MATH115. Polar Coordinate System and Polar Graphs. Paolo Lorenzo Bautista. June 14, De La Salle University

Size: px
Start display at page:

Download "MATH115. Polar Coordinate System and Polar Graphs. Paolo Lorenzo Bautista. June 14, De La Salle University"

Transcription

1 MATH115 Polar Coordinate System and Paolo Lorenzo Bautista De La Salle University June 14, 2014 PLBautista (DLSU) MATH115 June 14, / 30

2 Polar Coordinates and PLBautista (DLSU) MATH115 June 14, / 30

3 Polar Coordinates and Example Locate the following points given in their polar coordinates: 1. (2, 1 4 π) 2. (5, 1 2 π) PLBautista (DLSU) MATH115 June 14, / 30

4 Polar Coordinates and Example Locate the following points given in their polar coordinates: 1. (2, 1 4 π) 2. (5, 1 2 π) Remark 1. A point can have infinitely many polar coordinates. 2. r can be negative. 3. The coordinates of a point P = (r, θ) is unique if r > 0 and 0 θ < 2π. PLBautista (DLSU) MATH115 June 14, / 30

5 Cartesian to Polar, and vice versa Polar Coordinates and 1. To convert a point P = (r, θ) to Cartesian form, we use the following equations: x = r cos θ y = r sin θ PLBautista (DLSU) MATH115 June 14, / 30

6 Cartesian to Polar, and vice versa Polar Coordinates and 1. To convert a point P = (r, θ) to Cartesian form, we use the following equations: x = r cos θ y = r sin θ 2. To convert a point P = (x, y) to polar form, we use the following equations: tan θ = y x r = x 2 + y 2 PLBautista (DLSU) MATH115 June 14, / 30

7 Exercise Polar Coordinates and Example 1. Convert the following points to polar form. (3, 4) ( 5, 12) ( 12, 5) (1, 1) ( 3, 1) 2. Convert the following points to Cartesian form. (4, π 3 ) (3, 5π 4 ) ( 2, 3π 4 ) PLBautista (DLSU) MATH115 June 14, / 30

8 Polar Coordinates and PLBautista (DLSU) MATH115 June 14, / 30

9 Polar Coordinates and Example For the following polar equations, find their corresponding Cartesian equation. 1. r 2 = 4 sin 2θ 2. r 2 cos 2θ = r 2 = 4 cos 2θ 4. r = 2 sin 3θ PLBautista (DLSU) MATH115 June 14, / 30

10 Lines Definition A line is the graph of any of the following equations: 1. θ = C 2. θ = C + kπ 3. r sin θ = b 4. r sin θ = a PLBautista (DLSU) MATH115 June 14, / 30

11 Circles Definition A circle is the graph of any of the following equations: 1. r = C 2. r = C 3. r = 2a cos θ 4. r = 2b sin θ PLBautista (DLSU) MATH115 June 14, / 30

12 Tests for Symmetry If a point P = (r, θ) is on a polar graph, then the graph is 1. symmetric with respect to the polar axis if (r, θ) or ( r, π θ) are also on the graph. 2. symmetric with respect to the π 2 -axis if (r, π θ) or ( r, θ) are also on the graph. 3. symmetric with respect to the pole if ( r, θ) or (r, π + θ) are also on the graph. PLBautista (DLSU) MATH115 June 14, / 30

13 Limacons Definition A limacon is the graph of an equation of the form r = a ± b cos θ or r = a ± b sin θ, where a > 0 and b > 0. PLBautista (DLSU) MATH115 June 14, / 30

14 Limacons Definition A limacon is the graph of an equation of the form r = a ± b cos θ or r = a ± b sin θ, where a > 0 and b > 0. Four types: 1. 0 < a b < 1 Limacon with a loop a 2. b = 1 Cardioid 3. 1 < a b < 2 Limacon with a dent a 4. b 2 Convex limacon PLBautista (DLSU) MATH115 June 14, / 30

15 Example Sketch the following graphs: 1. r = 1 2 cos θ 2. r = sin θ 3. r = cos θ 4. r = 2 sin θ PLBautista (DLSU) MATH115 June 14, / 30

16 Limacon with a loop r = 1 2 cos θ PLBautista (DLSU) MATH115 June 14, / 30

17 Limacon with a dent r = sin θ PLBautista (DLSU) MATH115 June 14, / 30

18 Cardioid r = cos θ PLBautista (DLSU) MATH115 June 14, / 30

19 Convex limacon r = 2 sin θ PLBautista (DLSU) MATH115 June 14, / 30

20 Rose Definition A rose is the graph of an equation of the form r = a cos nθ or r = a sin nθ, where n is a positive integer. If n is even, the rose has 2n leaves; if n is odd, the rose has n leaves. PLBautista (DLSU) MATH115 June 14, / 30

