, 0, 1 + s, 0, 1 + t 0,, 0 x

9 More Parameterized Surfaces: Planes z y Find a parameteric representation for the plane through 1, 0, 1 that contains the vectors, 0, 1 and 0,, 0 Solution: Let r 0 = 1, 0, 1. Any point in the plane is given by r(s, t) = 1, 0, 1 + s, 0, 1 + t 0,, 0 x Now you try it: Find a parameteric representation for the plane through the point (0, 1, 5) that contains the vectors, 1, 4 and 3,, 5.

10 More Parameterized Surfaces: The Cylinder v r(u, v) = r cos(u)i + r sin(u)j + vk D = {(u, v) : 0 u π, 0 v h} u parameterizes a cylinder of radius r and height h

11 More Parameterized Surfaces: The Cylinder v r(u, v) = r cos(u)i + r sin(u)j + vk D = {(u, v) : 0 u π, 0 v h} u parameterizes a cylinder of radius r and height h If we fix v and vary u over the cylinder, we trace out a circle

12 More Parameterized Surfaces: The Cylinder v r(u, v) = r cos(u)i + r sin(u)j + vk D = {(u, v) : 0 u π, 0 v h} u parameterizes a cylinder of radius r and height h If we fix v and vary u over the cylinder, we trace out a circle If we fix u and vary v, we trace out a vertical line

13 More Parameterized Surfaces: The Cylinder v r(u, v) = r cos(u)i + r sin(u)j + vk D = {(u, v) : 0 u π, 0 v h} u parameterizes a cylinder of radius r and height h If we fix v and vary u over the cylinder, we trace out a circle If we fix u and vary v, we trace out a vertical line Each of these curves has a tangent vector: r u (u, v) = r sin(u)i + r cos(u)j r v (u, v) = k

14 More Parameterized Surfaces: The Cylinder v r(u, v) = r cos(u)i + r sin(u)j + vk D = {(u, v) : 0 u π, 0 v h} u parameterizes a cylinder of radius r and height h The two tangent vectors r u (u, v) = r sin(u)i + r cos(u)j r v (u, v) = k span the tangent plane to the cylinder at the given point

15 The Tangent Vectors r u and r v Suppose r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k (u, v) D is a parameterized surface. At a point P 0 = r(u 0, v 0 ), the vectors r u (u 0, v 0 ) = x u (u 0, v 0 )i + y u (u 0, v 0 )j + z u (u 0, v 0 )k r v (u 0, v 0 ) = x v (u 0, v 0 )i + y v (u 0, v 0 )j + z v (u 0, v 0 )k are both tangent to the surface.

16 The Tangent Plane r u (u 0, v 0 ) = x u (u 0, v 0 )i + y u (u 0, v 0 )j + z u (u 0, v 0 )k r v (u 0, v 0 ) = x v (u 0, v 0 )i + y v (u 0, v 0 )j + z v (u 0, v 0 )k The tangent plane to a parameterized surface at P 0 = r(u 0, v 0 ) is the plane passing through P 0 and perpendicular to r u (u 0, v 0 ) r v (u 0 v 0 ). Find the equation of the tangent plane to the surface at u = 1, v = 0. r(u, v) = u i + u sin vj + u cos vk

17 The Tangent Plane

18 The Tangent Plane r(u, v) = u, u sin v, u cos v r u (u, v) = u, sin v, cos v r v (u, v) = 0, u cos v, u sin v

19 The Tangent Plane r(u, v) = u, u sin v, u cos v r u (u, v) = u, sin v, cos v r v (u, v) = 0, u cos v, u sin v r(1, 0) = 1, 0, 1 r u (1, 0) =, 0, 1 r v (1, 0) = 0,, 0

20 The Tangent Plane The normal to the plane is r(u, v) = u, u sin v, u cos v r u (u, v) = u, sin v, cos v r v (u, v) = 0, u cos v, u sin v r(1, 0) = 1, 0, 1 r u (1, 0) =, 0, 1 r v (1, 0) = 0,, 0 r u r v = 1, 0,

21 The Tangent Plane The normal to the plane is r(u, v) = u, u sin v, u cos v r u (u, v) = u, sin v, cos v r v (u, v) = 0, u cos v, u sin v r(1, 0) = 1, 0, 1 r u (1, 0) =, 0, 1 r v (1, 0) = 0,, 0 r u r v = 1, 0, so the equation of the plane is ( 1)(x 1) + (z 1) = 0 The tangent plane to the surface at (1, 0, 1) is parameterized by 1 + s, t, 1 + s

22 The Sphere Revisited r(u, v) = sin(v) cos(u)i + sin(v) sin(u)j + cos(v)k 0 u π, 0 v π r u = sin(v) sin(u)i + sin(v) cos(u)j r v = cos(v) cos(u)i + cos(v) sin(u)j sin(v)k Find the tangent plane to the sphere at (u, v) = (π/4, π/4)

