Repetition: Primal Dual for Set Cover

Size: px
Start display at page:

Download "Repetition: Primal Dual for Set Cover"

Transcription

1 Repetition: Primal Dual for Set Cover Primal Relaxation: k min i=1 w ix i s.t. u U i:u S i x i 1 i {1,..., k} x i 0 Dual Formulation: max u U y u s.t. i {1,..., k} u:u S i y u w i y u 0 Harald Räcke 428

2 Repetition: Primal Dual for Set Cover Algorithm: Start with y = 0 (feasible dual solution). Start with x = 0 (integral primal solution that may be infeasible). While x not feasible Identify an element e that is not covered in current primal integral solution. Increase dual variable y e until a dual constraint becomes tight (maybe increase by 0!). If this is the constraint for set S j set x j = 1 (add this set to your solution). Harald Räcke 429

3 Repetition: Primal Dual for Set Cover Analysis: For every set S j with x j = 1 we have y e = w j e S j Hence our cost is w j = j j y e = {j : e S j } y e f y e f OPT e S j e e Harald Räcke 430

4 Note that the constructed pair of primal and dual solution fulfills primal slackness conditions. This means x j > 0 e S j y e = w j If we would also fulfill dual slackness conditions y e > 0 x j = 1 j:e S j then the solution would be optimal!!! Harald Räcke 431

5 We don t fulfill these constraint but we fulfill an approximate version: y e > 0 1 x j f j:e S j This is sufficient to show that the solution is an f -approximation. Harald Räcke 432

6 Suppose we have a primal/dual pair min s.t. j c j x j i j: a ij x j b i j x j 0 max s.t. i b i y i j i a ij y i c j i y i 0 and solutions that fulfill approximate slackness conditions: x j > 0 i a ij y i 1 α c j y i > 0 j a ij x j βb i Harald Räcke 433

7 Then right hand side of j-th dual constraint c α j x j j j primal cost = α i i j a ij y i xj a ij x j yi αβ b i y i i dual objective Harald Räcke 434

8 Feedback Vertex Set for Undirected Graphs Given a graph G = (V, E) and non-negative weights w v 0 for vertex v V. Choose a minimum cost subset of vertices s.t. every cycle contains at least one vertex. Harald Räcke 435

9 We can encode this as an instance of Set Cover Each vertex can be viewed as a set that contains some cycles. However, this encoding gives a Set Cover instance of non-polynomial size. The O(log n)-approximation for Set Cover does not help us to get a good solution. Harald Räcke 436

10 Let C denote the set of all cycles (where a cycle is identified by its set of vertices) Primal Relaxation: min s.t. v w v x v C C v C x v 1 v x v 0 Dual Formulation: max C C y C s.t. v V C:v C y C w v C y C 0 Harald Räcke 437

11 If we perform the previous dual technique for Set Cover we get the following: Start with x = 0 and y = 0 While there is a cycle C that is not covered (does not contain a chosen vertex). Increase y C until dual constraint for some vertex v becomes tight. set x v = 1. Harald Räcke 438

12 Then w v x v = y C x v v v C:v C = v S C:v C y C = C S C y C where S is the set of vertices we choose. If every cycle is short we get a good approximation ratio, but this is unrealistic. Harald Räcke 439

13 Algorithm 1 FeedbackVertexSet 1: y 0 2: x 0 3: while exists cycle C in G do 4: increase y C until there is v C s.t. C:v C y C = w v 5: x v = 1 6: remove v from G 7: repeatedly remove vertices of degree 1 from G Harald Räcke 440

14 Idea: Always choose a short cycle that is not covered. If we always find a cycle of length at most α we get an α-approximation. Observation: For any path P of vertices of degree 2 in G the algorithm chooses at most one vertex from P. Harald Räcke 441

15 Observation: If we always choose a cycle for which the number of vertices of degree at least 3 is at most α we get a 2α-approximation. Theorem 2 In any graph with no vertices of degree 1, there always exists a cycle that has at most O(log n) vertices of degree 3 or more. We can find such a cycle in linear time. This means we have y C > 0 S C O(log n). Harald Räcke 442

16 Primal Dual for Shortest Path Given a graph G = (V, E) with two nodes s, t V and edge-weights c : E R + find a shortest path between s and t w.r.t. edge-weights c. min e c(e)x e s.t. S S e:δ(s) x e 1 e E x e {0, 1} Here δ(s) denotes the set of edges with exactly one end-point in S, and S = {S V : s S, t S}. Harald Räcke 443

17 Primal Dual for Shortest Path The Dual: max S y S s.t. e E S:e δ(s) y S c(e) S S y S 0 Here δ(s) denotes the set of edges with exactly one end-point in S, and S = {S V : s S, t S}. Harald Räcke 444

18 Primal Dual for Shortest Path We can interpret the value y S as the width of a moat surounding the set S. Each set can have its own moat but all moats must be disjoint. An edge cannot be shorter than all the moats that it has to cross. Harald Räcke 445

19 Algorithm 1 PrimalDualShortestPath 1: y 0 2: F 3: while there is no s-t path in (V, F) do 4: Let C be the connected component of (V, F) containing s 5: Increase y C until there is an edge e δ(c) such that S:e δ(s) y S = c(e ). 6: F F {e } 7: Let P be an s-t path in (V, F) 8: return P Harald Räcke 446

