CME 345: MODEL REDUCTION

Size: px
Start display at page:

Download "CME 345: MODEL REDUCTION"

Transcription

1 CME 345: MODEL REDUCTION Parameterized Partial Differential Equations Charbel Farhat Stanford University 1 / 19

2 Outline 1 Initial Boundary Value Problems 2 Typical Parameters of Interest 3 Semi-discretization Processes and Dynamical Systems 4 5 Subspace Approximation 2 / 19

3 Initial Boundary Value Problems Linear Partial Differential Equation (PDE) L(W, x, t) = 0 W = W(x, t) R q : State variable x Ω R d, d 3: Space variable t 0: Time variable Examples linearized Navier-Stokes equations elastodynamic equations of motion wave equation Boundary Conditions (BCs) B(W, x BC, t) = 0 Dirichlet BCs Neumann BCs Initial Condition (IC) W(x, 0) = W 0 (x) = W IC (x) 3 / 19

4 Initial Boundary Value Problems Parameterized PDE Parameter domain: D R p parameter vector (also referred to as parameter point ): µ = [µ 1,, µ p] T D R p where the superscript T designates the transpose operation Parameterized PDE Boundary conditions L(W, x, t; µ) = 0 B(W, x BC, t; µ) = 0 Initial condition W 0 (x) = W IC (x; µ) 4 / 19

5 Typical Parameters of Interest Shape parameters Material (properties) parameters Operation parameters (for example, flight conditions, cruise conditions, ) Boundary conditions Initial condition 5 / 19

6 Semi-discretization Processes and Dynamical Systems Semi-discretized problem The PDE is discretized in space using, for example a finite difference method a finite volume method a finite element method a discontinuous Galerkin method a spectral method... This leads to a system of N = q N space Ordinary Differential Equations (ODEs) that can be written as dw dt = f(w, t; µ) where w = w(t; µ) R N with the initial condition w(0; µ) = w 0 (µ) This is the High-Dimensional Model (HDM) 6 / 19

7 Multi-query context routine analysis uncertainty quantification design optimization inverse problems optimal control model predictive control 7 / 19

8 Multi-query Context Routine analysis 8 / 19

9 Multi-query Context Routine analysis 9 / 19

10 Multi-query Context Uncertainty quantification Monte-Carlo simulations / 19

11 Multi-query Context Design optimization 11 / 19

12 Multi-query Context Model predictive control 12 / 19

13 Model Parameterized PDE Advection-diffusion-reaction equation: W = W(x, t; µ) solution of W t + U W κ W = f R (W, t, µ R ) for x Ω with appropriate boundary and initial conditions Parameters of interest W(x, t; µ) = W D (x, t; µ D ) for x Γ D W(x, t; µ) n(x) = 0 for x Γ N W(x, 0; µ) = W 0 (x; µ IC ) for x Ω µ = [U 1,, U d, κ, µ R, µ D, µ IC ] 13 / 19

14 Parameterized Solutions Two-dimensional advection-diffusion equation W + U W κ W = 0 for x Ω t with boundary and initial conditions W(x, t; µ) = W D (x, t; µ D ) for x Γ D W(x, t; µ) n(x) = 0 for x Γ N W(x, 0; µ) = W 0 (x) for x Ω 14 / 19

15 Parameterized Solutions Two-dimensional advection-diffusion equation W t with boundary and initial conditions + U W κ W = 0 for x Ω W(x, t; µ) = W D (x, t; µ D ) for x Γ D 4 parameters of interest p = 4 w R N with N = 2, 701 W(x, t; µ) n(x) = 0 for x Γ N W(x, 0; µ) = W 0 (x) for x Ω µ = [U 1, U 2, κ, µ D ] R 4 15 / 19

16 Parameterized Solutions Solution snapshots at some time t i, for six sampled parameter points µ (j), j = 1,, 6 16 / 19

17 Subspace Approximation Question: Can we reuse the pre-computed snapshots to reconstruct a solution for an unsampled parameter point µ? Idea: Use a linear combination of these snapshots such as, for example w(t; µ) N s s (k) q (1) i (t; µ)w(t i ; µ (1) ) + + q (k) i (t; µ)w(t i ; µ (k) ) N (1) i=1 where N s (j), j = 1,, k denotes the number of snapshots pre-computed using the sampled parameter point µ (j), and k denotes the total number of parameter points sampled in the parameter space D w(t i ; µ (j) ) R N denotes the snapshot pre-computed at time t i using the sampled parameter point µ (j) q (j) i (t; µ) R denotes the expansion coefficient associated with w(t i ; µ (j) ) i=1 17 / 19

18 Subspace Approximation The linear expansion w(t; µ) N s s (k) q (1) i (t; µ)w(t i ; µ (1) ) + + q (k) i (t; µ)w(t i ; µ (k) ) N (1) i=1 can be written as where [ W = and [ q(t; µ) = w(t 1 ; µ (1) ),, w(t N (1) s q (1) 1 (t; µ),, q(1) w(t; µ) Wq(t; µ) N s (1) i=1 ] ; µ (1) ),, w(t 1 ; µ (k) ),, w(t (k) N ; µ (k) ) s (t; µ),, q (k) 1 (t; µ),, q(k) N s (k) ] T (t; µ) 18 / 19