21 Rose Definition A rose is the graph of an equation of the form r = a cos nθ or r = a sin nθ, where n is a positive integer. If n is even, the rose has 2n leaves; if n is odd, the rose has n leaves. Sketch the following graphs: 1. r = 4 cos 2θ 2. r = 4 cos 3θ 3. r = 2 sin 2θ PLBautista (DLSU) MATH115 June 14, / 30

22 r = 4 cos 2θ PLBautista (DLSU) MATH115 June 14, / 30

23 r = 4 cos 3θ PLBautista (DLSU) MATH115 June 14, / 30

24 r = 2 sin 2θ PLBautista (DLSU) MATH115 June 14, / 30

25 Length of Arc and Areas of a Region Length of Arc Theorem Let C be a curve with polar equation r = F(θ) where F (θ) is continuous on the closed interval [α, β]. Then the length of the arc of the curve C is given by L = β α ( ) dr 2 + r dθ 2 dθ. PLBautista (DLSU) MATH115 June 14, / 30

26 Length of Arc and Areas of a Region Example Find the length of the arcs of the following polar graphs. 1. r = 2(1 + cos θ) 2. r = 4 sin θ 3. r = sin θ from θ = 0 to θ = 1 2 π PLBautista (DLSU) MATH115 June 14, / 30

27 Length of Arc and Areas of a Region Exercise Find the length of the arcs of the following polar graphs. 1. r = 1 sin θ 2. r = 3θ from θ = 0 to θ = 2π 3. r = 3 cos θ PLBautista (DLSU) MATH115 June 14, / 30

28 Finding the Points of Intersection Length of Arc and Areas of a Region Example Determine the number of points of intersection of the following graphs by sketching. { r = 2 cos θ 1. r = 2 sin θ { r = 2 sin 2θ 2. r = 1 PLBautista (DLSU) MATH115 June 14, / 30

29 Length of Arc and Areas of a Region Finding the Points of Intersection Remark If a polar graph has an equation r = f (θ), then the same curve is given by ( 1) n r = f (θ + nπ) where n is an integer. PLBautista (DLSU) MATH115 June 14, / 30

30 Length of Arc and Areas of a Region Finding the Points of Intersection Remark If a polar graph has an equation r = f (θ), then the same curve is given by ( 1) n r = f (θ + nπ) where n is an integer. Steps in finding the points of intersection of r = f (θ) and r = g(θ): 1. Find all distinct equations of r = f (θ) and r = g(θ). 2. Solve all each of the equations of r = f (θ) simultaneously with the equations of r = g(θ). 3. Check to see if the pole is a point of intersection. PLBautista (DLSU) MATH115 June 14, / 30

31 Length of Arc and Areas of a Region Example Find the points of intersection for the following graphs { r = 2 cos θ r = 2 sin θ { r = 2 sin 2θ r = 1 { r = 2 cos 2θ 3. r = 2 sin θ { r = 2 cos 2θ 4. r = 2 sin θ PLBautista (DLSU) MATH115 June 14, / 30

32 Areas of Regions Length of Arc and Areas of a Region Theorem Let R be the region bounded by the lines θ = α and θ = β and the curve whose equation is r = f (θ), where f is continuous and nonnegative on the closed interval [α, β]. If A square units is the area of region R, then A can be computed as A = 1 2 β α [f (θ)] 2 dθ. PLBautista (DLSU) MATH115 June 14, / 30

33 Length of Arc and Areas of a Region Example Find the area of the region covered by the following graphs. 1. r = cos θ 2. r = 2 sin θ 3. r = 4 sin θ 4. One loop of r = 4 sin 3θ PLBautista (DLSU) MATH115 June 14, / 30

34 Areas of Regions Length of Arc and Areas of a Region Theorem Let R be the region bounded by the lines θ = α and θ = β and two curves whose equation are given by r = f (θ) and r = g(θ), where f and g are continuous on the closed interval [α, β] and f (θ) g(θ) on [α, β]. If A square units is the area of region R, then A can be computed as A = 1 2 β α ([f (θ)] 2 [g(θ)] 2 )dθ. PLBautista (DLSU) MATH115 June 14, / 30

35 Length of Arc and Areas of a Region Example Find the area of the specified regions. 1. The intersection of the regions covered by r = 2 and r = 3 2 cos θ 2. The intersection of the regions covered by r = 4 sin θ and r = 4 cos θ 3. The intersection of the regions covered by r = 3 sin 2θ and r = 3 cos 2θ 4. The region inside r = 3 and outside r = 3(1 cos θ) 5. The region inside r 2 = 4 sin 2θ and outside r = 2 PLBautista (DLSU) MATH115 June 14, / 30