20 Lemma 3 At each point in time the set F forms a tree. Proof: In each iteration we take the current connected component from (V, F) that contains s (call this component C) and add some edge from δ(c) to F. Since, at most one end-point of the new edge is in C the edge cannot close a cycle. Harald Räcke 447

21 c(e) = e P = y S e P S:e δ(s) S:s S,t S P δ(s) y S. If we can show that y S > 0 implies P δ(s) = 1 gives c(e) = y S OPT e P S by weak duality. Hence, we find a shortest path. Harald Räcke 448

22 If S contains two edges from P then there must exist a subpath P of P that starts and ends with a vertex from S (and all interior vertices are not in S). When we increased y S, S was a connected component of the set of edges F that we had chosen till this point. F P contains a cycle. Hence, also the final set of edges contains a cycle. This is a contradiction. Harald Räcke 449

23 Steiner Forest Problem: Given a graph G = (V, E), together with source-target pairs s i, t i,i = 1,..., k, and a cost function c : E R + on the edges. Find a subset F E of the edges such that for every i {1,..., k} there is a path between s i and t i only using edges in F. min s.t. e c(e)x e S V : S S i for some i e δ(s) x e 1 e E x e {0, 1} Here S i contains all sets S such that s i S and t i S. Harald Räcke 450

24 max s.t. e E S : i s.t. S S i y S S:e δ(s) y S c(e) y S 0 The difference to the dual of the shortest path problem is that we have many more variables (sets for which we can generate a moat of non-zero width). Harald Räcke 451

25 Algorithm 1 FirstTry 1: y 0 2: F 3: while not all s i -t i pairs connected in F do 4: Let C be some connected component of (V, F) such that C {s i, t i } = 1 for some i. 5: Increase y C until there is an edge e δ(c) s.t. S S i :e δ(s) y S = c e 6: F F {e } 7: return i P i Harald Räcke 452

26 c(e) = y S = e F e F S:e δ(s) S δ(s) F y S. If we show that y S > 0 implies that δ(s) F α we are in good shape. However, this is not true: Take a complete graph on k + 1 vertices v 0, v 1,..., v k. The i-th pair is v 0 -v i. The first component C could be {v 0 }. We only set y {v0 } = 1. All other dual variables stay 0. The final set F contains all edges {v 0, v i }, i = 1,..., k. y {v0 } > 0 but δ({v 0 }) F = k. Harald Räcke 453

27 Algorithm 1 SecondTry 1: y 0; F ; l 0 2: while not all s i -t i pairs connected in F do 3: l l + 1 4: Let C be set of all connected components C of (V, F) such that C {s i, t i } = 1 for some i. 5: Increase y C for all C C uniformly until for some edge e l δ(c ), C C s.t. S:e l δ(s) y S = c el 6: F F {e l } 7: F F 8: for k l downto 1 do // reverse deletion 9: if F e k is feasible solution then 10: remove e k from F 11: return F Harald Räcke 454

28 The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order. Harald Räcke 455

29 Example s 3 s 1 s 2 t 2 t 1 t 3 Harald Räcke 456

30 Lemma 4 For any C in any iteration of the algorithm C C δ(c) F 2 C This means that the number of times a moat from C is crossed in the final solution is at most twice the number of moats. Proof: later... Harald Räcke 457

31 c e = e F e F F δ(s) y S. S:e δ(s) y S = S We want to show that F δ(s) y S 2 S S y S In the i-th iteration the increase of the left-hand side is ɛ F δ(c) C C and the increase of the right hand side is 2ɛ C. Hence, by the previous lemma the inequality holds after the iteration if it holds in the beginning of the iteration. Harald Räcke 458

32 Lemma 5 For any set of connected components C in any iteration of the algorithm δ(c) F 2 C C C Proof: At any point during the algorithm the set of edges forms a forest (why?). Fix iteration i. e i is the set we add to F. Let F i be the set of edges in F at the beginning of the iteration. Let H = F F i. All edges in H are necessary for the solution. Harald Räcke 459

33 Contract all edges in F i into single vertices V. We can consider the forest H on the set of vertices V. Let deg(v) be the degree of a vertex v V within this forest. Color a vertex v V red if it corresponds to a component from C (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices) We have deg(v) δ(c) F? 2 C = 2 R v R C C Harald Räcke 460

34 Suppose that no node in B has degree one. Then deg(v) = deg(v) deg(v) v R v R B v B 2( R + B ) 2 B = 2 R Every blue vertex with non-zero degree must have degree at least two. Suppose not. The single edge connecting b B comes from H, and, hence, is necessary. But this means that the cluster corresponding to b must separate a source-target pair. But then it must be a red node. Harald Räcke 461

Lecture Overview. 2 Shortest s t path. 2.1 The LP. 2.2 The Algorithm. COMPSCI 530: Design and Analysis of Algorithms 11/14/2013

Lecture Overview. 2 Shortest s t path. 2.1 The LP. 2.2 The Algorithm. COMPSCI 530: Design and Analysis of Algorithms 11/14/2013 COMPCI 530: Design and Analysis of Algorithms 11/14/2013 Lecturer: Debmalya Panigrahi Lecture 22 cribe: Abhinandan Nath 1 Overview In the last class, the primal-dual method was introduced through the metric