19 Subspace Approximation The parameterized approximation w(t; µ) Wq(t; µ) is a subspace approximation of w(t; µ), where the subspace is { } S = span w(t 1 ; µ (1) ),,, w(t (k) N ; µ (k) ) s and its dimension is [ dim (S) = rank w(t 1 ; µ (1) ),,, w(t N (k) s ] ; µ (k) ) k j=1 N (j) s This approximation constitutes one of the pillars of projection-based model reduction. It raises however the following questions How to sample the parameter space D? How to reduce the dimensionality of W and therefore the approximation subspace S below k N s (j)? These are some of the questions that this course addresses j=1 19 / 19

Partial Differential Equations

Partial Differential Equations Simulation in Computer Graphics Partial Differential Equations Matthias Teschner Computer Science Department University of Freiburg Motivation various dynamic effects and physical processes are described

More information

Traveling Wave Analysis of Partial Differential Equations

Traveling Wave Analysis of Partial Differential Equations Traveling Wave Analysis of Partial Differential Equations Numerical and Analytical Methods with Matlab and Maple Graham W. Griffiths and William E. Schiesser (Academic Press, ISBN: 9780123846525) Chapter

More information

The Immersed Interface Method

The Immersed Interface Method The Immersed Interface Method Numerical Solutions of PDEs Involving Interfaces and Irregular Domains Zhiiin Li Kazufumi Ito North Carolina State University Raleigh, North Carolina Society for Industrial

More information

CS205b/CME306. Lecture 9

CS205b/CME306. Lecture 9 CS205b/CME306 Lecture 9 1 Convection Supplementary Reading: Osher and Fedkiw, Sections 3.3 and 3.5; Leveque, Sections 6.7, 8.3, 10.2, 10.4. For a reference on Newton polynomial interpolation via divided

More information

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 First-Order Hyperbolic System Method If you have a CFD book for hyperbolic problems, you have a CFD book for all problems.

More information

arxiv: v1 [math.na] 26 Jun 2014

arxiv: v1 [math.na] 26 Jun 2014 for spectrally accurate wave propagation Vladimir Druskin, Alexander V. Mamonov and Mikhail Zaslavsky, Schlumberger arxiv:406.6923v [math.na] 26 Jun 204 SUMMARY We develop a method for numerical time-domain

More information

Wavelet-Galerkin Solutions of One and Two Dimensional Partial Differential Equations

Wavelet-Galerkin Solutions of One and Two Dimensional Partial Differential Equations VOL 3, NO0 Oct, 202 ISSN 2079-8407 2009-202 CIS Journal All rights reserved http://wwwcisjournalorg Wavelet-Galerkin Solutions of One and Two Dimensional Partial Differential Equations Sabina, 2 Vinod

More information

Using Periodic Boundary Conditions

Using Periodic Boundary Conditions 1 of 6 2004 11 08 15:20 Use periodic boundary conditions, periodic edge conditions, and periodic point conditions to define a constraint that makes two quantities equal on two different (but usually equally

More information

1 Exercise: Heat equation in 2-D with FE

1 Exercise: Heat equation in 2-D with FE 1 Exercise: Heat equation in 2-D with FE Reading Hughes (2000, sec. 2.3-2.6 Dabrowski et al. (2008, sec. 1-3, 4.1.1, 4.1.3, 4.2.1 This FE exercise and most of the following ones are based on the MILAMIN

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean A Direct Simulation-Based Study of Radiance in a Dynamic Ocean Dick K.P. Yue Center for Ocean Engineering Massachusetts Institute of Technology Room 5-321, 77 Massachusetts Ave, Cambridge, MA 02139 phone:

More information

Image deblurring by multigrid methods. Department of Physics and Mathematics University of Insubria

Image deblurring by multigrid methods. Department of Physics and Mathematics University of Insubria Image deblurring by multigrid methods Marco Donatelli Stefano Serra-Capizzano Department of Physics and Mathematics University of Insubria Outline 1 Restoration of blurred and noisy images The model problem

More information

MODEL REDUCTION FOR LARGE-SCALE SYSTEMS WITH HIGH-DIMENSIONAL PARAMETRIC INPUT SPACE

MODEL REDUCTION FOR LARGE-SCALE SYSTEMS WITH HIGH-DIMENSIONAL PARAMETRIC INPUT SPACE MODEL REDUCTION FOR LARGE-SCALE SYSTEMS WITH HIGH-DIMENSIONAL PARAMETRIC INPUT SPACE T. BUI-THANH, K. WILLCOX, AND O. GHATTAS Abstract. A model-constrained adaptive sampling methodology is proposed for