Topics in Analytic Geometry Part II

Topics in Analytic Geometry Part II Name Chapter 9 Topics in Analytic Geometry Part II Section 9.4 Parametric Equations Objective: In this lesson you learned how to evaluate sets of parametric equations for given values of the parameter

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46 Polar Coordinates Polar Coordinates: Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ)

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

Polar Coordinates. Calculus 2 Lia Vas. If P = (x, y) is a point in the xy-plane and O denotes the origin, let

Polar Coordinates. Calculus 2 Lia Vas. If P = (x, y) is a point in the xy-plane and O denotes the origin, let Calculus Lia Vas Polar Coordinates If P = (x, y) is a point in the xy-plane and O denotes the origin, let r denote the distance from the origin O to the point P = (x, y). Thus, x + y = r ; θ be the angle

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES A coordinate system represents a point in the plane by an ordered pair of numbers called coordinates. PARAMETRIC EQUATIONS

More information

θ as rectangular coordinates)

θ as rectangular coordinates) Section 11.1 Polar coordinates 11.1 1 Learning outcomes After completing this section, you will inshaallah be able to 1. know what are polar coordinates. see the relation between rectangular and polar

More information

Chapter 11. Parametric Equations And Polar Coordinates

Chapter 11. Parametric Equations And Polar Coordinates Instructor: Prof. Dr. Ayman H. Sakka Chapter 11 Parametric Equations And Polar Coordinates In this chapter we study new ways to define curves in the plane, give geometric definitions of parabolas, ellipses,

More information

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc. 8 Complex Numbers, Polar Equations, and Parametric Equations Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 8.5 Polar Equations and Graphs Polar Coordinate System Graphs of Polar Equations Conversion

More information

MATH 1020 WORKSHEET 10.1 Parametric Equations

MATH 1020 WORKSHEET 10.1 Parametric Equations MATH WORKSHEET. Parametric Equations If f and g are continuous functions on an interval I, then the equations x ft) and y gt) are called parametric equations. The parametric equations along with the graph

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below:

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below: Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45 : Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ) Chapter 10: Parametric Equations

More information

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations 1 Definition of polar coordinates Let us first recall the definition of Cartesian coordinates: to each point in the plane we can

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6 Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

9-2 Graphs of Polar Equations

9-2 Graphs of Polar Equations Graph each equation by plotting points. 3. r = cos Make a table of values to find the r-values corresponding to various values of on the interval [, 2π]. Round each r-value to the nearest tenth. r = θ

More information

Section Polar Coordinates. or 4 π (restricting θ to the domain of the lemniscate). So, there are horizontal tangents at ( 4 3

Section Polar Coordinates. or 4 π (restricting θ to the domain of the lemniscate). So, there are horizontal tangents at ( 4 3 Section 10.3 Polar Coordinates 66. r = e θ x = r cos θ = e θ cos θ, y = r sin θ = e θ sin θ. = eθ sin θ+e θ cos θ = e θ (sin θ+cos θ), dx = eθ cos θ e θ sin θ = e θ (cos θ sin θ). Let 1 = 0 sin θ = cos

More information

Mid-Chapter Quiz: Lessons 9-1 through 9-3

Mid-Chapter Quiz: Lessons 9-1 through 9-3 Graph each point on a polar grid. 1. A( 2, 45 ) 3. Because = 45, locate the terminal side of a 45 angle with the polar axis as its initial side. Because r = 2, plot a point 2 units from the pole in the

More information

Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015

Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015 Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015 Date Objective/ Topic Assignment Did it Monday Polar Discovery Activity pp. 4-5 April 27 th Tuesday April 28 th Converting between

More information

Math 265 Exam 3 Solutions

Math 265 Exam 3 Solutions C Roettger, Fall 16 Math 265 Exam 3 Solutions Problem 1 Let D be the region inside the circle r 5 sin θ but outside the cardioid r 2 + sin θ. Find the area of D. Note that r and θ denote polar coordinates.

More information

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 33 Notes These notes correspond to Section 9.3 in the text. Polar Coordinates Throughout this course, we have denoted a point in the plane by an ordered

More information

Graphing Polar equations.notebook January 10, 2014

Graphing Polar equations.notebook January 10, 2014 graphing polar equations Ch.8 Lesson 2 1 2 3 4 Target Agenda Purpose Evaluation TSWBAT: convert equations to polar, graph a polar equation on the polar plane by recognizing the forms Warm-Up/Homework Check

More information

, minor axis of length 12. , asymptotes y 2x. 16y

, minor axis of length 12. , asymptotes y 2x. 16y Math 4 Midterm 1 Review CONICS [1] Find the equations of the following conics. If the equation corresponds to a circle find its center & radius. If the equation corresponds to a parabola find its focus

More information

Polar Coordinates. 2, π and ( )

Polar Coordinates. 2, π and ( ) Polar Coordinates Up to this point we ve dealt exclusively with the Cartesian (or Rectangular, or x-y) coordinate system. However, as we will see, this is not always the easiest coordinate system to work

More information

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations.