More information

Approximation Algorithms: The Primal-Dual Method. My T. Thai

Approximation Algorithms: The Primal-Dual Method. My T. Thai Approximation Algorithms: The Primal-Dual Method My T. Thai 1 Overview of the Primal-Dual Method Consider the following primal program, called P: min st n c j x j j=1 n a ij x j b i j=1 x j 0 Then the

More information

Lecture 7. s.t. e = (u,v) E x u + x v 1 (2) v V x v 0 (3)

Lecture 7. s.t. e = (u,v) E x u + x v 1 (2) v V x v 0 (3) COMPSCI 632: Approximation Algorithms September 18, 2017 Lecturer: Debmalya Panigrahi Lecture 7 Scribe: Xiang Wang 1 Overview In this lecture, we will use Primal-Dual method to design approximation algorithms

More information

Primal-Dual Methods for Approximation Algorithms

Primal-Dual Methods for Approximation Algorithms Primal-Dual Methods for Approximation Algorithms Nadia Hardy, April 2004 The following is based on: Approximation Algorithms for NP-Hard Problems. D.Hochbaum, ed. Chapter 4: The primal-dual method for

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Group Members: 1. Geng Xue (A0095628R) 2. Cai Jingli (A0095623B) 3. Xing Zhe (A0095644W) 4. Zhu Xiaolu (A0109657W) 5. Wang Zixiao (A0095670X) 6. Jiao Qing (A0095637R) 7. Zhang

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

Approximation slides 1. An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs

Approximation slides 1. An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs Approximation slides 1 An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs Approximation slides 2 Linear independence A collection of row vectors {v T i } are independent

More information

Steiner Trees and Forests

Steiner Trees and Forests Massachusetts Institute of Technology Lecturer: Adriana Lopez 18.434: Seminar in Theoretical Computer Science March 7, 2006 Steiner Trees and Forests 1 Steiner Tree Problem Given an undirected graph G

More information

CS369G: Algorithmic Techniques for Big Data Spring

CS369G: Algorithmic Techniques for Big Data Spring CS369G: Algorithmic Techniques for Big Data Spring 2015-2016 Lecture 11: l 0 -Sampling and Introduction to Graph Streaming Prof. Moses Charikar Scribe: Austin Benson 1 Overview We present and analyze the

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 36 CS 473: Algorithms, Spring 2018 LP Duality Lecture 20 April 3, 2018 Some of the

More information

Lecture 5: Duality Theory

Lecture 5: Duality Theory Lecture 5: Duality Theory Rajat Mittal IIT Kanpur The objective of this lecture note will be to learn duality theory of linear programming. We are planning to answer following questions. What are hyperplane

More information

In this lecture, we ll look at applications of duality to three problems:

In this lecture, we ll look at applications of duality to three problems: Lecture 7 Duality Applications (Part II) In this lecture, we ll look at applications of duality to three problems: 1. Finding maximum spanning trees (MST). We know that Kruskal s algorithm finds this,

More information

A List Heuristic for Vertex Cover

A List Heuristic for Vertex Cover A List Heuristic for Vertex Cover Happy Birthday Vasek! David Avis McGill University Tomokazu Imamura Kyoto University Operations Research Letters (to appear) Online: http://cgm.cs.mcgill.ca/ avis revised:

More information

ON THE EQUIVALENCE BETWEEN THE PRIMAL-DUAL SCHEMA AND THE LOCAL RATIO TECHNIQUE

ON THE EQUIVALENCE BETWEEN THE PRIMAL-DUAL SCHEMA AND THE LOCAL RATIO TECHNIQUE ON THE EQUIVALENCE BETWEEN THE PRIMAL-DUAL SCHEMA AND THE LOCAL RATIO TECHNIQUE REUVEN BAR-YEHUDA AND DROR RAWITZ Abstract. We discuss two approximation paradigms that were used to construct many approximation

More information

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 9.1 Linear Programming Suppose we are trying to approximate a minimization

More information

College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007

College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007 College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007 CS G399: Algorithmic Power Tools I Scribe: Eric Robinson Lecture Outline: Linear Programming: Vertex Definitions

More information

Practice Final Exam 2: Solutions

Practice Final Exam 2: Solutions lgorithm Design Techniques Practice Final Exam 2: Solutions 1. The Simplex lgorithm. (a) Take the LP max x 1 + 2x 2 s.t. 2x 1 + x 2 3 x 1 x 2 2 x 1, x 2 0 and write it in dictionary form. Pivot: add x

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I Instructor: Shaddin Dughmi Announcements Posted solutions to HW1 Today: Combinatorial problems

More information

Single Source Shortest Path

Single Source Shortest Path Single Source Shortest Path A directed graph G = (V, E) and a pair of nodes s, d is given. The edges have a real-valued weight W i. This time we are looking for the weight and the shortest path from s

More information

6. Lecture notes on matroid intersection

6. Lecture notes on matroid intersection Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans May 2, 2017 6. Lecture notes on matroid intersection One nice feature about matroids is that a simple greedy algorithm

