Generell Topologi. Richard Williamson. May 6, 2013

Size: px
Start display at page:

Download "Generell Topologi. Richard Williamson. May 6, 2013"

Transcription

1 Generell Topologi Richard Williamson May 6,

2 Thursday 7th January. Basis o a topological space generating a topology with a speciied basis standard topology on R examples Deinition.. Let (, O) be a topological space. A basis or (, O) is a set O o subsets o belonging to O such that every subset U o belonging to O may be obtained as a union o subsets o belonging to O. Proposition.. Let be a set, and let O be a set o subsets o such that the ollowing conditions are satisied. () can be obtained as a union o (possibly ininitely many) subsets o belonging to O. () Let U and U be subsets o belonging to O. Then U U belongs to O. Let O denote the set o subsets U o which may be obtained as a union o (possibly ininitely many) subsets o O. Then (, O) is a topological space, with basis O. Proo. We veriy conditions ()-() o Deinition.. () We think o an an empty union o subsets o belonging to O, so that O. I you are not comortable with this, just change the deinition o O to include as well. () We have that O by deinition o O together with the act that O atsiies condition () in the statement o the proposition. () Let {U j } j J be a set o subsets o belonging to O. For every j J, by deinition o O we have that = k K j U k or a set K j, where U k O. Then ( ) j J U j = j J = k K j U k r ( j J K j ) U r. Thus j J U j belongs to O. is a union o subsets o belonging to O, and hence j J U j () Let U and U be subsets o which belong to O. By deinition o O, we have that U = j J U j where U j O or all j J, and that U = j J U j, where U j O or all j J. Then ( ) ( ) U U = U j = j J j J U j (j,j ) J J U j U j. 5

3 Since O satisies condition () o the proposition, we have that U j U j belongs to O or every (j, j ) J J. Thus U U belongs to O. By construction o O, we have that O is a basis or (, O). Terminology.. Let be a set, and let O be a set o subsets o satisying conditions () and () o Proposition.. Let O denote the set o unions o subsets o belonging to O, which by Proposition. deines a topology on. We reer to O as the topology on which is generated by O. Observation.. Let O = {(a, b) a, b R}. Then O satisies condition () o Proposition. with respect to R, since or example R = n N ( n, n). By Observation., we have that O satisies condition () o Proposition.. Deinition.5. The standard topology on R is the topology O R generated by O. Observation.6. All open intervals in R belong to O R. We have the ollowing cases. () I a, b R, then by deinition o O and O we have that (a, b) O R. () I a R, we have that (a, in) = n N (a, a + n). Since (a, a + n) belongs to O or every n N, we deduce that (a, in) O R. () I b R, we have that ( in, b) = n N (b n, b). Since (b n, b) belongs to O or every n N, we deduce that ( in, b) O R. () We noted in Observation. that R O R. Remark.7. As mentioned in Idea., we will prove later in the course that O R consists exactly o disjoint unions o (possibly ininitely many) open intervals. Observation.8. Let (, O) be a topological space, and let O be a basis or (, O). Let O be a set o subsets o. I every U such that U O can be obtained as a union o subsets o O, then O deines a basis or (, O). Examples.9. () For ɛ R such that ɛ >, and or any x R, let B ɛ (x) = {y R x ɛ < y < x + ɛ}. x ɛ x x + ɛ In other words, B ɛ (x) is the open interval (x ɛ, x + ɛ). Then O = {B ɛ (x) ɛ R and ɛ >, and x R} is a basis or (R, O R ). 6

4 Proo. By Observation.8, it suices to prove that or every a, b R we can obtain the open interval (a, b) as a union o subsets o R belonging to O. In act, (a, b) itsel already belongs to O. Indeed (a, b) = B b a ( a + b ). b a b a a a+b b In particular, we see that a topological space may admit more than one basis. () Let = {a, b, c, d, e}, and let O denote the topology on given by {, {b}, {a, b}, {b, c}, {d, e}, {a, b, c}, {b, d, e}, {a, b, d, e}, {b, c, d, e}, }. Then is a basis or (, O). O = { {b}, {a, b}, {b, c}, {d, e} } The same holds or any set O o subsets o such that O O. No other set o subsets o is a basis or (, O). For example, O = { {a, b}, {b, c}, {d, e} } } is not a basis or (, O), since {b} cannot be obtained as a union o subsets o belonging to O. Similarly O = { {b}, {a, b}, {d, e} } is not a basis or O, since {b, c} cannot be obtained as a union o subsets o belonging to O. () Let O = {(, b) b R}. Then O is not a basis or (R, O R ), since or example we cannot obtain the open interval (, ) as a union o open intervals o the orm (, b). But O satisies the conditions o Proposition., and thus generates a topology O on R. In the manner o Observation., one can prove that O = O {, R}. 7