More information

Continuum-Microscopic Models

Continuum-Microscopic Models Scientific Computing and Numerical Analysis Seminar October 1, 2010 Outline Heterogeneous Multiscale Method Adaptive Mesh ad Algorithm Refinement Equation-Free Method Incorporates two scales (length, time

More information

2.2 Weighting function

2.2 Weighting function Annual Report (23) Kawahara Lab. On Shape Function of Element-Free Galerkin Method for Flow Analysis Daigo NAKAI and Mutsuto KAWAHARA Department of Civil Engineering, Chuo University, Kasuga 3 27, Bunkyo

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean 1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. A Direct Simulation-Based Study of Radiance in a Dynamic Ocean LONG-TERM GOALS Dick K.P. Yue Center for Ocean Engineering

More information

Data-Driven Modeling. Scientific Computation J. NATHAN KUTZ OXPORD. Methods for Complex Systems & Big Data

Data-Driven Modeling. Scientific Computation J. NATHAN KUTZ OXPORD. Methods for Complex Systems & Big Data Data-Driven Modeling & Scientific Computation Methods for Complex Systems & Big Data J. NATHAN KUTZ Department ofapplied Mathematics University of Washington OXPORD UNIVERSITY PRESS Contents Prolegomenon

More information

Clustering Reduced Order Models for Computational Fluid Dynamics

Clustering Reduced Order Models for Computational Fluid Dynamics Clustering Reduced Order Models for Computational Fluid Dynamics Gabriele Boncoraglio, Forest Fraser Abstract We introduce a novel approach to solving PDE-constrained optimization problems, specifically

More information

Airfoil Design Optimization Using Reduced Order Models Based on Proper Orthogonal Decomposition

Airfoil Design Optimization Using Reduced Order Models Based on Proper Orthogonal Decomposition Airfoil Design Optimization Using Reduced Order Models Based on Proper Orthogonal Decomposition.5.5.5.5.5.5.5..5.95.9.85.8.75.7 Patrick A. LeGresley and Juan J. Alonso Dept. of Aeronautics & Astronautics

More information

The Use of Projection Operators with the Parareal Algorithm to Solve the Heat and the KdVB Equation

The Use of Projection Operators with the Parareal Algorithm to Solve the Heat and the KdVB Equation MATIMYÁS MATEMATIKA Journal of the Mathematical Society of the Philippines ISSN 0115-6926 Vol. 40 Nos. 1-2 (2017) pp. 41-56 The Use of Projection Operators with the Parareal Algorithm to Solve the Heat

More information

Imaging of flow in porous media - from optimal transport to prediction

Imaging of flow in porous media - from optimal transport to prediction Imaging of flow in porous media - from optimal transport to prediction Eldad Haber Dept of EOS and Mathematics, UBC October 15, 2013 With Rowan Lars Jenn Cocket Ruthotto Fohring Outline Prediction is very

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

Computational Fluid Dynamics - Incompressible Flows

Computational Fluid Dynamics - Incompressible Flows Computational Fluid Dynamics - Incompressible Flows March 25, 2008 Incompressible Flows Basis Functions Discrete Equations CFD - Incompressible Flows CFD is a Huge field Numerical Techniques for solving

More information

Skåne University Hospital Lund, Lund, Sweden 2 Deparment of Numerical Analysis, Centre for Mathematical Sciences, Lund University, Lund, Sweden

Skåne University Hospital Lund, Lund, Sweden 2 Deparment of Numerical Analysis, Centre for Mathematical Sciences, Lund University, Lund, Sweden Volume Tracking: A New Method for Visualization of Intracardiac Blood Flow from Three-Dimensional, Time-Resolved, Three-Component Magnetic Resonance Velocity Mapping Appendix: Theory and Numerical Implementation

More information

UNDERBODY BLAST (project 1b)

UNDERBODY BLAST (project 1b) UNDERBODY BLAST (project 1b) PI: Mingjun Wei, New Mexico State University (overall project lead: Charbel Farhat, Stanford University) Graduate Students: HaoQan Gao, Mehdi Tabandeh Khorshid Post- Doctoral

More information

Index. C m (Ω), 141 L 2 (Ω) space, 143 p-th order, 17

Index. C m (Ω), 141 L 2 (Ω) space, 143 p-th order, 17 Bibliography [1] J. Adams, P. Swarztrauber, and R. Sweet. Fishpack: Efficient Fortran subprograms for the solution of separable elliptic partial differential equations. http://www.netlib.org/fishpack/.