More information

4 Greedy Approximation for Set Cover

4 Greedy Approximation for Set Cover COMPSCI 532: Design and Analysis of Algorithms October 14, 2015 Lecturer: Debmalya Panigrahi Lecture 12 Scribe: Allen Xiao 1 Overview In this lecture, we introduce approximation algorithms and their analysis

More information

CPSC 536N: Randomized Algorithms Term 2. Lecture 10

CPSC 536N: Randomized Algorithms Term 2. Lecture 10 CPSC 536N: Randomized Algorithms 011-1 Term Prof. Nick Harvey Lecture 10 University of British Columbia In the first lecture we discussed the Max Cut problem, which is NP-complete, and we presented a very

More information

6.854 Advanced Algorithms. Scribes: Jay Kumar Sundararajan. Duality

6.854 Advanced Algorithms. Scribes: Jay Kumar Sundararajan. Duality 6.854 Advanced Algorithms Scribes: Jay Kumar Sundararajan Lecturer: David Karger Duality This lecture covers weak and strong duality, and also explains the rules for finding the dual of a linear program,

More information

ACO Comprehensive Exam October 12 and 13, Computability, Complexity and Algorithms

ACO Comprehensive Exam October 12 and 13, Computability, Complexity and Algorithms 1. Computability, Complexity and Algorithms Given a simple directed graph G = (V, E), a cycle cover is a set of vertex-disjoint directed cycles that cover all vertices of the graph. 1. Show that there

More information

12.1 Formulation of General Perfect Matching

12.1 Formulation of General Perfect Matching CSC5160: Combinatorial Optimization and Approximation Algorithms Topic: Perfect Matching Polytope Date: 22/02/2008 Lecturer: Lap Chi Lau Scribe: Yuk Hei Chan, Ling Ding and Xiaobing Wu In this lecture,

More information

1 Better Approximation of the Traveling Salesman

1 Better Approximation of the Traveling Salesman Stanford University CS261: Optimization Handout 4 Luca Trevisan January 13, 2011 Lecture 4 In which we describe a 1.5-approximate algorithm for the Metric TSP, we introduce the Set Cover problem, observe

More information

The Shortest Path Problem. The Shortest Path Problem. Mathematical Model. Integer Programming Formulation

The Shortest Path Problem. The Shortest Path Problem. Mathematical Model. Integer Programming Formulation The Shortest Path Problem jla,jc@imm.dtu.dk Department of Management Engineering Technical University of Denmark The Shortest Path Problem Given a directed network G = (V,E,w) for which the underlying

More information

Approximation Algorithms Based on the Primal-Dual Method

Approximation Algorithms Based on the Primal-Dual Method CSE 594: Combinatorial and Graph Algorithms Lecturer: Hung Q. Ngo SUNY at Buffalo, Spring 2005 Last update: March 11, 2005 Approximation Algorithms Based on the Primal-Dual Method The primal-dual method

More information

Combinatorial Optimization - Lecture 14 - TSP EPFL

Combinatorial Optimization - Lecture 14 - TSP EPFL Combinatorial Optimization - Lecture 14 - TSP EPFL 2012 Plan Simple heuristics Alternative approaches Best heuristics: local search Lower bounds from LP Moats Simple Heuristics Nearest Neighbor (NN) Greedy

More information

09 B: Graph Algorithms II

09 B: Graph Algorithms II Correctness and Complexity of 09 B: Graph Algorithms II CS1102S: Data Structures and Algorithms Martin Henz March 19, 2010 Generated on Thursday 18 th March, 2010, 00:20 CS1102S: Data Structures and Algorithms

More information

Duality. Primal program P: Maximize n. Dual program D: Minimize m. j=1 c jx j subject to n. j=1. i=1 b iy i subject to m. i=1

Duality. Primal program P: Maximize n. Dual program D: Minimize m. j=1 c jx j subject to n. j=1. i=1 b iy i subject to m. i=1 Duality Primal program P: Maximize n j=1 c jx j subject to n a ij x j b i, i = 1, 2,..., m j=1 x j 0, j = 1, 2,..., n Dual program D: Minimize m i=1 b iy i subject to m a ij x j c j, j = 1, 2,..., n i=1

More information

6 Randomized rounding of semidefinite programs

6 Randomized rounding of semidefinite programs 6 Randomized rounding of semidefinite programs We now turn to a new tool which gives substantially improved performance guarantees for some problems We now show how nonlinear programming relaxations can

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A 4 credit unit course Part of Theoretical Computer Science courses at the Laboratory of Mathematics There will be 4 hours

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 29

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 29 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 29 CS 473: Algorithms, Spring 2018 Simplex and LP Duality Lecture 19 March 29, 2018

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.854J / 18.415J Advanced Algorithms Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.415/6.854 Advanced

More information

Lecture 4: Primal Dual Matching Algorithm and Non-Bipartite Matching. 1 Primal/Dual Algorithm for weighted matchings in Bipartite Graphs

Lecture 4: Primal Dual Matching Algorithm and Non-Bipartite Matching. 1 Primal/Dual Algorithm for weighted matchings in Bipartite Graphs CMPUT 675: Topics in Algorithms and Combinatorial Optimization (Fall 009) Lecture 4: Primal Dual Matching Algorithm and Non-Bipartite Matching Lecturer: Mohammad R. Salavatipour Date: Sept 15 and 17, 009