5 . Continuous maps examples continuity o inclusion maps, compositions o continuous maps, and constant maps Notation.. Let and be sets, and let be a map. Let U be a subset o. We deine (U) to be {x (x) U}. Deinition.. Let (, O ) and (, O ) be topological spaces. A map is continuous i or every U O we have that (U) belongs to O. Remark.. A map R R is continuous with respect to the standard topology on both copies o R i and only i it is continuous in the ɛ δ sense that you know rom real analysis/calculus. See the Exercise Sheet. Examples.. () Let = {a, b}, and let O denote the topology on given by {, {b}, }, so that (, O) is the Sierpiński interval. Let = {a, b, c }, and let O denote the topology on given by {, {a }, {c }, {a, c }, {b, c }, }. Let be given by a b and b c. Then is continous. Proo. We veriy that (U) O or every U O, as ollows. () ( ) = () ( {a } ) = () ( {c } ) = {b } () ( {a, c } ) = {b} (5) ( ) =. 8

6 Let g be given by a c and b b. Then g is not continuous, since or example g ( {c } ) = {a}, which does not belong to O. () Let D I D be given by (x, y, t) ( ( t)x, ( t)y ). We will prove on the Exercise Sheet that is continuous. We may think o as a shrinking o D onto its centre, as t moves rom to. We can picture the image o D {t} under as ollows as t moves rom to. () Fix k R. Let I S be given by t φ(kt), where φ is the continuous map o Question 8 o Exercise Sheet. Let us picture or a ew values o k. 9

7 () Let k =. In words, begins at the point (, ), and travels exactly once around S. Don t be misled by the picture the path really travels around the circle, not slightly outside it. We may picture ( [, t] ) as t moves rom to as ollows. Recall rom Examples.8 (6) that a typical open subset U o S is as depicted below. ( ) Then (U) is as depicted below. In particular, (U) is open in I. Thus intuitively we can believe that is continuous! ( )

8 () Let k =. In words, begins at the point (, ), and travels exactly twice around S. Again, don t be misled by the picture the path really travels twice around the circle, thus passing through every point on the circle twice, not in a spiral outside the circle as drawn. We may picture ( [, t] ) as t moves rom to as ollows. Let U S be the open subset depicted below. ( ) Then (U) a disjoint union o open intervals as depicted below, so is open in I. ( ) ( )

9 ( Let k =. In words, begins at the point (, ), and travels exactly one and a hal times around S. We may picture ( [, t] ) as t moves rom to as ollows. Let U S be the open subset depicted below. ( ) Then (U) is a disjoint union o open subsets o I as depicted below, so is open in I. ( ) ( ) () Let I I

10 be given by t t. We will prove on the Exercise Sheet that is continuous. We may depict as ollows. Let U I be the open subset depicted below. ( ) Then (U) is as depicted below. In particular, (U) is open in I. ( ) (5) Let I S be the map given by t { φ ( t) i t, φ(t) i < t. As in (), φ is the map o Question 8 o Exercise Sheet. We may depict as ollows.

11 Then is not continuous. Indeed, consider an open subset U o S as depicted below. ( ) Then (U) is a hal open interval as depicted below. ( ] In particular, (U) is not an open subset o I. (5) Consider a map I D as depicted below. A precise deinition o this map is not important here the path should be interpreted as beginning on the top let o the disc, moving to the bottom let, jumping to the top right, and then moving to the bottom right. Let U D be an open subset o D depicted as a dashed rectangle below. Then (U) is a hal open interval in I as depicted below. In particular, (U) is not open in I.

12 ( ] Terminology.. Let be a set, and let A be a subset o. The inclusion map with respect to A and is the map A given by a a. We will oten denote it by A. Proposition.5. Let (, O ) be a topological space. Let A be equipped with the subspace topology O A with respect to (, O ). Then the inclusion map A i is continuous. Proo. Let U be a subset o belonging to O. Then i (U) = A U. By deinition o O A, we have that A U belongs to O A. Hence i (U) belongs to O A. Proposition.6. Let (, O ), (, O ), and (Z, O Z ) be topological spaces. Let and g Z be continuous maps. Then the map g Z is continuous. Proo. Let U be a subset o Z belonging to O Z. Then (g ) (U) = {x g ( (x) ) U} = {x (x) g (U)} = ( g (U) ). Since g is continuous, we have that g (U) O. Hence, since is continuous, we have that ( g (U) ) O. Thus (g ) (U) O. 5

13 Terminology.7. Let and be sets. A map is constant i (x) = (x ) or all x, x. Proposition.8. Let (, O ) and (, O ) be topological spaces. Let be a constant map. Then is continuous. Proo. Since is constant, (x) = y or some y and all x. Let U O. I y U, then (U) =, which belongs to O. I y U, then (U) =, which also belongs to O. 6

Generell Topologi. Richard Williamson. May 6, 2013

Generell Topologi. Richard Williamson. May 6, 2013 Generell Topologi Richard Williamson May 6, 2013 1 8 Thursday 7th February 8.1 Using connectedness to distinguish between topological spaces I Proposition 8.1. Let (, O ) and (Y, O Y ) be topological spaces.