More information

Literature Report. Daniël Pols. 23 May 2018

Literature Report. Daniël Pols. 23 May 2018 Literature Report Daniël Pols 23 May 2018 Applications Two-phase flow model The evolution of the momentum field in a two phase flow problem is given by the Navier-Stokes equations: u t + u u = 1 ρ p +

More information

A Particle Cellular Automata Model for Fluid Simulations

A Particle Cellular Automata Model for Fluid Simulations Annals of University of Craiova, Math. Comp. Sci. Ser. Volume 36(2), 2009, Pages 35 41 ISSN: 1223-6934 A Particle Cellular Automata Model for Fluid Simulations Costin-Radu Boldea Abstract. A new cellular-automaton

More information

Traveling Wave Analysis of Partial Differential Equations

Traveling Wave Analysis of Partial Differential Equations Traveling Wave Analysis of Partial Differential Equations Traveling Wave Analysis of Partial Differential Equations Numerical and Analytical Methods with MATLAB R and Maple Graham W. Griffiths City University,

More information

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering Debojyoti Ghosh Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering To study the Dynamic Stalling of rotor blade cross-sections Unsteady Aerodynamics: Time varying

More information

Puffin User Manual. March 1, Johan Hoffman and Anders Logg.

Puffin User Manual. March 1, Johan Hoffman and Anders Logg. Puffin User Manual March 1, 2006 Johan Hoffman and Anders Logg www.fenics.org Visit http://www.fenics.org/ for the latest version of this manual. Send comments and suggestions to puffin-dev@fenics.org.

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

Mathematics for chemical engineers

Mathematics for chemical engineers Mathematics for chemical engineers Drahoslava Janovská Department of mathematics Winter semester 2013-2014 Numerical solution of ordinary differential equations Initial value problem Outline 1 Introduction

More information

SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS

SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS JIAN LIANG AND HONGKAI ZHAO Abstract. In this paper we present a general framework for solving partial differential equations on manifolds represented

More information

COMPUTATIONAL METHODS FOR ENVIRONMENTAL FLUID MECHANICS

COMPUTATIONAL METHODS FOR ENVIRONMENTAL FLUID MECHANICS COMPUTATIONAL METHODS FOR ENVIRONMENTAL FLUID MECHANICS Tayfun Tezduyar tezduyar@rice.edu Team for Advanced Flow Simulation and Modeling (T*AFSM) Mechanical Engineering and Materials Science Rice University

More information

Topology optimization of heat conduction problems

Topology optimization of heat conduction problems Topology optimization of heat conduction problems Workshop on industrial design optimization for fluid flow 23 September 2010 Misha Marie Gregersen Anton Evgrafov Mads Peter Sørensen Technical University

More information

Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field

Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field Level Set Methods Overview Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field Convection Upwind ddifferencingi

More information

Non-Rigid Image Registration III

Non-Rigid Image Registration III Non-Rigid Image Registration III CS6240 Multimedia Analysis Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (CS6240) Non-Rigid Image Registration

More information

On the high order FV schemes for compressible flows

On the high order FV schemes for compressible flows Applied and Computational Mechanics 1 (2007) 453-460 On the high order FV schemes for compressible flows J. Fürst a, a Faculty of Mechanical Engineering, CTU in Prague, Karlovo nám. 13, 121 35 Praha, Czech

More information

Efficiency of adaptive mesh algorithms

Efficiency of adaptive mesh algorithms Efficiency of adaptive mesh algorithms 23.11.2012 Jörn Behrens KlimaCampus, Universität Hamburg http://www.katrina.noaa.gov/satellite/images/katrina-08-28-2005-1545z.jpg Model for adaptive efficiency 10

More information

Continued Investigation of Small-Scale Air-Sea Coupled Dynamics Using CBLAST Data

Continued Investigation of Small-Scale Air-Sea Coupled Dynamics Using CBLAST Data Continued Investigation of Small-Scale Air-Sea Coupled Dynamics Using CBLAST Data Dick K.P. Yue Center for Ocean Engineering Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge,

More information

Adaptive Isogeometric Analysis by Local h-refinement with T-splines

Adaptive Isogeometric Analysis by Local h-refinement with T-splines Adaptive Isogeometric Analysis by Local h-refinement with T-splines Michael Dörfel 1, Bert Jüttler 2, Bernd Simeon 1 1 TU Munich, Germany 2 JKU Linz, Austria SIMAI, Minisymposium M13 Outline Preliminaries:

More information

Uncertainty Analysis: Parameter Estimation. Jackie P. Hallberg Coastal and Hydraulics Laboratory Engineer Research and Development Center

Uncertainty Analysis: Parameter Estimation. Jackie P. Hallberg Coastal and Hydraulics Laboratory Engineer Research and Development Center Uncertainty Analysis: Parameter Estimation Jackie P. Hallberg Coastal and Hydraulics Laboratory Engineer Research and Development Center Outline ADH Optimization Techniques Parameter space Observation

More information

BASICS OF FLUID MECHANICS AND INTRODUCTION TO COMPUTATIONAL FLUID DYNAMICS

BASICS OF FLUID MECHANICS AND INTRODUCTION TO COMPUTATIONAL FLUID DYNAMICS BASICS OF FLUID MECHANICS AND INTRODUCTION TO COMPUTATIONAL FLUID DYNAMICS Numerical Methods and Algorithms Volume 3 Series Editor: Claude Brezinski Université des Sciences et Technologies de Lille, France

More information

Numerical Methods for PDEs. SSC Workgroup Meetings Juan J. Alonso October 8, SSC Working Group Meetings, JJA 1