23 The Sphere Revisited r(u, v) = sin(v) cos(u)i + sin(v) sin(u)j + cos(v)k 0 u π, 0 v π r u = sin(v) sin(u)i + sin(v) cos(u)j r v = cos(v) cos(u)i + cos(v) sin(u)j sin(v)k Find the tangent plane to the sphere at (u, v) = (π/4, π/4) r(π/4, π/4) = 1 i + 1 j + k r u (π/4, π/4) = 1 i + 1 j r v (π/4, π/4) = 1 i + 1 j k

24 The Sphere Revisited r(u, v) = sin(v) cos(u)i + sin(v) sin(u)j + cos(v)k 0 u π, 0 v π r u = sin(v) sin(u)i + sin(v) cos(u)j r v = cos(v) cos(u)i + cos(v) sin(u)j sin(v)k Find the tangent plane to the sphere at (u, v) = (π/4, π/4) r(π/4, π/4) = 1 i + 1 j + k r u (π/4, π/4) = 1 i + 1 j r v (π/4, π/4) = 1 i + 1 j k n = r u r v = 1 ( 1 i + 1 ) j + k 0 = 1 (x 1 ) + 1 (y 1 ) + (z )

25 Sneak Preview Parametric Curves - Arc Length Parametric Surfaces - Area r(t) = x(t)i + y(t)j + z(t)k r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k r (t) = x (t)i + y (t)j + z (t)k r (t) = x (t) + y (t) + z (t) ds = r (t) dt b L = r (t) dt a r u (u, v) = r (u, v) u r v (u, v) = r (u, v) v da = r u r v du dv S = r u r v du dv D

26 Surface Area v v u z u Find the area A of a small patch of surface The map (u, v) r(u, v) takes the square to a parallelogram with sides r u u and r v v The area of the parallelogram is r u u r v v = r u r v u v The area of the surface is approximately A = r u (u i, v i ) r v (u i, v i ) u v i,j x y and exactly D r u(u i, v i ) r v (u i, v i ) du dv

27 Surface Area of a Sphere r(u, v) = a sin(v) cos(u)i + a sin(v) sin(u)j + a cos(v)k 0 u π, 0 v π r u = a sin(v) sin(u)i + a sin(v) cos(u)j r v = a cos(v) cos(u)i + a cos(v) sin(u)j sin(v)k r u r v = a sin (v) cos(u)i + a sin (v) sin(u)j a cos(v) sin(v)k r u r v = a sin (v) Hence π π S = a sin v du dv = 4πa 0 0

28 Surfaces Area of a Graph The graph of a function z = f (x, y) is also a parameterized surface: r(x, y) = xi + yj + f (x, y)k r x (x, y) = i + f x k r y (x, y) = j + f y k r x r y = f x i + f y j + k ( ) f ( ) f r x r y = x y Hence, the surface area of the graph over a domain D in the xy plane is ( ) f ( ) f S = da D x y

29 Surface Area of a Graph The surface area of the graph over a domain D in the xy plane is ( ) f ( ) f S = da D x y Find the area under the graph of z = x + y that lies over the cylinder x + y = 4

30 Curves and Surfaces Parameterization Curves r(t) = x(t)i + y(t)j + z(t)k Tangent r (t) = x (t)i + y (t)j + z (t)k Tangent line at t = a L(s) = r(a) + sr (a) Arc length differential ds = x (t) + y (t) + z (t) dt Parameterization Tangents Normal Surfaces r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k r u (u, v) = r(u, v) u r v (u, v) = r(u, v) v Area Differential n = r u r v da = r u r v du dv

Math Exam III Review

Math Exam III Review Math 213 - Exam III Review Peter A. Perry University of Kentucky April 10, 2019 Homework Exam III is tonight at 5 PM Exam III will cover 15.1 15.3, 15.6 15.9, 16.1 16.2, and identifying conservative vector

More information

16.6. Parametric Surfaces. Parametric Surfaces. Parametric Surfaces. Vector Calculus. Parametric Surfaces and Their Areas

16.6. Parametric Surfaces. Parametric Surfaces. Parametric Surfaces. Vector Calculus. Parametric Surfaces and Their Areas 16 Vector Calculus 16.6 and Their Areas Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and Their Areas Here we use vector functions to describe more general

More information

Parametric Surfaces and Surface Area

Parametric Surfaces and Surface Area Parametric Surfaces and Surface Area What to know: 1. Be able to parametrize standard surfaces, like the ones in the handout.. Be able to understand what a parametrized surface looks like (for this class,

More information

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv.

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv. MAC2313 Final A (5 pts) 1. Let f(x, y, z) be a function continuous in R 3 and let S be a surface parameterized by r(u, v) with the domain of the parameterization given by R; how many of the following are

More information

Parametric Surfaces. Substitution

Parametric Surfaces. Substitution Calculus Lia Vas Parametric Surfaces. Substitution Recall that a curve in space is given by parametric equations as a function of single parameter t x = x(t) y = y(t) z = z(t). A curve is a one-dimensional

More information

Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Big Ideas. What We Are Doing Today... Notes. Notes. Notes

Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Big Ideas. What We Are Doing Today... Notes. Notes. Notes Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Textbook: Section 16.6 Big Ideas A surface in R 3 is a 2-dimensional object in 3-space. Surfaces can be described using two variables.