More information

Generell Topologi. Richard Williamson. May 27, 2013

Generell Topologi. Richard Williamson. May 27, 2013 Generell Topologi Richard Williamson May 27, 2013 1 1 Tuesday 15th January 1.1 Topological spaces definition, terminology, finite examples Definition 1.1. A topological space is a pair (X, O) of a set

More information

Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets

Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets Saul Glasman 14 September 2016 Let s give the definition of an open subset of R. Definition 1. Let U R. We

More information

Piecewise polynomial interpolation

Piecewise polynomial interpolation Chapter 2 Piecewise polynomial interpolation In ection.6., and in Lab, we learned that it is not a good idea to interpolate unctions by a highorder polynomials at equally spaced points. However, it transpires

More information

Some Inequalities Involving Fuzzy Complex Numbers

Some Inequalities Involving Fuzzy Complex Numbers Theory Applications o Mathematics & Computer Science 4 1 014 106 113 Some Inequalities Involving Fuzzy Complex Numbers Sanjib Kumar Datta a,, Tanmay Biswas b, Samten Tamang a a Department o Mathematics,

More information

A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY

A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY KARL L. STRATOS Abstract. The conventional method of describing a graph as a pair (V, E), where V and E repectively denote the sets of vertices and edges,

More information

Notes on metric spaces and topology. Math 309: Topics in geometry. Dale Rolfsen. University of British Columbia

Notes on metric spaces and topology. Math 309: Topics in geometry. Dale Rolfsen. University of British Columbia Notes on metric spaces and topology Math 309: Topics in geometry Dale Rolfsen University of British Columbia Let X be a set; we ll generally refer to its elements as points. A distance function, or metric

More information

Decomposition of the figure-8 knot

Decomposition of the figure-8 knot CHAPTER 1 Decomposition of the figure-8 knot This book is an introduction to knots, links, and their geometry. Before we begin, we need to define carefully exactly what we mean by knots and links, and

More information

Rough Connected Topologized. Approximation Spaces

Rough Connected Topologized. Approximation Spaces International Journal o Mathematical Analysis Vol. 8 04 no. 53 69-68 HIARI Ltd www.m-hikari.com http://dx.doi.org/0.988/ijma.04.4038 Rough Connected Topologized Approximation Spaces M. J. Iqelan Department

More information

4 Basis, Subbasis, Subspace

4 Basis, Subbasis, Subspace 4 Basis, Subbasis, Subspace Our main goal in this chapter is to develop some tools that make it easier to construct examples of topological spaces. By Definition 3.12 in order to define a topology on a

More information

= [ U 1 \ U 2 = B \ [ B \ B.

= [ U 1 \ U 2 = B \ [ B \ B. 5. Mon, Sept. 8 At the end of class on Friday, we introduced the notion of a topology, and I asked you to think about how many possible topologies there are on a 3-element set. The answer is... 29. The

More information

2 A topological interlude

2 A topological interlude 2 A topological interlude 2.1 Topological spaces Recall that a topological space is a set X with a topology: a collection T of subsets of X, known as open sets, such that and X are open, and finite intersections

More information

Suppose we have a function p : X Y from a topological space X onto a set Y. we want to give a topology on Y so that p becomes a continuous map.

Suppose we have a function p : X Y from a topological space X onto a set Y. we want to give a topology on Y so that p becomes a continuous map. V.3 Quotient Space Suppose we have a function p : X Y from a topological space X onto a set Y. we want to give a topology on Y so that p becomes a continuous map. Remark If we assign the indiscrete topology

More information

WHEN DO THREE LONGEST PATHS HAVE A COMMON VERTEX?

WHEN DO THREE LONGEST PATHS HAVE A COMMON VERTEX? WHEN DO THREE LONGEST PATHS HAVE A COMMON VERTEX? MARIA AXENOVICH Abstract. It is well known that any two longest paths in a connected graph share a vertex. It is also known that there are connected graphs

More information

9.8 Graphing Rational Functions

9.8 Graphing Rational Functions 9. Graphing Rational Functions Lets begin with a deinition. Deinition: Rational Function A rational unction is a unction o the orm P where P and Q are polynomials. Q An eample o a simple rational unction

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

Topology 550A Homework 3, Week 3 (Corrections: February 22, 2012)

Topology 550A Homework 3, Week 3 (Corrections: February 22, 2012) Topology 550A Homework 3, Week 3 (Corrections: February 22, 2012) Michael Tagare De Guzman January 31, 2012 4A. The Sorgenfrey Line The following material concerns the Sorgenfrey line, E, introduced in

More information

Chapter 3. Set Theory. 3.1 What is a Set?