Numerical Methods for PDEs. SSC Workgroup Meetings Juan J. Alonso October 8, SSC Working Group Meetings, JJA 1 Numerical Methods for PDEs SSC Workgroup Meetings Juan J. Alonso October 8, 2001 SSC Working Group Meetings, JJA 1 Overview These notes are meant to be an overview of the various memory access patterns

More information

An efficient filtered scheme for some first order Hamilton-Jacobi-Bellman equat

An efficient filtered scheme for some first order Hamilton-Jacobi-Bellman equat An efficient filtered scheme for some first order Hamilton-Jacobi-Bellman equations joint work with Olivier Bokanowski 2 and Maurizio Falcone SAPIENZA - Università di Roma 2 Laboratoire Jacques-Louis Lions,

More information

Geometric adaptation and parameterization of subspacebased reduced models

Geometric adaptation and parameterization of subspacebased reduced models Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Geometric adaptation and parameterization of subspacebased reduced models Ralf Zimmermann, AG Numerik, ICM, TU Braunschweig Workshop:

More information

A new take on FWI: Wavefield Reconstruction Inversion

A new take on FWI: Wavefield Reconstruction Inversion A new take on FWI: Wavefield Reconstruction Inversion T. van Leeuwen 1, F.J. Herrmann and B. Peters 1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands University of British Columbia, dept. of

More information

Robust Numerical Methods for Singularly Perturbed Differential Equations SPIN Springer s internal project number, if known

Robust Numerical Methods for Singularly Perturbed Differential Equations SPIN Springer s internal project number, if known Hans-Görg Roos Martin Stynes Lutz Tobiska Robust Numerical Methods for Singularly Perturbed Differential Equations SPIN Springer s internal project number, if known Convection-Diffusion-Reaction and Flow

More information

On the regularizing power of multigrid-type algorithms. Marco Donatelli. Stefano Serra Capizzano

On the regularizing power of multigrid-type algorithms. Marco Donatelli. Stefano Serra Capizzano On the regularizing power of multigrid-type algorithms Marco Donatelli Stefano Serra Capizzano Università dell Insubria, Dip. Fisica e Matematica - Sede di Como Via Valleggio 11-22100 Como, Italy (donatelli@uninsubria.it)

More information

http://miccom-center.org Topic: Continuum-Particle Simulation Software (COPSS-Hydrodynamics) Presenter: Jiyuan Li, The University of Chicago 2017 Summer School 1 What is Continuum-Particle Simulation?

More information

Journal of Theoretical and Applied Mechanics, Sofia, 2015, vol. 45, No. 2, pp

Journal of Theoretical and Applied Mechanics, Sofia, 2015, vol. 45, No. 2, pp Journal of Theoretical and Applied Mechanics, Sofia, 2015, vol. 45, No. 2, pp. 59 74 SOLID MECHANICS WAVE PROPAGATION DUE TO AN EMBEDDED SEISMIC SOURCE IN A GRADED HALF-PLANE WITH RELIEF PECULIARITIES.

More information

MODEL REDUCTION FOR LARGE-SCALE SYSTEMS WITH HIGH-DIMENSIONAL PARAMETRIC INPUT SPACE

MODEL REDUCTION FOR LARGE-SCALE SYSTEMS WITH HIGH-DIMENSIONAL PARAMETRIC INPUT SPACE MODEL REDUCTION FOR LARGE-SCALE SYSTEMS WITH HIGH-DIMENSIONAL PARAMETRIC INPUT SPACE The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Lecture 23: Starting to put it all together #2... More 2-Point Boundary value problems

Lecture 23: Starting to put it all together #2... More 2-Point Boundary value problems Lecture 23: Starting to put it all together #2... More 2-Point Boundary value problems Outline 1) Our basic example again: -u'' + u = f(x); u(0)=α, u(l)=β 2) Solution of 2-point Boundary value problems

More information

Level Set Methods and Fast Marching Methods

Level Set Methods and Fast Marching Methods Level Set Methods and Fast Marching Methods I.Lyulina Scientific Computing Group May, 2002 Overview Existing Techniques for Tracking Interfaces Basic Ideas of Level Set Method and Fast Marching Method

More information

Correction of Model Reduction Errors in Simulations

Correction of Model Reduction Errors in Simulations Correction of Model Reduction Errors in Simulations MUQ 15, June 2015 Antti Lipponen UEF // University of Eastern Finland Janne Huttunen Ville Kolehmainen University of Eastern Finland University of Eastern

More information

Blood Particle Trajectories in Phase-Contrast-MRI as Minimal Paths Computed with Anisotropic Fast Marching

Blood Particle Trajectories in Phase-Contrast-MRI as Minimal Paths Computed with Anisotropic Fast Marching Blood Particle Trajectories in Phase-Contrast-MRI as Minimal Paths Computed with Anisotropic Fast Marching Michael Schwenke 1, Anja Hennemuth 1, Bernd Fischer 2, Ola Friman 1 1 Fraunhofer MEVIS, Institute