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations. Objectives Sketch the graph of a curve given by a set of parametric equations. Eliminate the parameter in a set of parametric equations. Find a set of parametric equations to represent a curve. Understand

More information

Section 10.1 Polar Coordinates

Section 10.1 Polar Coordinates Section 10.1 Polar Coordinates Up until now, we have always graphed using the rectangular coordinate system (also called the Cartesian coordinate system). In this section we will learn about another system,

More information

6.7. POLAR COORDINATES

6.7. POLAR COORDINATES 6.7. POLAR COORDINATES What You Should Learn Plot points on the polar coordinate system. Convert points from rectangular to polar form and vice versa. Convert equations from rectangular to polar form and

More information

Worksheet 3.2: Double Integrals in Polar Coordinates

Worksheet 3.2: Double Integrals in Polar Coordinates Boise State Math 75 (Ultman) Worksheet 3.: ouble Integrals in Polar Coordinates From the Toolbox (what you need from previous classes): Trig/Calc II: Convert equations in x and y into r and θ, using the

More information

Presented, and Compiled, By. Bryan Grant. Jessie Ross

Presented, and Compiled, By. Bryan Grant. Jessie Ross P a g e 1 Presented, and Compiled, By Bryan Grant Jessie Ross August 3 rd, 2016 P a g e 2 Day 1 Discovering Polar Graphs Days 1 & 2 Adapted from Nancy Stephenson - Clements High School, Sugar Land, Texas

More information

Worksheet 3.4: Triple Integrals in Cylindrical Coordinates. Warm-Up: Cylindrical Volume Element d V

Worksheet 3.4: Triple Integrals in Cylindrical Coordinates. Warm-Up: Cylindrical Volume Element d V Boise State Math 275 (Ultman) Worksheet 3.4: Triple Integrals in Cylindrical Coordinates From the Toolbox (what you need from previous classes) Know what the volume element dv represents. Be able to find

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Homework - Solutions 3 2 Homework 2 - Solutions 3 3 Homework 3 - Solutions 9 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus

More information

Chapter 10 Homework: Parametric Equations and Polar Coordinates

Chapter 10 Homework: Parametric Equations and Polar Coordinates Chapter 1 Homework: Parametric Equations and Polar Coordinates Name Homework 1.2 1. Consider the parametric equations x = t and y = 3 t. a. Construct a table of values for t =, 1, 2, 3, and 4 b. Plot the

More information

MAC Learning Objectives. Module 12 Polar and Parametric Equations. Polar and Parametric Equations. There are two major topics in this module:

MAC Learning Objectives. Module 12 Polar and Parametric Equations. Polar and Parametric Equations. There are two major topics in this module: MAC 4 Module 2 Polar and Parametric Equations Learning Objectives Upon completing this module, you should be able to:. Use the polar coordinate system. 2. Graph polar equations. 3. Solve polar equations.

More information

Polar (BC Only) They are necessary to find the derivative of a polar curve in x- and y-coordinates. The derivative

Polar (BC Only) They are necessary to find the derivative of a polar curve in x- and y-coordinates. The derivative Polar (BC Only) Polar coordinates are another way of expressing points in a plane. Instead of being centered at an origin and moving horizontally or vertically, polar coordinates are centered at the pole

More information

Chapter 10: Parametric And Polar Curves; Conic Sections

Chapter 10: Parametric And Polar Curves; Conic Sections 206 Chapter 10: Parametric And Polar Curves; Conic Sections Summary: This chapter begins by introducing the idea of representing curves using parameters. These parametric equations of the curves can then

More information

9.1 Parametric Curves

9.1 Parametric Curves Math 172 Chapter 9A notes Page 1 of 20 9.1 Parametric Curves So far we have discussed equations in the form. Sometimes and are given as functions of a parameter. Example. Projectile Motion Sketch and axes,

More information

Polar Coordinates. OpenStax. 1 Dening Polar Coordinates

Polar Coordinates. OpenStax. 1 Dening Polar Coordinates OpenStax-CNX module: m53852 1 Polar Coordinates OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License 4.0 Abstract Locate points

More information

5-2 Verifying Trigonometric Identities

5-2 Verifying Trigonometric Identities 5- Verifying Trigonometric Identities Verify each identity. 1. (sec 1) cos = sin 3. sin sin 3 = sin cos 4 5. = cot 7. = cot 9. + tan = sec Page 1 5- Verifying Trigonometric Identities 7. = cot 9. + tan

More information

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA:

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA: MA 114 Exam 3 Spring 217 Exam 3 Name: Section and/or TA: Last Four Digits of Student ID: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test.