More information

Calculus III Meets the Final

Calculus III Meets the Final Calculus III Meets the Final Peter A. Perry University of Kentucky December 7, 2018 Homework Review for Final Exam on Thursday, December 13, 6:00-8:00 PM Be sure you know which room to go to for the final!

More information

Chapter 15 Vector Calculus

Chapter 15 Vector Calculus Chapter 15 Vector Calculus 151 Vector Fields 152 Line Integrals 153 Fundamental Theorem and Independence of Path 153 Conservative Fields and Potential Functions 154 Green s Theorem 155 urface Integrals

More information

Lecture 23. Surface integrals, Stokes theorem, and the divergence theorem. Dan Nichols

Lecture 23. Surface integrals, Stokes theorem, and the divergence theorem. Dan Nichols Lecture 23 urface integrals, tokes theorem, and the divergence theorem an Nichols nichols@math.umass.edu MATH 233, pring 218 University of Massachusetts April 26, 218 (2) Last time: Green s theorem Theorem

More information

MATH 230 FALL 2004 FINAL EXAM DECEMBER 13, :20-2:10 PM

MATH 230 FALL 2004 FINAL EXAM DECEMBER 13, :20-2:10 PM Problem Score 1 2 Name: SID: Section: Instructor: 3 4 5 6 7 8 9 10 11 12 Total MATH 230 FALL 2004 FINAL EXAM DECEMBER 13, 2004 12:20-2:10 PM INSTRUCTIONS There are 12 problems on this exam for a total

More information

Section Parametrized Surfaces and Surface Integrals. (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals

Section Parametrized Surfaces and Surface Integrals. (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals Section 16.4 Parametrized Surfaces and Surface Integrals (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals MATH 127 (Section 16.4) Parametrized Surfaces and Surface Integrals

More information

The Divergence Theorem

The Divergence Theorem The Divergence Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Summer 2011 Green s Theorem Revisited Green s Theorem: M(x, y) dx + N(x, y) dy = C R ( N x M ) da y y x Green

More information

First we consider how to parameterize a surface (similar to a parameterized curve for line integrals). Surfaces will need two parameters.

First we consider how to parameterize a surface (similar to a parameterized curve for line integrals). Surfaces will need two parameters. Math 55 - Vector Calculus II Notes 14.6 urface Integrals Let s develop some surface integrals. First we consider how to parameterize a surface (similar to a parameterized curve for line integrals). urfaces

More information

Math 2374 Spring 2007 Midterm 3 Solutions - Page 1 of 6 April 25, 2007

Math 2374 Spring 2007 Midterm 3 Solutions - Page 1 of 6 April 25, 2007 Math 374 Spring 7 Midterm 3 Solutions - Page of 6 April 5, 7. (3 points) Consider the surface parametrized by (x, y, z) Φ(x, y) (x, y,4 (x +y )) between the planes z and z 3. (i) (5 points) Set up the

More information

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Summary Assignments...2

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Summary Assignments...2 PURE MATHEMATICS 212 Multivariable Calculus CONTENTS Page 1. Assignment Summary... i 2. Summary...1 3. Assignments...2 i PMTH212, Multivariable Calculus Assignment Summary 2010 Assignment Date to be Posted

More information

2Surfaces. Design with Bézier Surfaces

2Surfaces. Design with Bézier Surfaces You don t see something until you have the right metaphor to let you perceive it. James Gleick Surfaces Design with Bézier Surfaces S : r(u, v) = Bézier surfaces represent an elegant way to build a surface,

More information

Math Change of Variables in Triple Integrals

Math Change of Variables in Triple Integrals Math 213 - Change of Variables in Triple Integrals Peter A. Perry University of Kentucky November 9, 2018 Homework e-rre-ead section 15.9 Finish work on section 15.9, problems 1-37 (odd) from tewart Begin

More information

Review 1. Richard Koch. April 23, 2005

Review 1. Richard Koch. April 23, 2005 Review Richard Koch April 3, 5 Curves From the chapter on curves, you should know. the formula for arc length in section.;. the definition of T (s), κ(s), N(s), B(s) in section.4. 3. the fact that κ =

More information

MATH 200 (Fall 2016) Exam 1 Solutions (a) (10 points) Find an equation of the sphere with center ( 2, 1, 4).

MATH 200 (Fall 2016) Exam 1 Solutions (a) (10 points) Find an equation of the sphere with center ( 2, 1, 4). MATH 00 (Fall 016) Exam 1 Solutions 1 1. (a) (10 points) Find an equation of the sphere with center (, 1, 4). (x ( )) + (y 1) + (z ( 4)) 3 (x + ) + (y 1) + (z + 4) 9 (b) (10 points) Find an equation of

More information

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations Lecture 15 Lecturer: Prof. Sergei Fedotov 10131 - Calculus and Vectors Length of a Curve and Parametric Equations Sergei Fedotov (University of Manchester) MATH10131 2011 1 / 5 Lecture 15 1 Length of a

More information

MATH 2400: CALCULUS 3 MAY 9, 2007 FINAL EXAM

MATH 2400: CALCULUS 3 MAY 9, 2007 FINAL EXAM MATH 4: CALCULUS 3 MAY 9, 7 FINAL EXAM I have neither given nor received aid on this exam. Name: 1 E. Kim................ (9am) E. Angel.............(1am) 3 I. Mishev............ (11am) 4 M. Daniel...........