More information

Facultad de Ciencias Matemáticas D.M.A. Benjamin Ivorra

Facultad de Ciencias Matemáticas D.M.A. Benjamin Ivorra Facultad de Ciencias Matemáticas D.M.A. Tendencias actuales de la matemática interdisciplinar Mathematical Modeling and Optimization Applications to industrial design problems Benjamin Ivorra Industrial

More information

An Optimization Method Based On B-spline Shape Functions & the Knot Insertion Algorithm

An Optimization Method Based On B-spline Shape Functions & the Knot Insertion Algorithm An Optimization Method Based On B-spline Shape Functions & the Knot Insertion Algorithm P.A. Sherar, C.P. Thompson, B. Xu, B. Zhong Abstract A new method is presented to deal with shape optimization problems.

More information

arxiv: v1 [math.oc] 29 Jul 2014

arxiv: v1 [math.oc] 29 Jul 2014 Progressive construction of a parametric reduced-order model for PDE-constrained optimization Matthew J. Zahr 1 and Charbel Farhat 1,2,3 arxiv:1407.7618v1 [math.oc] 29 Jul 2014 1 Institute for Computational

More information

Coping with the Ice Accumulation Problems on Power Transmission Lines

Coping with the Ice Accumulation Problems on Power Transmission Lines Coping with the Ice Accumulation Problems on Power Transmission Lines P.N. Shivakumar 1, J.F.Peters 2, R.Thulasiram 3, and S.H.Lui 1 1 Department of Mathematics 2 Department of Electrical & Computer Engineering

More information

Model Reduction for Variable-Fidelity Optimization Frameworks

Model Reduction for Variable-Fidelity Optimization Frameworks Model Reduction for Variable-Fidelity Optimization Frameworks Karen Willcox Aerospace Computational Design Laboratory Department of Aeronautics and Astronautics Massachusetts Institute of Technology Workshop

More information

Modelling and Simulation for Engineers

Modelling and Simulation for Engineers Unit T7: Modelling and Simulation for Engineers Unit code: F/503/7343 QCF level: 6 Credit value: 15 Aim This unit gives learners the opportunity to develop their understanding of Ordinary Differential

More information

Masters Projects in Scientific Computing. By Jan Nordström

Masters Projects in Scientific Computing. By Jan Nordström Masters Projects in Scientific Computing By Jan Nordström PROJECT NO 1: OCEAN CIRKULATION CAUSED BY THE TIDE? Seamounts Trences Need efficient solver to compute the flow over a rough surface. We develop

More information

f xx + f yy = F (x, y)

f xx + f yy = F (x, y) Application of the 2D finite element method to Laplace (Poisson) equation; f xx + f yy = F (x, y) M. R. Hadizadeh Computer Club, Department of Physics and Astronomy, Ohio University 4 Nov. 2013 Domain

More information

An Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity

An Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity An Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity David Amsallem and Charbel Farhat Stanford University, Stanford, CA 94305-3035, USA Reduced-order models (ROMs)

More information

Commutative filters for LES on unstructured meshes

Commutative filters for LES on unstructured meshes Center for Turbulence Research Annual Research Briefs 1999 389 Commutative filters for LES on unstructured meshes By Alison L. Marsden AND Oleg V. Vasilyev 1 Motivation and objectives Application of large

More information

ICES REPORT February The Institute for Computational Engineering and Sciences The University of Texas at Austin Austin, Texas 78712

ICES REPORT February The Institute for Computational Engineering and Sciences The University of Texas at Austin Austin, Texas 78712 ICES REPORT 3-03 February 03 Isogeometric Collocation: Cost Comparison with Galerkin Methods and Extension to Adaptive Hierarchical NURBS Discretizations by Dominik Schillinger, John A. Evans, Alessandro

More information

Computational Fluid Dynamics for Engineers

Computational Fluid Dynamics for Engineers Tuncer Cebeci Jian P. Shao Fassi Kafyeke Eric Laurendeau Computational Fluid Dynamics for Engineers From Panel to Navier-Stokes Methods with Computer Programs With 152 Figures, 19 Tables, 84 Problems and

More information

REDUCED ORDER MODELING IN MULTISPECTRAL PHOTOACOUSTIC TOMOGRAPHY

REDUCED ORDER MODELING IN MULTISPECTRAL PHOTOACOUSTIC TOMOGRAPHY REDUCED ORDER MODELING IN MULTISPECTRAL PHOTOACOUSTIC TOMOGRAPHY Arvind Saibaba Sarah Vallélian Statistical and Applied Mathematical Sciences Institute & North Carolina State University May 26, 2016 OUTLINE

More information

Foster s Methodology: Application Examples

Foster s Methodology: Application Examples Foster s Methodology: Application Examples Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico October 19, 2011 CPD (DEI / IST) Parallel and

More information

arxiv: v1 [math.na] 20 Sep 2016

arxiv: v1 [math.na] 20 Sep 2016 arxiv:1609.06236v1 [math.na] 20 Sep 2016 A Local Mesh Modification Strategy for Interface Problems with Application to Shape and Topology Optimization P. Gangl 1,2 and U. Langer 3 1 Doctoral Program Comp.