Chapter 3. Set Theory. 3.1 What is a Set? Chapter 3 Set Theory 3.1 What is a Set? A set is a well-defined collection of objects called elements or members of the set. Here, well-defined means accurately and unambiguously stated or described. Any

More information

Tutte Embeddings of Planar Graphs

Tutte Embeddings of Planar Graphs Spectral Graph Theory and its Applications Lectre 21 Ttte Embeddings o Planar Graphs Lectrer: Daniel A. Spielman November 30, 2004 21.1 Ttte s Theorem We sally think o graphs as being speciied by vertices

More information

INTRODUCTION TO TOPOLOGY

INTRODUCTION TO TOPOLOGY INTRODUCTION TO TOPOLOGY MARTINA ROVELLI These notes are an outline of the topics covered in class, and are not substitutive of the lectures, where (most) proofs are provided and examples are discussed

More information

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example).

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example). 98 CHAPTER 3. PROPERTIES OF CONVEX SETS: A GLIMPSE 3.2 Separation Theorems It seems intuitively rather obvious that if A and B are two nonempty disjoint convex sets in A 2, then there is a line, H, separating

More information

Topic: Orientation, Surfaces, and Euler characteristic

Topic: Orientation, Surfaces, and Euler characteristic Topic: Orientation, Surfaces, and Euler characteristic The material in these notes is motivated by Chapter 2 of Cromwell. A source I used for smooth manifolds is do Carmo s Riemannian Geometry. Ideas of

More information

Nano Generalized Pre Homeomorphisms in Nano Topological Space

Nano Generalized Pre Homeomorphisms in Nano Topological Space International Journal o Scientiic esearch Publications Volume 6 Issue 7 July 2016 526 Nano Generalized Pre Homeomorphisms in Nano Topological Space K.Bhuvaneswari 1 K. Mythili Gnanapriya 2 1 Associate

More information

Math 395: Topology. Bret Benesh (College of Saint Benedict/Saint John s University)

Math 395: Topology. Bret Benesh (College of Saint Benedict/Saint John s University) Math 395: Topology Bret Benesh (College of Saint Benedict/Saint John s University) October 30, 2012 ii Contents Acknowledgments v 1 Topological Spaces 1 2 Closed sets and Hausdorff spaces 7 iii iv CONTENTS

More information

The language of categories

The language of categories The language of categories Mariusz Wodzicki March 15, 2011 1 Universal constructions 1.1 Initial and inal objects 1.1.1 Initial objects An object i of a category C is said to be initial if for any object

More information

CONNECTED SPACES AND HOW TO USE THEM

CONNECTED SPACES AND HOW TO USE THEM CONNECTED SPACES AND HOW TO USE THEM 1. How to prove X is connected Checking that a space X is NOT connected is typically easy: you just have to find two disjoint, non-empty subsets A and B in X, such

More information

2. Functions, sets, countability and uncountability. Let A, B be sets (often, in this module, subsets of R).

2. Functions, sets, countability and uncountability. Let A, B be sets (often, in this module, subsets of R). 2. Functions, sets, countability and uncountability I. Functions Let A, B be sets (often, in this module, subsets of R). A function f : A B is some rule that assigns to each element of A a unique element

More information

Functions. How is this definition written in symbolic logic notation?

Functions. How is this definition written in symbolic logic notation? functions 1 Functions Def. Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by

More information

2.2 Set Operations. Introduction DEFINITION 1. EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is, EXAMPLE 2

2.2 Set Operations. Introduction DEFINITION 1. EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is, EXAMPLE 2 2.2 Set Operations 127 2.2 Set Operations Introduction Two, or more, sets can be combined in many different ways. For instance, starting with the set of mathematics majors at your school and the set of

More information

Lecture 17: Continuous Functions

Lecture 17: Continuous Functions Lecture 17: Continuous Functions 1 Continuous Functions Let (X, T X ) and (Y, T Y ) be topological spaces. Definition 1.1 (Continuous Function). A function f : X Y is said to be continuous if the inverse

More information

Locally convex topological vector spaces

Locally convex topological vector spaces Chapter 4 Locally convex topological vector spaces 4.1 Definition by neighbourhoods Let us start this section by briefly recalling some basic properties of convex subsets of a vector space over K (where

More information

Topology problem set Integration workshop 2010

Topology problem set Integration workshop 2010 Topology problem set Integration workshop 2010 July 28, 2010 1 Topological spaces and Continuous functions 1.1 If T 1 and T 2 are two topologies on X, show that (X, T 1 T 2 ) is also a topological space.

More information

Lecture-12: Closed Sets

Lecture-12: Closed Sets and Its Examples Properties of Lecture-12: Dr. Department of Mathematics Lovely Professional University Punjab, India October 18, 2014 Outline Introduction and Its Examples Properties of 1 Introduction

More information

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions.