More information

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two:

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two: Final Solutions. Suppose that the equation F (x, y, z) implicitly defines each of the three variables x, y, and z as functions of the other two: z f(x, y), y g(x, z), x h(y, z). If F is differentiable

More information

Measuring Lengths The First Fundamental Form

Measuring Lengths The First Fundamental Form Differential Geometry Lia Vas Measuring Lengths The First Fundamental Form Patching up the Coordinate Patches. Recall that a proper coordinate patch of a surface is given by parametric equations x = (x(u,

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley FINAL EXAMINATION, Fall 2012 DURATION: 3 hours Department of Mathematics MATH 53 Multivariable Calculus Examiner: Sean Fitzpatrick Total: 100 points Family Name: Given

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus III-Final review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the corresponding position vector. 1) Define the points P = (-,

More information

Math Triple Integrals in Cylindrical Coordinates

Math Triple Integrals in Cylindrical Coordinates Math 213 - Triple Integrals in Cylindrical Coordinates Peter A. Perry University of Kentucky November 2, 218 Homework Re-read section 15.7 Work on section 15.7, problems 1-13 (odd), 17-21 (odd) from Stewart

More information

Math 21a Tangent Lines and Planes Fall, What do we know about the gradient f? Tangent Lines to Curves in the Plane.

Math 21a Tangent Lines and Planes Fall, What do we know about the gradient f? Tangent Lines to Curves in the Plane. Math 21a Tangent Lines and Planes Fall, 2016 What do we know about the gradient f? Tangent Lines to Curves in the Plane. 1. For each of the following curves, find the tangent line to the curve at the point

More information

Mathematically, the path or the trajectory of a particle moving in space in described by a function of time.

Mathematically, the path or the trajectory of a particle moving in space in described by a function of time. Module 15 : Vector fields, Gradient, Divergence and Curl Lecture 45 : Curves in space [Section 45.1] Objectives In this section you will learn the following : Concept of curve in space. Parametrization

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

Topic 5.1: Line Elements and Scalar Line Integrals. Textbook: Section 16.2

Topic 5.1: Line Elements and Scalar Line Integrals. Textbook: Section 16.2 Topic 5.1: Line Elements and Scalar Line Integrals Textbook: Section 16.2 Warm-Up: Derivatives of Vector Functions Suppose r(t) = x(t) î + y(t) ĵ + z(t) ˆk parameterizes a curve C. The vector: is: r (t)

More information

Math 251 Quiz 5 Fall b. Calculate. 2. Sketch the region. Write as one double integral by interchanging the order of integration: 2

Math 251 Quiz 5 Fall b. Calculate. 2. Sketch the region. Write as one double integral by interchanging the order of integration: 2 Math 251 Quiz 5 Fall 2002 1. a. Calculate 5 1 0 1 x dx dy b. Calculate 1 5 1 0 xdxdy 2. Sketch the region. Write as one double integral by interchanging the order of integration: 0 2 dx 2 x dy f(x,y) +

More information

MATH 2023 Multivariable Calculus

MATH 2023 Multivariable Calculus MATH 2023 Multivariable Calculus Problem Sets Note: Problems with asterisks represent supplementary informations. You may want to read their solutions if you like, but you don t need to work on them. Set

More information

Math 126 Final Examination Autumn CHECK that your exam contains 9 problems on 10 pages.

Math 126 Final Examination Autumn CHECK that your exam contains 9 problems on 10 pages. Math 126 Final Examination Autumn 2016 Your Name Your Signature Student ID # Quiz Section Professor s Name TA s Name CHECK that your exam contains 9 problems on 10 pages. This exam is closed book. You

More information

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions Calculus III Math Spring 7 In-term exam April th. Suggested solutions This exam contains sixteen problems numbered through 6. Problems 5 are multiple choice problems, which each count 5% of your total

More information

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures Grad operator, triple and line integrals Notice: this material must not be used as a substitute for attending the lectures 1 .1 The grad operator Let f(x 1, x,..., x n ) be a function of the n variables

More information

27. Tangent Planes & Approximations

27. Tangent Planes & Approximations 27. Tangent Planes & Approximations If z = f(x, y) is a differentiable surface in R 3 and (x 0, y 0, z 0 ) is a point on this surface, then it is possible to construct a plane passing through this point,

More information

F dr = f dx + g dy + h dz. Using that dz = q x dx + q y dy we get. (g + hq y ) x (f + hq x ) y da.