More information

Elmer Programmer s Tutorial

Elmer Programmer s Tutorial Elmer Programmer s Tutorial Mikko Lyly, Mika Malinen and Peter Råback 2010 2015 Elmer Programmer s Tutorial About this document The Elmer Programmer s Tutorials is part of the documentation of Elmer finite

More information

Final Report. Discontinuous Galerkin Compressible Euler Equation Solver. May 14, Andrey Andreyev. Adviser: Dr. James Baeder

Final Report. Discontinuous Galerkin Compressible Euler Equation Solver. May 14, Andrey Andreyev. Adviser: Dr. James Baeder Final Report Discontinuous Galerkin Compressible Euler Equation Solver May 14, 2013 Andrey Andreyev Adviser: Dr. James Baeder Abstract: In this work a Discontinuous Galerkin Method is developed for compressible

More information

Regularization by multigrid-type algorithms

Regularization by multigrid-type algorithms Regularization by multigrid-type algorithms Marco Donatelli Department of Physics and Mathematics University of Insubria Joint work with S. Serra-Capizzano Outline 1 Restoration of blurred and noisy images

More information

Modeling and simulation the incompressible flow through pipelines 3D solution for the Navier-Stokes equations

Modeling and simulation the incompressible flow through pipelines 3D solution for the Navier-Stokes equations Modeling and simulation the incompressible flow through pipelines 3D solution for the Navier-Stokes equations Daniela Tudorica 1 (1) Petroleum Gas University of Ploiesti, Department of Information Technology,

More information

Hydrodynamics of asteroid collisions and SPH method

Hydrodynamics of asteroid collisions and SPH method Hydrodynamics of asteroid collisions and SPH method 1. our problem 2. SPH approximation 3. initial conditions 4. two phases 5. observations! 6. other problems Miroslav Brož (mira@sirrah.troja.mff.cuni.cz),

More information

Scientific Computing

Scientific Computing Lecture on Scientific Computing Dr. Kersten Schmidt Lecture 20 Technische Universität Berlin Institut für Mathematik Wintersemester 2014/2015 Syllabus Linear Regression, Fast Fourier transform Modelling

More information

The 3D DSC in Fluid Simulation

The 3D DSC in Fluid Simulation The 3D DSC in Fluid Simulation Marek K. Misztal Informatics and Mathematical Modelling, Technical University of Denmark mkm@imm.dtu.dk DSC 2011 Workshop Kgs. Lyngby, 26th August 2011 Governing Equations

More information

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr.

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr. Mid-Year Report Discontinuous Galerkin Euler Equation Solver Friday, December 14, 2012 Andrey Andreyev Advisor: Dr. James Baeder Abstract: The focus of this effort is to produce a two dimensional inviscid,

More information

Techniques for Using the Method of Manufactured Solutions for Verification and Uncertainty Quantification of CFD Simulations Having Discontinuities

Techniques for Using the Method of Manufactured Solutions for Verification and Uncertainty Quantification of CFD Simulations Having Discontinuities Techniques for Using the Method of Manufactured Solutions for Verification and Uncertainty Quantification of CFD Simulations Having Discontinuities Ben Grier Clemson University Richard Figliola, Larry

More information

Isogeometric analysis with Axel

Isogeometric analysis with Axel Isogeometric analysis with Axel Gang Xu, Régis Duvigneau,Bernard Mourrain INRIA Sophia-Antipolis gxu@sophia.inria.fr SAGA Workshop, March 18th, 2010 Outline 1 Isogeometric toolbox in EXCITING 2 Isogeometric

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,800 116,000 120M Open access books available International authors and editors Downloads Our

More information

A fast direct solver for high frequency scattering from a cavity in two dimensions

A fast direct solver for high frequency scattering from a cavity in two dimensions 1/31 A fast direct solver for high frequency scattering from a cavity in two dimensions Jun Lai 1 Joint work with: Leslie Greengard (CIMS) Sivaram Ambikasaran (CIMS) Workshop on fast direct solver, Dartmouth

More information

Large-Scale Simulations on Parallel Computers!

Large-Scale Simulations on Parallel Computers! http://users.wpi.edu/~gretar/me612.html! Large-Scale Simulations on Parallel Computers! Grétar Tryggvason! Spring 2010! Outline!!Basic Machine configurations!!parallelization!!the Message Passing Interface

More information

Fast Multipole Method on the GPU

Fast Multipole Method on the GPU Fast Multipole Method on the GPU with application to the Adaptive Vortex Method University of Bristol, Bristol, United Kingdom. 1 Introduction Particle methods Highly parallel Computational intensive Numerical

More information

Study and implementation of computational methods for Differential Equations in heterogeneous systems. Asimina Vouronikoy - Eleni Zisiou