More information

Applications of Triple Integrals

Applications of Triple Integrals Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

Math Triple Integrals in Cylindrical Coordinates

Math Triple Integrals in Cylindrical Coordinates Math 213 - Triple Integrals in Cylindrical Coordinates Peter A. Perry University of Kentucky November 2, 218 Homework Re-read section 15.7 Work on section 15.7, problems 1-13 (odd), 17-21 (odd) from Stewart

More information

Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations / 17

Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations / 17 Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, Parametric equations Johns Hopkins University Fall 2014 Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations 2014 1 / 17

More information

Version 001 Polar Curve Review rittenhouse (RittBCblock2) correct

Version 001 Polar Curve Review rittenhouse (RittBCblock2) correct Version 1 Polar Curve Review rittenhouse (RittBCblock 1 This print-out should have 9 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. BC 1993

More information

WHAT YOU SHOULD LEARN

WHAT YOU SHOULD LEARN GRAPHS OF EQUATIONS WHAT YOU SHOULD LEARN Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs of equations. Find equations of and sketch graphs of

More information

MATH STUDENT BOOK. 12th Grade Unit 7

MATH STUDENT BOOK. 12th Grade Unit 7 MATH STUDENT BOOK 1th Grade Unit 7 Unit 7 POLAR COORDINATES MATH 107 POLAR COORDINATES INTRODUCTION 1. POLAR EQUATIONS 5 INTRODUCTION TO POLAR COORDINATES 5 POLAR EQUATIONS 1 POLAR CURVES 19 POLAR FORMS

More information

Let be a function. We say, is a plane curve given by the. Let a curve be given by function where is differentiable with continuous.

Let be a function. We say, is a plane curve given by the. Let a curve be given by function where is differentiable with continuous. Module 8 : Applications of Integration - II Lecture 22 : Arc Length of a Plane Curve [Section 221] Objectives In this section you will learn the following : How to find the length of a plane curve 221

More information

10.1 Curves Defined by Parametric Equations

10.1 Curves Defined by Parametric Equations 10.1 Curves Defined by Parametric Equations Ex: Consider the unit circle from Trigonometry. What is the equation of that circle? There are 2 ways to describe it: x 2 + y 2 = 1 and x = cos θ y = sin θ When

More information

ENGI Parametric & Polar Curves Page 2-01

ENGI Parametric & Polar Curves Page 2-01 ENGI 3425 2. Parametric & Polar Curves Page 2-01 2. Parametric and Polar Curves Contents: 2.1 Parametric Vector Functions 2.2 Parametric Curve Sketching 2.3 Polar Coordinates r f 2.4 Polar Curve Sketching

More information

is a plane curve and the equations are parametric equations for the curve, with parameter t.

is a plane curve and the equations are parametric equations for the curve, with parameter t. MATH 2412 Sections 6.3, 6.4, and 6.5 Parametric Equations and Polar Coordinates. Plane Curves and Parametric Equations Suppose t is contained in some interval I of the real numbers, and = f( t), = gt (

More information

Chapter 9 Topics in Analytic Geometry

Chapter 9 Topics in Analytic Geometry Chapter 9 Topics in Analytic Geometry What You ll Learn: 9.1 Introduction to Conics: Parabolas 9.2 Ellipses 9.3 Hyperbolas 9.5 Parametric Equations 9.6 Polar Coordinates 9.7 Graphs of Polar Equations 9.1

More information

CHAPTER 40 CARTESIAN AND POLAR COORDINATES

CHAPTER 40 CARTESIAN AND POLAR COORDINATES CHAPTER 40 CARTESIAN AND POLAR COORDINATES EXERCISE 169 Page 462 1. Express (3, 5) as polar coordinates, correct to 2 decimal places, in both degrees and in From the diagram, r = 32 + 52 = 5.83 y and 5

More information

Double Integrals, Iterated Integrals, Cross-sections

Double Integrals, Iterated Integrals, Cross-sections Chapter 14 Multiple Integrals 1 ouble Integrals, Iterated Integrals, Cross-sections 2 ouble Integrals over more general regions, efinition, Evaluation of ouble Integrals, Properties of ouble Integrals

More information

8-1 Simple Trigonometric Equations. Objective: To solve simple Trigonometric Equations and apply them

8-1 Simple Trigonometric Equations. Objective: To solve simple Trigonometric Equations and apply them Warm Up Use your knowledge of UC to find at least one value for q. 1) sin θ = 1 2 2) cos θ = 3 2 3) tan θ = 1 State as many angles as you can that are referenced by each: 1) 30 2) π 3 3) 0.65 radians Useful

More information

There are a few links in the text to other parts of the text. These function correctly only if all sections are expanded.