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions. THREE LECTURES ON BASIC TOPOLOGY PHILIP FOTH 1. Basic notions. Let X be a set. To make a topological space out of X, one must specify a collection T of subsets of X, which are said to be open subsets of

More information

Johns Hopkins Math Tournament Proof Round: Point Set Topology

Johns Hopkins Math Tournament Proof Round: Point Set Topology Johns Hopkins Math Tournament 2019 Proof Round: Point Set Topology February 9, 2019 Problem Points Score 1 3 2 6 3 6 4 6 5 10 6 6 7 8 8 6 9 8 10 8 11 9 12 10 13 14 Total 100 Instructions The exam is worth

More information

2. Sets. 2.1&2.2: Sets and Subsets. Combining Sets. c Dr Oksana Shatalov, Fall

2. Sets. 2.1&2.2: Sets and Subsets. Combining Sets. c Dr Oksana Shatalov, Fall c Dr Oksana Shatalov, Fall 2014 1 2. Sets 2.1&2.2: Sets and Subsets. Combining Sets. Set Terminology and Notation DEFINITIONS: Set is well-defined collection of objects. Elements are objects or members

More information

2 Review of Set Theory

2 Review of Set Theory 2 Review of Set Theory Example 2.1. Let Ω = {1, 2, 3, 4, 5, 6} 2.2. Venn diagram is very useful in set theory. It is often used to portray relationships between sets. Many identities can be read out simply

More information

Manifolds. Chapter X. 44. Locally Euclidean Spaces

Manifolds. Chapter X. 44. Locally Euclidean Spaces Chapter X Manifolds 44. Locally Euclidean Spaces 44 1. Definition of Locally Euclidean Space Let n be a non-negative integer. A topological space X is called a locally Euclidean space of dimension n if

More information

Logic and Discrete Mathematics. Section 2.5 Equivalence relations and partitions

Logic and Discrete Mathematics. Section 2.5 Equivalence relations and partitions Logic and Discrete Mathematics Section 2.5 Equivalence relations and partitions Slides version: January 2015 Equivalence relations Let X be a set and R X X a binary relation on X. We call R an equivalence

More information

SETS. Sets are of two sorts: finite infinite A system of sets is a set, whose elements are again sets.

SETS. Sets are of two sorts: finite infinite A system of sets is a set, whose elements are again sets. SETS A set is a file of objects which have at least one property in common. The objects of the set are called elements. Sets are notated with capital letters K, Z, N, etc., the elements are a, b, c, d,

More information

Intersection of sets *

Intersection of sets * OpenStax-CNX module: m15196 1 Intersection of sets * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 We have pointed out that a set

More information

1.1 - Introduction to Sets

1.1 - Introduction to Sets 1.1 - Introduction to Sets Math 166-502 Blake Boudreaux Department of Mathematics Texas A&M University January 18, 2018 Blake Boudreaux (Texas A&M University) 1.1 - Introduction to Sets January 18, 2018

More information

4. Definition: topological space, open set, topology, trivial topology, discrete topology.

4. Definition: topological space, open set, topology, trivial topology, discrete topology. Topology Summary Note to the reader. If a statement is marked with [Not proved in the lecture], then the statement was stated but not proved in the lecture. Of course, you don t need to know the proof.

More information

Topology notes. Basic Definitions and Properties.

Topology notes. Basic Definitions and Properties. Topology notes. Basic Definitions and Properties. Intuitively, a topological space consists of a set of points and a collection of special sets called open sets that provide information on how these points

More information

Homework Set #2 Math 440 Topology Topology by J. Munkres

Homework Set #2 Math 440 Topology Topology by J. Munkres Homework Set #2 Math 440 Topology Topology by J. Munkres Clayton J. Lungstrum October 26, 2012 Exercise 1. Prove that a topological space X is Hausdorff if and only if the diagonal = {(x, x) : x X} is

More information

Section 13. Basis for a Topology

Section 13. Basis for a Topology 13. Basis for a Topology 1 Section 13. Basis for a Topology Note. In this section, we consider a basis for a topology on a set which is, in a sense, analogous to the basis for a vector space. Whereas a

More information

What is Set? Set Theory. Notation. Venn Diagram

What is Set? Set Theory. Notation. Venn Diagram What is Set? Set Theory Peter Lo Set is any well-defined list, collection, or class of objects. The objects in set can be anything These objects are called the Elements or Members of the set. CS218 Peter

More information

T. Background material: Topology

T. Background material: Topology MATH41071/MATH61071 Algebraic topology Autumn Semester 2017 2018 T. Background material: Topology For convenience this is an overview of basic topological ideas which will be used in the course. This material

More information

Topology Proceedings. COPYRIGHT c by Topology Proceedings. All rights reserved.