F dr = f dx + g dy + h dz. Using that dz = q x dx + q y dy we get. (g + hq y ) x (f + hq x ) y da. Math 55 - Vector alculus II Notes 14.7 tokes Theorem tokes Theorem is the three-dimensional version of the circulation form of Green s Theorem. Let s quickly recall that theorem: Green s Theorem: Let be

More information

MATH 2400, Analytic Geometry and Calculus 3

MATH 2400, Analytic Geometry and Calculus 3 MATH 2400, Analytic Geometry and Calculus 3 List of important Definitions and Theorems 1 Foundations Definition 1. By a function f one understands a mathematical object consisting of (i) a set X, called

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III October 26, 2012 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Introduction Timetable Assignments...

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Introduction Timetable Assignments... PURE MATHEMATICS 212 Multivariable Calculus CONTENTS Page 1. Assignment Summary... i 2. Introduction...1 3. Timetable... 3 4. Assignments...5 i PMTH212, Multivariable Calculus Assignment Summary 2009

More information

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals)

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals) MA 43 Calculus III Fall 8 Dr. E. Jacobs Assignments Reading assignments are found in James Stewart s Calculus (Early Transcendentals) Assignment. Spheres and Other Surfaces Read. -. and.6 Section./Problems

More information

Math 397: Exam 3 08/10/2017 Summer Session II 2017 Time Limit: 145 Minutes

Math 397: Exam 3 08/10/2017 Summer Session II 2017 Time Limit: 145 Minutes Math 397: Exam 3 08/10/2017 Summer Session II 2017 Time Limit: 145 Minutes Name: Write your name on the appropriate line on the exam cover sheet. This exam contains 19 pages (including this cover page)

More information

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring Outcomes List for Math 200-200935 Multivariable Calculus (9 th edition of text) Spring 2009-2010 The purpose of the Outcomes List is to give you a concrete summary of the material you should know, and

More information

12.7 Tangent Planes and Normal Lines

12.7 Tangent Planes and Normal Lines .7 Tangent Planes and Normal Lines Tangent Plane and Normal Line to a Surface Suppose we have a surface S generated by z f(x,y). We can represent it as f(x,y)-z 0 or F(x,y,z) 0 if we wish. Hence we can

More information

Name: Final Exam Review. (b) Reparameterize r(t) with respect to arc length measured for the point (1, 0, 1) in the direction of increasing t.

Name: Final Exam Review. (b) Reparameterize r(t) with respect to arc length measured for the point (1, 0, 1) in the direction of increasing t. MATH 127 ALULU III Name: 1. Let r(t) = e t i + e t sin t j + e t cos t k (a) Find r (t) Final Exam Review (b) Reparameterize r(t) with respect to arc length measured for the point (1,, 1) in the direction

More information

while its direction is given by the right hand rule: point fingers of the right hand in a 1 a 2 a 3 b 1 b 2 b 3 A B = det i j k

while its direction is given by the right hand rule: point fingers of the right hand in a 1 a 2 a 3 b 1 b 2 b 3 A B = det i j k I.f Tangent Planes and Normal Lines Again we begin by: Recall: (1) Given two vectors A = a 1 i + a 2 j + a 3 k, B = b 1 i + b 2 j + b 3 k then A B is a vector perpendicular to both A and B. Then length

More information

MATH 234. Excercises on Integration in Several Variables. I. Double Integrals

MATH 234. Excercises on Integration in Several Variables. I. Double Integrals MATH 234 Excercises on Integration in everal Variables I. Double Integrals Problem 1. D = {(x, y) : y x 1, 0 y 1}. Compute D ex3 da. Problem 2. Find the volume of the solid bounded above by the plane 3x

More information

MA FINAL EXAM Green April 30, 2018 EXAM POLICIES

MA FINAL EXAM Green April 30, 2018 EXAM POLICIES MA 6100 FINAL EXAM Green April 0, 018 NAME STUDENT ID # YOUR TA S NAME RECITATION TIME Be sure the paper you are looking at right now is GREEN! Write the following in the TEST/QUIZ NUMBER boxes (and blacken

More information

the straight line in the xy plane from the point (0, 4) to the point (2,0)

the straight line in the xy plane from the point (0, 4) to the point (2,0) Math 238 Review Problems for Final Exam For problems #1 to #6, we define the following paths vector fields: b(t) = the straight line in the xy plane from the point (0, 4) to the point (2,0) c(t) = the

More information

A1:Orthogonal Coordinate Systems

A1:Orthogonal Coordinate Systems A1:Orthogonal Coordinate Systems A1.1 General Change of Variables Suppose that we express x and y as a function of two other variables u and by the equations We say that these equations are defining a

More information

Math 11 Fall Multivariable Calculus. Final Exam

Math 11 Fall Multivariable Calculus. Final Exam Math 11 Fall 2004 Multivariable Calculus for Two-Term Advanced Placement First-Year Students Final Exam Tuesday, December 7, 11:30-2:30 Murdough, Cook Auditorium Your name (please print): Instructions:

More information

This exam will be cumulative. Consult the review sheets for the midterms for reviews of Chapters

This exam will be cumulative. Consult the review sheets for the midterms for reviews of Chapters Final exam review Math 265 Fall 2007 This exam will be cumulative. onsult the review sheets for the midterms for reviews of hapters 12 15. 16.1. Vector Fields. A vector field on R 2 is a function F from