More information

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Marc Uetz University of Twente m.uetz@utwente.nl Lecture 5: sheet 1 / 26 Marc Uetz Discrete Optimization Outline 1 Min-Cost Flows

More information

1 The Traveling Salesperson Problem (TSP)

1 The Traveling Salesperson Problem (TSP) CS 598CSC: Approximation Algorithms Lecture date: January 23, 2009 Instructor: Chandra Chekuri Scribe: Sungjin Im In the previous lecture, we had a quick overview of several basic aspects of approximation

More information

Combinatorial Optimization

Combinatorial Optimization Combinatorial Optimization Frank de Zeeuw EPFL 2012 Today Introduction Graph problems - What combinatorial things will we be optimizing? Algorithms - What kind of solution are we looking for? Linear Programming

More information

Linear Programming Duality and Algorithms

Linear Programming Duality and Algorithms COMPSCI 330: Design and Analysis of Algorithms 4/5/2016 and 4/7/2016 Linear Programming Duality and Algorithms Lecturer: Debmalya Panigrahi Scribe: Tianqi Song 1 Overview In this lecture, we will cover

More information

c 2005 Society for Industrial and Applied Mathematics

c 2005 Society for Industrial and Applied Mathematics SIAM J. DISCRETE MATH. Vol. 19, No. 3, pp. 762 797 c 2005 Society for Industrial and Applied Mathematics ON THE EQUIVALENCE BETWEEN THE PRIMAL-DUAL SCHEMA AND THE LOCAL RATIO TECHNIQUE REUVEN BAR-YEHUDA

More information

Fast and Simple Algorithms for Weighted Perfect Matching

Fast and Simple Algorithms for Weighted Perfect Matching Fast and Simple Algorithms for Weighted Perfect Matching Mirjam Wattenhofer, Roger Wattenhofer {mirjam.wattenhofer,wattenhofer}@inf.ethz.ch, Department of Computer Science, ETH Zurich, Switzerland Abstract

More information

Slides on Approximation algorithms, part 2: Basic approximation algorithms

Slides on Approximation algorithms, part 2: Basic approximation algorithms Approximation slides 1 Slides on Approximation algorithms, part 2: Basic approximation algorithms Guy Kortsarz Approximation slides 2 Subjects covered Basics: Approximating TSP, VC and k center Submodular-cover

More information

The simplex method and the diameter of a 0-1 polytope

The simplex method and the diameter of a 0-1 polytope The simplex method and the diameter of a 0-1 polytope Tomonari Kitahara and Shinji Mizuno May 2012 Abstract We will derive two main results related to the primal simplex method for an LP on a 0-1 polytope.

More information

Approximation algorithms for finding a -connected subgraph of a graph with minimum weight

Approximation algorithms for finding a -connected subgraph of a graph with minimum weight Approximation algorithms for finding a -connected subgraph of a graph with minimum weight Tamás Hajba Submitted to HEJ. Manuscript no.: ANM-001130-A This version is for internal use only! Abstract It is

More information

A 3 2-Approximation Algorithm for Some Minimum-Cost Graph Problems

A 3 2-Approximation Algorithm for Some Minimum-Cost Graph Problems Mathematical Programming Series B manuscript No. (will be inserted by the editor) A 3 -Approximation Algorithm for Some Minimum-Cost Graph Problems Basile Couëtoux James M. Davis David P. Williamson Received:

More information

1 Bipartite maximum matching

1 Bipartite maximum matching Cornell University, Fall 2017 Lecture notes: Matchings CS 6820: Algorithms 23 Aug 1 Sep These notes analyze algorithms for optimization problems involving matchings in bipartite graphs. Matching algorithms

More information

5. Lecture notes on matroid intersection

5. Lecture notes on matroid intersection Massachusetts Institute of Technology Handout 14 18.433: Combinatorial Optimization April 1st, 2009 Michel X. Goemans 5. Lecture notes on matroid intersection One nice feature about matroids is that a

More information

An O(log n/ log log n)-approximation Algorithm for the Asymmetric Traveling Salesman Problem

An O(log n/ log log n)-approximation Algorithm for the Asymmetric Traveling Salesman Problem An O(log n/ log log n)-approximation Algorithm for the Asymmetric Traveling Salesman Problem and more recent developments CATS @ UMD April 22, 2016 The Asymmetric Traveling Salesman Problem (ATSP) Problem

More information

CS 598CSC: Approximation Algorithms Lecture date: March 2, 2011 Instructor: Chandra Chekuri

CS 598CSC: Approximation Algorithms Lecture date: March 2, 2011 Instructor: Chandra Chekuri CS 598CSC: Approximation Algorithms Lecture date: March, 011 Instructor: Chandra Chekuri Scribe: CC Local search is a powerful and widely used heuristic method (with various extensions). In this lecture

More information

Linear Programming. Course review MS-E2140. v. 1.1

Linear Programming. Course review MS-E2140. v. 1.1 Linear Programming MS-E2140 Course review v. 1.1 Course structure Modeling techniques Linear programming theory and the Simplex method Duality theory Dual Simplex algorithm and sensitivity analysis Integer