Topology Proceedings. COPYRIGHT c by Topology Proceedings. All rights reserved. Topology Proceedings Web: http://topology.auburn.edu/tp/ Mail: Topology Proceedings Department of Mathematics & Statistics Auburn University, Alabama 36849, USA E-mail: topolog@auburn.edu ISSN: 0146-4124

More information

Lecture : Topological Space

Lecture : Topological Space Example of Lecture : Dr. Department of Mathematics Lovely Professional University Punjab, India October 18, 2014 Outline Example of 1 2 3 Example of 4 5 6 Example of I Topological spaces and continuous

More information

Travaux Dirigés n 2 Modèles des langages de programmation Master Parisien de Recherche en Informatique Paul-André Melliès

Travaux Dirigés n 2 Modèles des langages de programmation Master Parisien de Recherche en Informatique Paul-André Melliès Travaux Dirigés n 2 Modèles des langages de programmation Master Parisien de Recherche en Inormatique Paul-André Melliès Problem. We saw in the course that every coherence space A induces a partial order

More information

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality Planar Graphs In the first half of this book, we consider mostly planar graphs and their geometric representations, mostly in the plane. We start with a survey of basic results on planar graphs. This chapter

More information

arxiv: v2 [math.co] 13 Aug 2013

arxiv: v2 [math.co] 13 Aug 2013 Orthogonality and minimality in the homology of locally finite graphs Reinhard Diestel Julian Pott arxiv:1307.0728v2 [math.co] 13 Aug 2013 August 14, 2013 Abstract Given a finite set E, a subset D E (viewed

More information

Final Exam, F11PE Solutions, Topology, Autumn 2011

Final Exam, F11PE Solutions, Topology, Autumn 2011 Final Exam, F11PE Solutions, Topology, Autumn 2011 Question 1 (i) Given a metric space (X, d), define what it means for a set to be open in the associated metric topology. Solution: A set U X is open if,

More information

Geometric structures on manifolds

Geometric structures on manifolds CHAPTER 3 Geometric structures on manifolds In this chapter, we give our first examples of hyperbolic manifolds, combining ideas from the previous two chapters. 3.1. Geometric structures 3.1.1. Introductory

More information

Finding Strongly Connected Components

Finding Strongly Connected Components Yufei Tao ITEE University of Queensland We just can t get enough of the beautiful algorithm of DFS! In this lecture, we will use it to solve a problem finding strongly connected components that seems to

More information

M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements.

M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements. M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements. Chapter 1: Metric spaces and convergence. (1.1) Recall the standard distance function

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

3 No-Wait Job Shops with Variable Processing Times

3 No-Wait Job Shops with Variable Processing Times 3 No-Wait Job Shops with Variable Processing Times In this chapter we assume that, on top of the classical no-wait job shop setting, we are given a set of processing times for each operation. We may select

More information

Functions. Def. Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

Functions. Def. Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to each element of A. Functions functions 1 Def. Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to each element of A. a A! b B b is assigned to a a A! b B f ( a) = b Notation: If

More information

CSC Discrete Math I, Spring Sets

CSC Discrete Math I, Spring Sets CSC 125 - Discrete Math I, Spring 2017 Sets Sets A set is well-defined, unordered collection of objects The objects in a set are called the elements, or members, of the set A set is said to contain its

More information

GABRIEL C. DRUMMOND-COLE

GABRIEL C. DRUMMOND-COLE MILY RIHL: -CTGORIS FROM SCRTCH (TH SIC TWO-CTGORY THORY) GRIL C. DRUMMOND-COL I m trying to be really gentle on the category theory, within reason. So in particular, I m expecting a lot o people won t

More information

COMP 250 Fall graph traversal Nov. 15/16, 2017

COMP 250 Fall graph traversal Nov. 15/16, 2017 Graph traversal One problem we oten need to solve when working with graphs is to decide i there is a sequence o edges (a path) rom one vertex to another, or to ind such a sequence. There are various versions

More information

AXIOMS FOR THE INTEGERS

AXIOMS FOR THE INTEGERS AXIOMS FOR THE INTEGERS BRIAN OSSERMAN We describe the set of axioms for the integers which we will use in the class. The axioms are almost the same as what is presented in Appendix A of the textbook,

More information

The generalized Schoenflies theorem

The generalized Schoenflies theorem The generalized Schoenflies theorem Andrew Putman Abstract The generalized Schoenflies theorem asserts that if ϕ S n 1 S n is a topological embedding and A is the closure of a component of S n ϕ(s n 1

More information

A Proposed Approach for Solving Rough Bi-Level. Programming Problems by Genetic Algorithm

A Proposed Approach for Solving Rough Bi-Level. Programming Problems by Genetic Algorithm Int J Contemp Math Sciences, Vol 6, 0, no 0, 45 465 A Proposed Approach or Solving Rough Bi-Level Programming Problems by Genetic Algorithm M S Osman Department o Basic Science, Higher Technological Institute

More information

6.2 Classification of Closed Surfaces

6.2 Classification of Closed Surfaces Table 6.1: A polygon diagram 6.1.2 Second Proof: Compactifying Teichmuller Space 6.2 Classification of Closed Surfaces We saw that each surface has a triangulation. Compact surfaces have finite triangulations.

More information

References: Hatcher is our text. Lee1 means Lee s Intro to Topological Manifolds. Lee2 means Lee s Intro to Smooth Manifolds.