More information

Midterm Review II Math , Fall 2018

Midterm Review II Math , Fall 2018 Midterm Review II Math 2433-3, Fall 218 The test will cover section 12.5 of chapter 12 and section 13.1-13.3 of chapter 13. Examples in class, quizzes and homework problems are the best practice for the

More information

Multiple Integrals. max x i 0

Multiple Integrals. max x i 0 Multiple Integrals 1 Double Integrals Definite integrals appear when one solves Area problem. Find the area A of the region bounded above by the curve y = f(x), below by the x-axis, and on the sides by

More information

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f Gradients and the Directional Derivative In 14.3, we discussed the partial derivatives f f and, which tell us the rate of change of the x y height of the surface defined by f in the x direction and the

More information

12/15/2017 FINAL EXAM Math 21a, Fall Name:

12/15/2017 FINAL EXAM Math 21a, Fall Name: 12/15/2017 FINL EXM Math 21a, Fall 2017 Name: MWF 9 Jameel l-idroos MWF 9 Dennis Tseng MWF 10 Yu-Wei Fan MWF 10 Koji Shimizu MWF 11 Oliver Knill MWF 11 Chenglong Yu MWF 12 Stepan Paul TTH 10 Matt Demers

More information

Updated: August 24, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University

Updated: August 24, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University Updated: August 24, 216 Calculus III Section 1.2 Math 232 Calculus III Brian Veitch Fall 215 Northern Illinois University 1.2 Calculus with Parametric Curves Definition 1: First Derivative of a Parametric

More information

Curves: We always parameterize a curve with a single variable, for example r(t) =

Curves: We always parameterize a curve with a single variable, for example r(t) = Final Exam Topics hapters 16 and 17 In a very broad sense, the two major topics of this exam will be line and surface integrals. Both of these have versions for scalar functions and vector fields, and

More information

Math 6A Practice Problems III

Math 6A Practice Problems III Math 6A Practice Problems III Written by Victoria Kala vtkala@math.ucsb.edu H 63u Office Hours: R 1:3 1:3pm Last updated 6//16 Answers 1. 3. 171 1 3. π. 5. a) 8π b) 8π 6. 7. 9 3π 3 1 etailed olutions 1.

More information

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

Math 11 Fall 2016 Section 1 Monday, October 17, 2016

Math 11 Fall 2016 Section 1 Monday, October 17, 2016 Math 11 Fall 16 Section 1 Monday, October 17, 16 First, some important points from the last class: f(x, y, z) dv, the integral (with respect to volume) of f over the three-dimensional region, is a triple

More information

7/14/2011 FIRST HOURLY PRACTICE IV Maths 21a, O.Knill, Summer 2011

7/14/2011 FIRST HOURLY PRACTICE IV Maths 21a, O.Knill, Summer 2011 7/14/2011 FIRST HOURLY PRACTICE IV Maths 21a, O.Knill, Summer 2011 Name: Start by printing your name in the above box. Try to answer each question on the same page as the question is asked. If needed,

More information

MA 174: Multivariable Calculus Final EXAM (practice) NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper.

MA 174: Multivariable Calculus Final EXAM (practice) NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper. MA 174: Multivariable alculus Final EXAM (practice) NAME lass Meeting Time: NO ALULATOR, BOOK, OR PAPER ARE ALLOWED. Use the back of the test pages for scrap paper. Points awarded 1. (5 pts). (5 pts).

More information

Chapter Seventeen. Gauss and Green. We shall do this by computing the surface integral over each of the six sides of B and adding the results.

Chapter Seventeen. Gauss and Green. We shall do this by computing the surface integral over each of the six sides of B and adding the results. Chapter Seventeen Gauss and Green 7 Gauss's Theorem Let B be the bo, or rectangular parallelepiped, given by B {(, y, z):, y y y, z z z } 0 0 0 ; and let S be the surface of B with the orientation that

More information

Coordinate Transformations in Advanced Calculus

Coordinate Transformations in Advanced Calculus Coordinate Transformations in Advanced Calculus by Sacha Nandlall T.A. for MATH 264, McGill University Email: sacha.nandlall@mail.mcgill.ca Website: http://www.resanova.com/teaching/calculus/ Fall 2006,

More information

= x i + y j + z k. div F = F = P x + Q. y + R

= x i + y j + z k. div F = F = P x + Q. y + R Abstract The following 25 problems, though challenging at times, in my opinion are problems that you should know how to solve as a students registered in Math 39200 C or any other section offering Math

More information

Total. Math 2130 Practice Final (Spring 2017) (1) (2) (3) (4) (5) (6) (7) (8)

Total. Math 2130 Practice Final (Spring 2017) (1) (2) (3) (4) (5) (6) (7) (8) Math 130 Practice Final (Spring 017) Before the exam: Do not write anything on this page. Do not open the exam. Turn off your cell phone. Make sure your books, notes, and electronics are not visible during

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46 Polar Coordinates Polar Coordinates: Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ)