There are a few links in the text to other parts of the text. These function correctly only if all sections are expanded. CAUTION Printing this document can produce errors in the hard copy. For example, on some platforms, output to a postscript file converts plus-minus signs to plus signs. It is suggested that this manuscript

More information

Trigonometric Functions of Any Angle

Trigonometric Functions of Any Angle Trigonometric Functions of Any Angle MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: evaluate trigonometric functions of any angle,

More information

The diagram above shows a sketch of the curve C with parametric equations

The diagram above shows a sketch of the curve C with parametric equations 1. The diagram above shows a sketch of the curve C with parametric equations x = 5t 4, y = t(9 t ) The curve C cuts the x-axis at the points A and B. (a) Find the x-coordinate at the point A and the x-coordinate

More information

Section Graphs of the Sine and Cosine Functions

Section Graphs of the Sine and Cosine Functions Section 5. - Graphs of the Sine and Cosine Functions In this section, we will graph the basic sine function and the basic cosine function and then graph other sine and cosine functions using transformations.

More information

Polar Coordinates

Polar Coordinates Polar Coordinates 7-7-2 Polar coordinates are an alternative to rectangular coordinates for referring to points in the plane. A point in the plane has polar coordinates r,θ). r is roughly) the distance

More information

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations Lecture 15 Lecturer: Prof. Sergei Fedotov 10131 - Calculus and Vectors Length of a Curve and Parametric Equations Sergei Fedotov (University of Manchester) MATH10131 2011 1 / 5 Lecture 15 1 Length of a

More information

Graphs of the Circular Functions. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Graphs of the Circular Functions. Copyright 2017, 2013, 2009 Pearson Education, Inc. 4 Graphs of the Circular Functions Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 4.3 Graphs of the Tangent and Cotangent Functions Graph of the Tangent Function Graph of the Cotangent Function Techniques

More information

Review of Trigonometry

Review of Trigonometry Worksheet 8 Properties of Trigonometric Functions Section Review of Trigonometry This section reviews some of the material covered in Worksheets 8, and The reader should be familiar with the trig ratios,

More information

Math Precalculus (12H/4H) Review. CHSN Review Project

Math Precalculus (12H/4H) Review. CHSN Review Project Math Precalculus (12H/4H) Review CHSN Review Project Contents Functions 3 Polar and Complex Numbers 9 Sequences and Series 15 This review guide was written by Dara Adib. Prateek Pratel checked the Polar

More information

Math 136 Exam 1 Practice Problems

Math 136 Exam 1 Practice Problems Math Exam Practice Problems. Find the surface area of the surface of revolution generated by revolving the curve given by around the x-axis? To solve this we use the equation: In this case this translates

More information

Math 252 Test # 1 Material Winter 2011 (Test Date: February 4, 2011)

Math 252 Test # 1 Material Winter 2011 (Test Date: February 4, 2011) Math 5 Test # Material Winter (Test Date: Februar, ) EXERCISES Page 5,, 7- Page 9 -, 6, 7 Page 7 -, 6- Page 5,, 8,, Page 6 -, 9-8,, 8 EXERCISES Page 9, 9,, 5. Find the volume above the x-plane bounded

More information

7. The Gauss-Bonnet theorem

7. The Gauss-Bonnet theorem 7. The Gauss-Bonnet theorem 7.1 Hyperbolic polygons In Euclidean geometry, an n-sided polygon is a subset of the Euclidean plane bounded by n straight lines. Thus the edges of a Euclidean polygon are formed

More information

Downloaded from

Downloaded from Top Concepts Class XI: Maths Ch : Trigonometric Function Chapter Notes. An angle is a measure of rotation of a given ray about its initial point. The original ray is called the initial side and the final

More information

Section 6.2 Graphs of the Other Trig Functions

Section 6.2 Graphs of the Other Trig Functions Section 62 Graphs of the Other Trig Functions 369 Section 62 Graphs of the Other Trig Functions In this section, we will explore the graphs of the other four trigonometric functions We ll begin with the

More information

Chapter P: Preparation for Calculus

Chapter P: Preparation for Calculus 1. Which of the following is the correct graph of y = x x 3? E) Copyright Houghton Mifflin Company. All rights reserved. 1 . Which of the following is the correct graph of y = 3x x? E) Copyright Houghton

More information

MAC2313 Test 3 A E g(x, y, z) dy dx dz

MAC2313 Test 3 A E g(x, y, z) dy dx dz MAC2313 Test 3 A (5 pts) 1. If the function g(x, y, z) is integrated over the cylindrical solid bounded by x 2 + y 2 = 3, z = 1, and z = 7, the correct integral in Cartesian coordinates is given by: A.