References: Hatcher is our text. Lee1 means Lee s Intro to Topological Manifolds. Lee2 means Lee s Intro to Smooth Manifolds. Lecture on CW-complexes References: Hatcher is our text. Lee1 means Lee s Intro to Topological Manifolds. Lee2 means Lee s Intro to Smooth Manifolds. 1 Discs and spheres Disks and spheres are the basic

More information

1.2 Venn Diagrams and Partitions

1.2 Venn Diagrams and Partitions 1.2 Venn Diagrams and Partitions Mark R. Woodard Furman U 2010 Mark R. Woodard (Furman U) 1.2 Venn Diagrams and Partitions 2010 1 / 9 Outline 1 Venn Diagrams 2 Partitions 3 Fundamentals of Counting Mark

More information

Topology I Test 1 Solutions October 13, 2008

Topology I Test 1 Solutions October 13, 2008 Topology I Test 1 Solutions October 13, 2008 1. Do FIVE of the following: (a) Give a careful definition of connected. A topological space X is connected if for any two sets A and B such that A B = X, we

More information

Notes on point set topology, Fall 2010

Notes on point set topology, Fall 2010 Notes on point set topology, Fall 2010 Stephan Stolz September 3, 2010 Contents 1 Pointset Topology 1 1.1 Metric spaces and topological spaces...................... 1 1.2 Constructions with topological

More information

Metric and metrizable spaces

Metric and metrizable spaces Metric and metrizable spaces These notes discuss the same topic as Sections 20 and 2 of Munkres book; some notions (Symmetric, -metric, Ψ-spaces...) are not discussed in Munkres book.. Symmetric, -metric,

More information

AM 221: Advanced Optimization Spring 2016

AM 221: Advanced Optimization Spring 2016 AM 221: Advanced Optimization Spring 2016 Prof. Yaron Singer Lecture 2 Wednesday, January 27th 1 Overview In our previous lecture we discussed several applications of optimization, introduced basic terminology,

More information

! B be a covering, where B is a connected graph. Then E is also a

! B be a covering, where B is a connected graph. Then E is also a 26. Mon, Mar. 24 The next application is the computation of the fundamental group of any graph. We start by specifying what we mean by a graph. Recall that S 0 R is usually defined to be the set S 0 =

More information

Hierarchy of graph matchbox manifolds

Hierarchy of graph matchbox manifolds Hierarchy of graph matchbox manifolds Olga Lukina University of Leicester, UK July 2th, 2012 Olga Lukina (University of Leicester, UK) Graph matchbox manifolds July 2th, 2012 1 / 31 Introduction I will

More information

LECTURE NOTES ON SETS

LECTURE NOTES ON SETS LECTURE NOTES ON SETS PETE L. CLARK Contents 1. Introducing Sets 1 2. Subsets 5 3. Power Sets 5 4. Operations on Sets 6 5. Families of Sets 8 6. Partitions 10 7. Cartesian Products 11 1. Introducing Sets

More information

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9.

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9. II.4 Surface Simplification 37 II.4 Surface Simplification In applications it is often necessary to simplify the data or its representation. One reason is measurement noise, which we would like to eliminate,

More information

Bases of topologies. 1 Motivation

Bases of topologies. 1 Motivation Bases of topologies 1 Motivation In the previous section we saw some examples of topologies. We described each of them by explicitly specifying all of the open sets in each one. This is not be a feasible

More information

The Intersection of Two Sets

The Intersection of Two Sets Venn Diagrams There are times when it proves useful or desirable for us to represent sets and the relationships among them in a visual manner. This can be beneficial for a variety of reasons, among which

More information

Geometric structures on manifolds

Geometric structures on manifolds CHAPTER 3 Geometric structures on manifolds In this chapter, we give our first examples of hyperbolic manifolds, combining ideas from the previous two chapters. 3.1. Geometric structures 3.1.1. Introductory

More information

Lecture 7: the quotient topology

Lecture 7: the quotient topology Lecture 7: the quotient topology Saul Glasman September 21, 2016 Why couldn t we say that a homeomorphism was just a continuous bijection? Why did we have to explicitly require the inverse to be continuous

More information

Lecture 19 Thursday, March 29. Examples of isomorphic, and non-isomorphic graphs will be given in class.

Lecture 19 Thursday, March 29. Examples of isomorphic, and non-isomorphic graphs will be given in class. CIS 160 - Spring 2018 (instructor Val Tannen) Lecture 19 Thursday, March 29 GRAPH THEORY Graph isomorphism Definition 19.1 Two graphs G 1 = (V 1, E 1 ) and G 2 = (V 2, E 2 ) are isomorphic, write G 1 G

More information

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3.

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. 301. Definition. Let m be a positive integer, and let X be a set. An m-tuple of elements of X is a function x : {1,..., m} X. We sometimes use x i instead

More information

Pentagon contact representations

Pentagon contact representations Pentagon contact representations Stean Felsner Institut ür Mathematik Technische Universität Berlin Hendrik Schrezenmaier Institut ür Mathematik Technische Universität Berlin August, 017 Raphael Steiner

More information

Algebra of Sets. Aditya Ghosh. April 6, 2018 It is recommended that while reading it, sit with a pen and a paper.