More information

8/5/2010 FINAL EXAM PRACTICE IV Maths 21a, O. Knill, Summer 2010

8/5/2010 FINAL EXAM PRACTICE IV Maths 21a, O. Knill, Summer 2010 8/5/21 FINAL EXAM PRACTICE IV Maths 21a, O. Knill, Summer 21 Name: Start by printing your name in the above box. Try to answer each question on the same page as the question is asked. If needed, use the

More information

Math 241 Spring 2015 Final Exam Solutions

Math 241 Spring 2015 Final Exam Solutions Math 4 Spring 5 Final Exam Solutions. Find the equation of the plane containing the line x y z+ and the point (,,). Write [ pts] your final answer in the form ax+by +cz d. Solution: A vector parallel to

More information

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane?

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane? Math 4 Practice Problems for Midterm. A unit vector that is perpendicular to both V =, 3, and W = 4,, is (a) V W (b) V W (c) 5 6 V W (d) 3 6 V W (e) 7 6 V W. In three dimensions, the graph of the equation

More information

Determine whether or not F is a conservative vector field. If it is, find a function f such that F = enter NONE.

Determine whether or not F is a conservative vector field. If it is, find a function f such that F = enter NONE. Ch17 Practice Test Sketch the vector field F. F(x, y) = (x - y)i + xj Evaluate the line integral, where C is the given curve. C xy 4 ds. C is the right half of the circle x 2 + y 2 = 4 oriented counterclockwise.

More information

Multivariate Calculus Review Problems for Examination Two

Multivariate Calculus Review Problems for Examination Two Multivariate Calculus Review Problems for Examination Two Note: Exam Two is on Thursday, February 28, class time. The coverage is multivariate differential calculus and double integration: sections 13.3,

More information

MATH 200 EXAM 2 SPRING April 27, 2011

MATH 200 EXAM 2 SPRING April 27, 2011 MATH 00 EXAM SPRING 00-0 April 7, 0 Name: Section: ONLY THE CORRECT ANSWER AND ALL WORK USED TO REACH IT WILL EARN FULL CREDIT. Simplify all answers as much as possible unless eplicitly stated otherwise.

More information

Worksheet 3.4: Triple Integrals in Cylindrical Coordinates. Warm-Up: Cylindrical Volume Element d V

Worksheet 3.4: Triple Integrals in Cylindrical Coordinates. Warm-Up: Cylindrical Volume Element d V Boise State Math 275 (Ultman) Worksheet 3.4: Triple Integrals in Cylindrical Coordinates From the Toolbox (what you need from previous classes) Know what the volume element dv represents. Be able to find

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

Vector Integration : Surface Integrals

Vector Integration : Surface Integrals Vector Integration : Surface Integrals P. Sam Johnson April 10, 2017 P. Sam Johnson Vector Integration : Surface Integrals April 10, 2017 1/35 Overview : Surface Area and Surface Integrals You know how

More information

TEST 3 REVIEW DAVID BEN MCREYNOLDS

TEST 3 REVIEW DAVID BEN MCREYNOLDS TEST 3 REVIEW DAVID BEN MCREYNOLDS 1. Vectors 1.1. Form the vector starting at the point P and ending at the point Q: P = (0, 0, 0), Q = (1,, 3). P = (1, 5, 3), Q = (8, 18, 0). P = ( 3, 1, 1), Q = (, 4,

More information

18.02 Final Exam. y = 0

18.02 Final Exam. y = 0 No books, notes or calculators. 5 problems, 50 points. 8.0 Final Exam Useful formula: cos (θ) = ( + cos(θ)) Problem. (0 points) a) (5 pts.) Find the equation in the form Ax + By + z = D of the plane P

More information

Multivariate Calculus: Review Problems for Examination Two

Multivariate Calculus: Review Problems for Examination Two Multivariate Calculus: Review Problems for Examination Two Note: Exam Two is on Tuesday, August 16. The coverage is multivariate differential calculus and double integration. You should review the double

More information

Homework 8. Due: Tuesday, March 31st, 2009

Homework 8. Due: Tuesday, March 31st, 2009 MATH 55 Applied Honors Calculus III Winter 9 Homework 8 Due: Tuesday, March 3st, 9 Section 6.5, pg. 54: 7, 3. Section 6.6, pg. 58:, 3. Section 6.7, pg. 66: 3, 5, 47. Section 6.8, pg. 73: 33, 38. Section

More information

Gradient and Directional Derivatives

Gradient and Directional Derivatives Gradient and Directional Derivatives MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background Given z = f (x, y) we understand that f : gives the rate of change of z in

More information

WW Prob Lib1 Math course-section, semester year

WW Prob Lib1 Math course-section, semester year WW Prob Lib Math course-section, semester year WeBWorK assignment due /25/06 at :00 PM..( pt) Consider the parametric equation x = 7(cosθ + θsinθ) y = 7(sinθ θcosθ) What is the length of the curve for