More information

1. Lecture notes on bipartite matching

1. Lecture notes on bipartite matching Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans February 5, 2017 1. Lecture notes on bipartite matching Matching problems are among the fundamental problems in

More information

Section Notes 4. Duality, Sensitivity, and the Dual Simplex Algorithm. Applied Math / Engineering Sciences 121. Week of October 8, 2018

Section Notes 4. Duality, Sensitivity, and the Dual Simplex Algorithm. Applied Math / Engineering Sciences 121. Week of October 8, 2018 Section Notes 4 Duality, Sensitivity, and the Dual Simplex Algorithm Applied Math / Engineering Sciences 121 Week of October 8, 2018 Goals for the week understand the relationship between primal and dual

More information

Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Computer Science & Engineering 423/823 Design and Analysis of Algorithms Computer Science & Engineering 423/823 Design and Analysis of Algorithms Lecture 07 Single-Source Shortest Paths (Chapter 24) Stephen Scott and Vinodchandran N. Variyam sscott@cse.unl.edu 1/36 Introduction

More information

5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY

5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY 5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY 5.1 DUALITY Associated with every linear programming problem (the primal) is another linear programming problem called its dual. If the primal involves

More information

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

Primal-Dual Algorithms for Connected Facility Location Problems

Primal-Dual Algorithms for Connected Facility Location Problems Primal-Dual Algorithms for Connected Facility Location Problems Lecture Notes for the course Approximation algorithms by Martin Korff (korff@diku.dk) Matias Sevel Rasmussen (sevel@math.ku.dk) Tor Justesen

More information

Outline. 1 The matching problem. 2 The Chinese Postman Problem

Outline. 1 The matching problem. 2 The Chinese Postman Problem Outline The matching problem Maximum-cardinality matchings in bipartite graphs Maximum-cardinality matchings in bipartite graphs: The augmenting path algorithm 2 Let G = (V, E) be an undirected graph.

More information

Linear Programming. Larry Blume. Cornell University & The Santa Fe Institute & IHS

Linear Programming. Larry Blume. Cornell University & The Santa Fe Institute & IHS Linear Programming Larry Blume Cornell University & The Santa Fe Institute & IHS Linear Programs The general linear program is a constrained optimization problem where objectives and constraints are all

More information

1. Lecture notes on bipartite matching February 4th,

1. Lecture notes on bipartite matching February 4th, 1. Lecture notes on bipartite matching February 4th, 2015 6 1.1.1 Hall s Theorem Hall s theorem gives a necessary and sufficient condition for a bipartite graph to have a matching which saturates (or matches)

More information

Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost

Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R

More information

Dual-fitting analysis of Greedy for Set Cover

Dual-fitting analysis of Greedy for Set Cover Dual-fitting analysis of Greedy for Set Cover We showed earlier that the greedy algorithm for set cover gives a H n approximation We will show that greedy produces a solution of cost at most H n OPT LP

More information

Lecture Overview. 2 The Steiner Tree Problem. 2.1 Steiner tree: a 2-approximation algorithm. COMPSCI 590.1: Graph Algorithms March 22, 2015

Lecture Overview. 2 The Steiner Tree Problem. 2.1 Steiner tree: a 2-approximation algorithm. COMPSCI 590.1: Graph Algorithms March 22, 2015 COMPCI 590.1: Graph Algorithms March 22, 2015 Lecturer: Debmalya Panigrahi Lecture 16-17 cribe: Yuhao Hu 1 Overview The main topics of this lecture are the offline edge-weighted teiner tree and teiner

More information

Problem set 2. Problem 1. Problem 2. Problem 3. CS261, Winter Instructor: Ashish Goel.

Problem set 2. Problem 1. Problem 2. Problem 3. CS261, Winter Instructor: Ashish Goel. CS261, Winter 2017. Instructor: Ashish Goel. Problem set 2 Electronic submission to Gradescope due 11:59pm Thursday 2/16. Form a group of 2-3 students that is, submit one homework with all of your names.

More information

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs Introduction to Mathematical Programming IE496 Final Review Dr. Ted Ralphs IE496 Final Review 1 Course Wrap-up: Chapter 2 In the introduction, we discussed the general framework of mathematical modeling

More information

1 Linear programming relaxation

1 Linear programming relaxation Cornell University, Fall 2010 CS 6820: Algorithms Lecture notes: Primal-dual min-cost bipartite matching August 27 30 1 Linear programming relaxation Recall that in the bipartite minimum-cost perfect matching

More information

A Primal-Dual Approximation Algorithm for Partial Vertex Cover: Making Educated Guesses

A Primal-Dual Approximation Algorithm for Partial Vertex Cover: Making Educated Guesses A Primal-Dual Approximation Algorithm for Partial Vertex Cover: Making Educated Guesses Julián Mestre Department of Computer Science University of Maryland, College Park, MD 20742 jmestre@cs.umd.edu Abstract

More information

Design and Analysis of Algorithms (V)

Design and Analysis of Algorithms (V) Design and Analysis of Algorithms (V) An Introduction to Linear Programming Guoqiang Li School of Software, Shanghai Jiao Tong University Homework Assignment 2 is announced! (deadline Apr. 10) Linear Programming