More information

Worksheet 3.5: Triple Integrals in Spherical Coordinates. Warm-Up: Spherical Coordinates (ρ, φ, θ)

Worksheet 3.5: Triple Integrals in Spherical Coordinates. Warm-Up: Spherical Coordinates (ρ, φ, θ) Boise State Math 275 (Ultman) Worksheet 3.5: Triple Integrals in Spherical Coordinates From the Toolbox (what you need from previous classes) Know what the volume element dv represents. Be able to find

More information

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines Math 18.02 (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines February 12 Reading Material: From Simmons: 17.1 and 17.2. Last time: Square Systems. Word problem. How many solutions?

More information

MATH203 Calculus. Dr. Bandar Al-Mohsin. School of Mathematics, KSU

MATH203 Calculus. Dr. Bandar Al-Mohsin. School of Mathematics, KSU School of Mathematics, KSU Theorem The rectangular coordinates (x, y, z) and the cylindrical coordinates (r, θ, z) of a point P are related as follows: x = r cos θ, y = r sin θ, tan θ = y x, r 2 = x 2

More information

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints:

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints: Math 9 (Fall 7) Calculus III Solution #5. Find the minimum and maximum values of the following functions f under the given constraints: (a) f(x, y) 4x + 6y, x + y ; (b) f(x, y) x y, x + y 6. Solution:

More information

Double Integrals over Polar Coordinate

Double Integrals over Polar Coordinate 1. 15.4 DOUBLE INTEGRALS OVER POLAR COORDINATE 1 15.4 Double Integrals over Polar Coordinate 1. Polar Coordinates. The polar coordinates (r, θ) of a point are related to the rectangular coordinates (x,y)

More information

Curves Dr Richard Kenderdine

Curves Dr Richard Kenderdine Curves Dr Richard Kenderdine Kenderdine Maths Tutoring 1 December 01 This note shows some interesting curves not usually encountered. Most of the examples exist as families that can be altered by changing

More information

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions Calculus III Math Spring 7 In-term exam April th. Suggested solutions This exam contains sixteen problems numbered through 6. Problems 5 are multiple choice problems, which each count 5% of your total

More information

Introduction to Complex Analysis

Introduction to Complex Analysis Introduction to Complex Analysis George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 413 George Voutsadakis (LSSU) Complex Analysis October 2014 1 / 50 Outline

More information

June 6 Math 1113 sec 002 Summer 2014

June 6 Math 1113 sec 002 Summer 2014 June 6 Math 1113 sec 002 Summer 2014 Sec. 6.4 Plotting f (x) = a sin(bx c) + d or f (x) = a cos(bx c) + d Amplitude is a. If a < 0 there is a reflection in the x-axis. The fundamental period is The phase

More information

2 Geometry Solutions

2 Geometry Solutions 2 Geometry Solutions jacques@ucsd.edu Here is give problems and solutions in increasing order of difficulty. 2.1 Easier problems Problem 1. What is the minimum number of hyperplanar slices to make a d-dimensional

More information

Using Polar Coordinates. Graphing and converting polar and rectangular coordinates

Using Polar Coordinates. Graphing and converting polar and rectangular coordinates Using Polar Coordinates Graphing and converting polar and rectangular coordinates Butterflies are among the most celebrated of all insects. It s hard not to notice their beautiful colors and graceful flight.

More information

Topic 6: Calculus Integration Volume of Revolution Paper 2

Topic 6: Calculus Integration Volume of Revolution Paper 2 Topic 6: Calculus Integration Standard Level 6.1 Volume of Revolution Paper 1. Let f(x) = x ln(4 x ), for < x

More information

10 Polar Coordinates, Parametric Equations

10 Polar Coordinates, Parametric Equations Polar Coordinates, Parametric Equations ½¼º½ ÈÓÐ Ö ÓÓÖ Ò Ø Coordinate systems are tools that let us use algebraic methods to understand geometry While the rectangular (also called Cartesian) coordinates

More information

Polar Functions Polar coordinates

Polar Functions Polar coordinates 548 Chapter 1 Parametric, Vector, and Polar Functions 1. What ou ll learn about Polar Coordinates Polar Curves Slopes of Polar Curves Areas Enclosed b Polar Curves A Small Polar Galler... and wh Polar

More information

12 Polar Coordinates, Parametric Equations

12 Polar Coordinates, Parametric Equations 54 Chapter Polar Coordinates, Parametric Equations Polar Coordinates, Parametric Equations Just as we describe curves in the plane using equations involving x and y, so can we describe curves using equations

More information

Contents 20. Trigonometric Formulas, Identities, and Equations

Contents 20. Trigonometric Formulas, Identities, and Equations Contents 20. Trigonometric Formulas, Identities, and Equations 2 20.1 Basic Identities............................... 2 Using Graphs to Help Verify Identities................... 2 Example 20.1................................