More information

Dr. Allen Back. Nov. 21, 2014

Dr. Allen Back. Nov. 21, 2014 Dr. Allen Back of Nov. 21, 2014 The most important thing you should know (e.g. for exams and homework) is how to setup (and perhaps compute if not too hard) surface integrals, triple integrals, etc. But

More information

MATH 261 EXAM I PRACTICE PROBLEMS

MATH 261 EXAM I PRACTICE PROBLEMS MATH 261 EXAM I PRACTICE PROBLEMS These practice problems are pulled from actual midterms in previous semesters. Exam 1 typically has 6 problems on it, with no more than one problem of any given type (e.g.,

More information

Parametrization. Surface. Parametrization. Surface Integrals. Dr. Allen Back. Nov. 17, 2014

Parametrization. Surface. Parametrization. Surface Integrals. Dr. Allen Back. Nov. 17, 2014 Dr. Allen Back Nov. 17, 2014 Paraboloid z = x 2 + 4y 2 The graph z = F (x, y) can always be parameterized by Φ(u, v) =< u, v, F (u, v) >. Paraboloid z = x 2 + 4y 2 The graph z = F (x, y) can always be

More information

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections REVIEW I MATH 254 Calculus IV Exam I (Friday, April 29 will cover sections 14.1-8. 1. Functions of multivariables The definition of multivariable functions is similar to that of functions of one variable.

More information

EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES

EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES A. HAVENS These problems are for extra-credit, which is counted against lost points on quizzes or WebAssign. You do not

More information

Exam 2 Preparation Math 2080 (Spring 2011) Exam 2: Thursday, May 12.

Exam 2 Preparation Math 2080 (Spring 2011) Exam 2: Thursday, May 12. Multivariable Calculus Exam 2 Preparation Math 28 (Spring 2) Exam 2: Thursday, May 2. Friday May, is a day off! Instructions: () There are points on the exam and an extra credit problem worth an additional

More information

Mysterious or unsupported answers will not receive full credit. Your work should be mathematically correct and carefully and legibly written.

Mysterious or unsupported answers will not receive full credit. Your work should be mathematically correct and carefully and legibly written. Math 2374 Spring 2006 Final May 8, 2006 Time Limit: 1 Hour Name (Print): Student ID: Section Number: Teaching Assistant: Signature: This exams contains 11 pages (including this cover page) and 10 problems.

More information

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. . Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. f (x, y) = x y, x + y = 8. Set up the triple integral of an arbitrary continuous function

More information

1 Vector Functions and Space Curves

1 Vector Functions and Space Curves ontents 1 Vector Functions and pace urves 2 1.1 Limits, Derivatives, and Integrals of Vector Functions...................... 2 1.2 Arc Length and urvature..................................... 2 1.3 Motion

More information

MAT137 Calculus! Lecture 31

MAT137 Calculus! Lecture 31 MAT137 Calculus! Lecture 31 Today: Next: Integration Methods: Integration Methods: Trig. Functions (v. 9.10-9.12) Rational Functions Trig. Substitution (v. 9.13-9.15) (v. 9.16-9.17) Integration by Parts

More information

ENGI Parametric & Polar Curves Page 2-01

ENGI Parametric & Polar Curves Page 2-01 ENGI 3425 2. Parametric & Polar Curves Page 2-01 2. Parametric and Polar Curves Contents: 2.1 Parametric Vector Functions 2.2 Parametric Curve Sketching 2.3 Polar Coordinates r f 2.4 Polar Curve Sketching

More information

Math 21a Final Exam Solutions Spring, 2009

Math 21a Final Exam Solutions Spring, 2009 Math a Final Eam olutions pring, 9 (5 points) Indicate whether the following statements are True or False b circling the appropriate letter No justifications are required T F The (vector) projection of

More information

Volumes of Solids of Revolution Lecture #6 a

Volumes of Solids of Revolution Lecture #6 a Volumes of Solids of Revolution Lecture #6 a Sphereoid Parabaloid Hyperboloid Whateveroid Volumes Calculating 3-D Space an Object Occupies Take a cross-sectional slice. Compute the area of the slice. Multiply

More information

Dr. Allen Back. Nov. 19, 2014

Dr. Allen Back. Nov. 19, 2014 Why of Dr. Allen Back Nov. 19, 2014 Graph Picture of T u, T v for a Lat/Long Param. of the Sphere. Why of Graph Basic Picture Why of Graph Why Φ(u, v) = (x(u, v), y(u, v), z(u, v)) Tangents T u = (x u,

More information

Applications of Triple Integrals

Applications of Triple Integrals Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

MATH 261 EXAM III PRACTICE PROBLEMS

MATH 261 EXAM III PRACTICE PROBLEMS MATH 6 EXAM III PRACTICE PROBLEMS These practice problems are pulled from actual midterms in previous semesters. Exam 3 typically has 5 (not 6!) problems on it, with no more than one problem of any given

More information

Math 241, Final Exam. 12/11/12.

Math 241, Final Exam. 12/11/12. Math, Final Exam. //. No notes, calculator, or text. There are points total. Partial credit may be given. ircle or otherwise clearly identify your final answer. Name:. (5 points): Equation of a line. Find

More information