Study and implementation of computational methods for Differential Equations in heterogeneous systems. Asimina Vouronikoy - Eleni Zisiou Study and implementation of computational methods for Differential Equations in heterogeneous systems Asimina Vouronikoy - Eleni Zisiou Outline Introduction Review of related work Cyclic Reduction Algorithm

More information

Preliminary Spray Cooling Simulations Using a Full-Cone Water Spray

Preliminary Spray Cooling Simulations Using a Full-Cone Water Spray 39th Dayton-Cincinnati Aerospace Sciences Symposium Preliminary Spray Cooling Simulations Using a Full-Cone Water Spray Murat Dinc Prof. Donald D. Gray (advisor), Prof. John M. Kuhlman, Nicholas L. Hillen,

More information

Isogeometric Collocation Method

Isogeometric Collocation Method Chair for Computational Analysis of Technical Systems Faculty of Mechanical Engineering, RWTH Aachen University Isogeometric Collocation Method Seminararbeit By Marko Blatzheim Supervisors: Dr. Stefanie

More information

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements Dick K.P. Yue Center for Ocean Engineering

More information

Image denoising using TV-Stokes equation with an orientation-matching minimization

Image denoising using TV-Stokes equation with an orientation-matching minimization Image denoising using TV-Stokes equation with an orientation-matching minimization Xue-Cheng Tai 1,2, Sofia Borok 1, and Jooyoung Hahn 1 1 Division of Mathematical Sciences, School of Physical Mathematical

More information

Jacobian: Velocities and Static Forces 1/4

Jacobian: Velocities and Static Forces 1/4 Jacobian: Velocities and Static Forces /4 Models of Robot Manipulation - EE 54 - Department of Electrical Engineering - University of Washington Kinematics Relations - Joint & Cartesian Spaces A robot

More information

Finite Element Methods for the Poisson Equation and its Applications

Finite Element Methods for the Poisson Equation and its Applications Finite Element Methods for the Poisson Equation and its Applications Charles Crook July 30, 2013 Abstract The finite element method is a fast computational method that also has a solid mathematical theory

More information

Advective and conservative semi-lagrangian schemes on uniform and non-uniform grids

Advective and conservative semi-lagrangian schemes on uniform and non-uniform grids Advective and conservative semi-lagrangian schemes on uniform and non-uniform grids M. Mehrenberger Université de Strasbourg and Max-Planck Institut für Plasmaphysik 5 September 2013 M. Mehrenberger (UDS

More information

TWO-DIMENSIONAL FEM MODELING OF SEISMIC WAVE PROPAGATION IN COAL SEAM. By Hongliang Wang

TWO-DIMENSIONAL FEM MODELING OF SEISMIC WAVE PROPAGATION IN COAL SEAM. By Hongliang Wang EGEE 50 Fall 005 Semester Paper. Instructor: Dr. Derek Elsworth TWO-DIMENSIONAL FEM MODELING OF SEISMIC WAVE PROPAGATION IN COAL SEAM By Hongliang Wang (huw103@psu.edu) Abstract In-seam seismic signals

More information

ATM 298, Spring 2013 Lecture 4 Numerical Methods: Horizontal DiscreDzaDons April 10, Paul A. Ullrich (HH 251)

ATM 298, Spring 2013 Lecture 4 Numerical Methods: Horizontal DiscreDzaDons April 10, Paul A. Ullrich (HH 251) ATM 298, Spring 2013 Lecture 4 Numerical Methods: Horizontal DiscreDzaDons April 10, 2013 Paul A. Ullrich (HH 251) paullrich@ucdavis.edu Outline 1. Introduction / Motivation 2. Finite Difference Methods

More information

An Adaptive Stencil Linear Deviation Method for Wave Equations

An Adaptive Stencil Linear Deviation Method for Wave Equations 211 An Adaptive Stencil Linear Deviation Method for Wave Equations Kelly Hasler Faculty Sponsor: Robert H. Hoar, Department of Mathematics ABSTRACT Wave Equations are partial differential equations (PDEs)

More information

Compressed fast solution of the acoustic wave equation

Compressed fast solution of the acoustic wave equation Compressed fast solution of the acoustic wave equation Victor Pereyra Energy Resources Engineering Stanford University University of Reading July 2012 Motivation: Seismic Oil Exploration Seismic oil exploration

More information

Asymptotic Error Analysis

Asymptotic Error Analysis Asymptotic Error Analysis Brian Wetton Mathematics Department, UBC www.math.ubc.ca/ wetton PIMS YRC, June 3, 2014 Outline Overview Some History Romberg Integration Cubic Splines - Periodic Case More History:

More information

Simulation and Optimization of Biomedical Devices. Mike Nicolai Jülich

Simulation and Optimization of Biomedical Devices. Mike Nicolai Jülich Simulation and Optimization of Biomedical Devices. Mike Nicolai Jülich 7.5.2013 Contents SimLab: Highly Scalable Fluids and Solids Engineering Goals Projects The XNS flow solver Features Code Performance

More information

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement Lian Shen Department of Mechanical Engineering

More information