More information

AP CALCULUS BC 2014 SCORING GUIDELINES

AP CALCULUS BC 2014 SCORING GUIDELINES SCORING GUIDELINES Question The graphs of the polar curves r = and r = sin ( θ ) are shown in the figure above for θ. (a) Let R be the shaded region that is inside the graph of r = and inside the graph

More information

Each point P in the xy-plane corresponds to an ordered pair (x, y) of real numbers called the coordinates of P.

Each point P in the xy-plane corresponds to an ordered pair (x, y) of real numbers called the coordinates of P. Lecture 7, Part I: Section 1.1 Rectangular Coordinates Rectangular or Cartesian coordinate system Pythagorean theorem Distance formula Midpoint formula Lecture 7, Part II: Section 1.2 Graph of Equations

More information

The Polar Coordinate System

The Polar Coordinate System University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-008 The Polar Coordinate System Alisa Favinger University

More information

Math 1330 Test 3 Review Sections , 5.1a, ; Know all formulas, properties, graphs, etc!

Math 1330 Test 3 Review Sections , 5.1a, ; Know all formulas, properties, graphs, etc! Math 1330 Test 3 Review Sections 4.1 4.3, 5.1a, 5. 5.4; Know all formulas, properties, graphs, etc! 1. Similar to a Free Response! Triangle ABC has right angle C, with AB = 9 and AC = 4. a. Draw and label

More information

Appendix D Trigonometry

Appendix D Trigonometry Math 151 c Lynch 1 of 8 Appendix D Trigonometry Definition. Angles can be measure in either degree or radians with one complete revolution 360 or 2 rad. Then Example 1. rad = 180 (a) Convert 3 4 into degrees.

More information

Put your initials on the top of every page, in case the pages become separated.

Put your initials on the top of every page, in case the pages become separated. Math 1201, Fall 2016 Name (print): Dr. Jo Nelson s Calculus III Practice for 1/2 of Final, Midterm 1 Material Time Limit: 90 minutes DO NOT OPEN THIS BOOKLET UNTIL INSTRUCTED TO DO SO. This exam contains

More information

Multiple Integrals. max x i 0

Multiple Integrals. max x i 0 Multiple Integrals 1 Double Integrals Definite integrals appear when one solves Area problem. Find the area A of the region bounded above by the curve y = f(x), below by the x-axis, and on the sides by

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometry of Space In Figure 11.43, consider the line L through the point P(x 1, y 1, z 1 ) and parallel to the vector. The vector v is a direction vector for the line L, and a, b, and c

More information

10.2 Calculus with Parametric Curves

10.2 Calculus with Parametric Curves CHAPTER 1. PARAMETRIC AND POLAR 91 1.2 Calculus with Parametric Curves Example 1. Return to the parametric equations in Example 2 from the previous section: x t + sin() y t + cos() (a) Find the Cartesian

More information

Coordinate Transformations in Advanced Calculus

Coordinate Transformations in Advanced Calculus Coordinate Transformations in Advanced Calculus by Sacha Nandlall T.A. for MATH 264, McGill University Email: sacha.nandlall@mail.mcgill.ca Website: http://www.resanova.com/teaching/calculus/ Fall 2006,

More information

CURVE SKETCHING EXAM QUESTIONS

CURVE SKETCHING EXAM QUESTIONS CURVE SKETCHING EXAM QUESTIONS Question 1 (**) a) Express f ( x ) in the form ( ) 2 f x = x + 6x + 10, x R. f ( x) = ( x + a) 2 + b, where a and b are integers. b) Describe geometrically the transformations

More information

Name Class. (a) (b) (c) 2. Find the volume of the solid formed by revolving the region bounded by the graphs of

Name Class. (a) (b) (c) 2. Find the volume of the solid formed by revolving the region bounded by the graphs of Applications of Integration Test Form A. Determine the area of the region bounded by the graphs of y x 4x and y x 4. (a) 9 9 (b) 6 (c). Find the volume of the solid formed by revolving the region bounded

More information

Tangents of Parametric Curves

Tangents of Parametric Curves Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 32 Notes These notes correspond to Section 92 in the text Tangents of Parametric Curves When a curve is described by an equation of the form y = f(x),

More information