More information

Solutions for the Exam 6 January 2014

Solutions for the Exam 6 January 2014 Mastermath and LNMB Course: Discrete Optimization Solutions for the Exam 6 January 2014 Utrecht University, Educatorium, 13:30 16:30 The examination lasts 3 hours. Grading will be done before January 20,

More information

The Set Cover with Pairs Problem

The Set Cover with Pairs Problem The Set Cover with Pairs Problem Refael Hassin Danny Segev Abstract We consider a generalization of the set cover problem, in which elements are covered by pairs of objects, and we are required to find

More information

Combinatorial Interpretations of Dual Fitting and Primal Fitting

Combinatorial Interpretations of Dual Fitting and Primal Fitting Combinatorial Interpretations of Dual Fitting and Primal Fitting Ari Freund Dror Rawitz May 3, 2011 Abstract We present two new combinatorial approximation frameworks that are not based on LPduality, or

More information

Bicriteria Network Design via Iterative Rounding

Bicriteria Network Design via Iterative Rounding Bicriteria Network Design via Iterative Rounding Piotr Krysta Department of Computer Science, Dortmund University Baroper Str. 301, 44221 Dortmund, Germany piotr.krysta@cs.uni-dortmund.de Abstract. We

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Given an NP-hard problem, what should be done? Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one of three desired features. Solve problem to optimality.

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Frédéric Giroire FG Simplex 1/11 Motivation Goal: Find good solutions for difficult problems (NP-hard). Be able to quantify the goodness of the given solution. Presentation of

More information

15-854: Approximations Algorithms Lecturer: Anupam Gupta Topic: Direct Rounding of LP Relaxations Date: 10/31/2005 Scribe: Varun Gupta

15-854: Approximations Algorithms Lecturer: Anupam Gupta Topic: Direct Rounding of LP Relaxations Date: 10/31/2005 Scribe: Varun Gupta 15-854: Approximations Algorithms Lecturer: Anupam Gupta Topic: Direct Rounding of LP Relaxations Date: 10/31/2005 Scribe: Varun Gupta 15.1 Introduction In the last lecture we saw how to formulate optimization

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 29 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/7/2016 Approximation

More information

A General Approach to Online Network Optimization Problems

A General Approach to Online Network Optimization Problems A General Approach to Online Network Optimization Problems NOGA ALON Schools of Mathematics and Computer Science, Tel Aviv University, Tel Aviv, Israel BARUCH AWERBUCH Computer Science Dept., Johns Hopkins

More information

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs Graphs and Network Flows IE411 Lecture 21 Dr. Ted Ralphs IE411 Lecture 21 1 Combinatorial Optimization and Network Flows In general, most combinatorial optimization and integer programming problems are

More information

The k-center problem Approximation Algorithms 2009 Petros Potikas

The k-center problem Approximation Algorithms 2009 Petros Potikas Approximation Algorithms 2009 Petros Potikas 1 Definition: Let G=(V,E) be a complete undirected graph with edge costs satisfying the triangle inequality and k be an integer, 0 < k V. For any S V and vertex

More information

THE PRIMAL-DUAL METHOD FOR APPROXIMATION ALGORITHMS AND ITS APPLICATION TO NETWORK DESIGN PROBLEMS

THE PRIMAL-DUAL METHOD FOR APPROXIMATION ALGORITHMS AND ITS APPLICATION TO NETWORK DESIGN PROBLEMS C H A P T E R 4 THE PRIMAL-DUAL METHOD FOR APPROXIMATION ALGORITHMS AND ITS APPLICATION TO NETWORK DESIGN PROBLEMS Michel X. Goemans David P. Williamson Dedicated to the memory of Albert W. Tucker The

More information

Introduction to Constrained Optimization

Introduction to Constrained Optimization Introduction to Constrained Optimization Duality and KKT Conditions Pratik Shah {pratik.shah [at] lnmiit.ac.in} The LNM Institute of Information Technology www.lnmiit.ac.in February 13, 2013 LNMIIT MLPR

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

Minimum cost spanning tree

Minimum cost spanning tree Minimum cost spanning tree Doctoral course Optimization on graphs - Lecture 2.2 Giovanni Righini January 15 th, 2013 Definitions - 1 A graph G = (V,E) is a tree if and only if it is connected and acyclic.

More information

1 i n (p i + r n i ) (Note that by allowing i to be n, we handle the case where the rod is not cut at all.)

1 i n (p i + r n i ) (Note that by allowing i to be n, we handle the case where the rod is not cut at all.) Dynamic programming is a problem solving method that is applicable to many different types of problems. I think it is best learned by example, so we will mostly do examples today. 1 Rod cutting Suppose

More information

The minimum cost spanning tree problem

The minimum cost spanning tree problem The minimum cost spanning tree problem Combinatorial optimization Giovanni Righini Definitions - 1 A graph G = (V,E) is a tree if and only if it is connected and acyclic. Connectivity: for each cut, at

More information

Greedy Approximations

Greedy Approximations CS 787: Advanced Algorithms Instructor: Dieter van Melkebeek Greedy Approximations Approximation algorithms give a solution to a problem in polynomial time, at most a given factor away from the correct

More information

A Constant-Factor Approximation for. for Stochastic Steiner Forest.