Algebra of Sets. Aditya Ghosh. April 6, 2018 It is recommended that while reading it, sit with a pen and a paper. Algebra of Sets Aditya Ghosh April 6, 2018 It is recommended that while reading it, sit with a pen and a paper. 1 The Basics This article is only about the algebra of sets, and does not deal with the foundations

More information

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics 400 lecture note #4 [Ch 6] Set Theory 1. Basic Concepts and Definitions 1) Basics Element: ; A is a set consisting of elements x which is in a/another set S such that P(x) is true. Empty set: notated {

More information

Overlapping Cluster Planarity.

Overlapping Cluster Planarity. Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 12, no. 3, pp. 267 291 (2008) Overlapping Cluster Planarity. Walter Didimo 1 Francesco Giordano 1 Giuseppe Liotta 1 1 Dipartimento di

More information

Topology Homework 3. Section Section 3.3. Samuel Otten

Topology Homework 3. Section Section 3.3. Samuel Otten Topology Homework 3 Section 3.1 - Section 3.3 Samuel Otten 3.1 (1) Proposition. The intersection of finitely many open sets is open and the union of finitely many closed sets is closed. Proof. Note that

More information

Notes on Minimum Cuts and Modular Functions

Notes on Minimum Cuts and Modular Functions Notes on Minimum Cuts and Modular Functions 1 Introduction The following are my notes on Cunningham s paper [1]. Given a submodular function f and a set S, submodular minimisation is the problem of finding

More information

2. Metric and Topological Spaces

2. Metric and Topological Spaces 2 Metric and Topological Spaces Topology begins where sets are implemented with some cohesive properties enabling one to define continuity Solomon Lefschetz In order to forge a language of continuity,

More information

Point-Set Topology II

Point-Set Topology II Point-Set Topology II Charles Staats September 14, 2010 1 More on Quotients Universal Property of Quotients. Let X be a topological space with equivalence relation. Suppose that f : X Y is continuous and

More information

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial.

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial. 2301-670 Graph theory 1.1 What is a graph? 1 st semester 2550 1 1.1. What is a graph? 1.1.2. Definition. A graph G is a triple (V(G), E(G), ψ G ) consisting of V(G) of vertices, a set E(G), disjoint from

More information

Math 205B - Topology. Dr. Baez. February 23, Christopher Walker

Math 205B - Topology. Dr. Baez. February 23, Christopher Walker Math 205B - Topology Dr. Baez February 23, 2007 Christopher Walker Exercise 60.2. Let X be the quotient space obtained from B 2 by identifying each point x of S 1 with its antipode x. Show that X is homeomorphic

More information

MATH 215B MIDTERM SOLUTIONS

MATH 215B MIDTERM SOLUTIONS MATH 215B MIDTERM SOLUTIONS 1. (a) (6 marks) Show that a finitely generated group has only a finite number of subgroups of a given finite index. (Hint: Do it for a free group first.) (b) (6 marks) Show

More information

Homework 6: Excision for homotopy groups

Homework 6: Excision for homotopy groups Homework 6: Excision for homotopy groups Due date: Friday, October 18th. 0. Goals and Assumptions: The homotopy excision theorem Definition 5. Let A X. Thepair(X, A) is said to be n-connected if π i (X,

More information

Binary Relations McGraw-Hill Education

Binary Relations McGraw-Hill Education Binary Relations A binary relation R from a set A to a set B is a subset of A X B Example: Let A = {0,1,2} and B = {a,b} {(0, a), (0, b), (1,a), (2, b)} is a relation from A to B. We can also represent

More information

1 Euler characteristics

1 Euler characteristics Tutorials: MA342: Tutorial Problems 2014-15 Tuesday, 1-2pm, Venue = AC214 Wednesday, 2-3pm, Venue = AC201 Tutor: Adib Makroon 1 Euler characteristics 1. Draw a graph on a sphere S 2 PROBLEMS in such a

More information

Lectures on Order and Topology

Lectures on Order and Topology Lectures on Order and Topology Antonino Salibra 17 November 2014 1 Topology: main definitions and notation Definition 1.1 A topological space X is a pair X = ( X, OX) where X is a nonempty set and OX is

More information

Math 170, Section 002 Spring 2012 Practice Exam 2 with Solutions

Math 170, Section 002 Spring 2012 Practice Exam 2 with Solutions Math 170, Section 002 Spring 2012 Practice Exam 2 with Solutions Contents 1 Problems 2 2 Solution key 10 3 Solutions 11 1 1 Problems Question 1: A right triangle has hypothenuse of length 25 in and an

More information

6. Lecture notes on matroid intersection

6. Lecture notes on matroid intersection Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans May 2, 2017 6. Lecture notes on matroid intersection One nice feature about matroids is that a simple greedy algorithm

More information