A Constant-Factor Approximation for. for Stochastic Steiner Forest. A Constant-Factor Approximation for Stochastic Steiner Forest Anupam Gupta Computer Science Dept. Carnegie Mellon University ittsburgh A 15213 anupamg@cs.cmu.edu Amit Kumar Dept. of Computer Science and

More information

EXERCISES SHORTEST PATHS: APPLICATIONS, OPTIMIZATION, VARIATIONS, AND SOLVING THE CONSTRAINED SHORTEST PATH PROBLEM. 1 Applications and Modelling

EXERCISES SHORTEST PATHS: APPLICATIONS, OPTIMIZATION, VARIATIONS, AND SOLVING THE CONSTRAINED SHORTEST PATH PROBLEM. 1 Applications and Modelling SHORTEST PATHS: APPLICATIONS, OPTIMIZATION, VARIATIONS, AND SOLVING THE CONSTRAINED SHORTEST PATH PROBLEM EXERCISES Prepared by Natashia Boland 1 and Irina Dumitrescu 2 1 Applications and Modelling 1.1

More information

and 6.855J March 6, Maximum Flows 2

and 6.855J March 6, Maximum Flows 2 5.08 and.855j March, 00 Maximum Flows Network Reliability Communication Network What is the maximum number of arc disjoint paths from s to t? How can we determine this number? Theorem. Let G = (N,A) be

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 22.1 Introduction We spent the last two lectures proving that for certain problems, we can

More information

Solution for Homework set 3

Solution for Homework set 3 TTIC 300 and CMSC 37000 Algorithms Winter 07 Solution for Homework set 3 Question (0 points) We are given a directed graph G = (V, E), with two special vertices s and t, and non-negative integral capacities

More information

AM 121: Intro to Optimization Models and Methods Fall 2017

AM 121: Intro to Optimization Models and Methods Fall 2017 AM 121: Intro to Optimization Models and Methods Fall 2017 Lecture 10: Dual Simplex Yiling Chen SEAS Lesson Plan Interpret primal simplex in terms of pivots on the corresponding dual tableau Dictionaries

More information

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 2 Review Dr. Ted Ralphs IE316 Quiz 2 Review 1 Reading for The Quiz Material covered in detail in lecture Bertsimas 4.1-4.5, 4.8, 5.1-5.5, 6.1-6.3 Material

More information

1 Variations of the Traveling Salesman Problem

1 Variations of the Traveling Salesman Problem Stanford University CS26: Optimization Handout 3 Luca Trevisan January, 20 Lecture 3 In which we prove the equivalence of three versions of the Traveling Salesman Problem, we provide a 2-approximate algorithm,

More information

CS 161 Lecture 11 BFS, Dijkstra s algorithm Jessica Su (some parts copied from CLRS) 1 Review

CS 161 Lecture 11 BFS, Dijkstra s algorithm Jessica Su (some parts copied from CLRS) 1 Review 1 Review 1 Something I did not emphasize enough last time is that during the execution of depth-firstsearch, we construct depth-first-search trees. One graph may have multiple depth-firstsearch trees,

More information

8 Matroid Intersection

8 Matroid Intersection 8 Matroid Intersection 8.1 Definition and examples 8.2 Matroid Intersection Algorithm 8.1 Definitions Given two matroids M 1 = (X, I 1 ) and M 2 = (X, I 2 ) on the same set X, their intersection is M 1

More information

A Constant Factor Approximation Algorithm for the Multicommodity Rent-or-Buy Problem

A Constant Factor Approximation Algorithm for the Multicommodity Rent-or-Buy Problem A Constant Factor Approximation Algorithm for the Multicommodity Rent-or-Buy Problem Amit Kumar Bell Labs joint work with Anupam Gupta Tim Roughgarden CMU Cornell The Rent-or-Buy Problem t 1 t 2 s 1 s

More information

AMS : Combinatorial Optimization Homework Problems - Week V

AMS : Combinatorial Optimization Homework Problems - Week V AMS 553.766: Combinatorial Optimization Homework Problems - Week V For the following problems, A R m n will be m n matrices, and b R m. An affine subspace is the set of solutions to a a system of linear

More information

CSE 331: Introduction to Algorithm Analysis and Design Graphs

CSE 331: Introduction to Algorithm Analysis and Design Graphs CSE 331: Introduction to Algorithm Analysis and Design Graphs 1 Graph Definitions Graph: A graph consists of a set of verticies V and a set of edges E such that: G = (V, E) V = {v 0, v 1,..., v n 1 } E

More information

Lecture 10,11: General Matching Polytope, Maximum Flow. 1 Perfect Matching and Matching Polytope on General Graphs

Lecture 10,11: General Matching Polytope, Maximum Flow. 1 Perfect Matching and Matching Polytope on General Graphs CMPUT 675: Topics in Algorithms and Combinatorial Optimization (Fall 2009) Lecture 10,11: General Matching Polytope, Maximum Flow Lecturer: Mohammad R Salavatipour Date: Oct 6 and 8, 2009 Scriber: Mohammad

More information