Warm-Up. Write the standard equation of the circle with the given radius and center. 1) 9; (0,0) 2) 1; (0,5) 3) 4; (-8,-1) 4) 5; (4,2)

Size: px
Start display at page:

Download "Warm-Up. Write the standard equation of the circle with the given radius and center. 1) 9; (0,0) 2) 1; (0,5) 3) 4; (-8,-1) 4) 5; (4,2)"

Transcription

1 Warm-Up Write the standard equation of the circle with the given radius and center. 1) 9; (0,0) ) 1; (0,5) 3) 4; (-8,-1) 4) 5; (4,)

2 8.4 Graph and Write Equations of Ellipses What are the major parts of an ellipse? What are the standard forms of an ellipse equation? How do you find the value of the foci c when given a & b? How do you graph an ellipse? How do you find the equation of an ellipse from a graph?

3 Definition of Ellipse An ellipse is the set of all points P in a plane such that the sum of the distances from P to two fixed points, F1 and F, called the foci, is a constant. P F1 F F1P + FP = a

4 Standard Equation of an Ellipse Horizontal Major Axis: x + a y y b =1 V1( a, 0) (0, b) a > b a b = c V (a, 0) x O F1( c, 0) (0, b) F (c, 0) length of major axis: a length of minor axis: b a = vertices b= co-vertices c= foci

5 Standard Equation of an Ellipse Vertical Major Axis: x + b y a y =1 a > b a b = c V (0, a) F (0, c) ( b, 0) O (b, 0) x length of major axis: a length of minor axis: b F1(0, c) V1(0, a)

6 Graph the equation 4x + 5y = 100. Identify the vertices, co-vertices, and foci of the ellipse. SOLUTION STEP 1 Rewrite the equation in standard form. 4x + 5y = 100 Write original equation. 4x 5x = y x = 1 Divide each side by 100. Simplify.

7 y x = 1 STEP Identify the vertices, co-vertices, and foci. Note that a = 5 and b = 4, so a = 5 and b =. The denominator of the x - term is greater than that of the y - term, so the major axis is horizontal. The vertices of the ellipse are at (+a, 0) = (+5, 0). The co-vertices are at (0, +b) = (0, +). Find the foci. C = a b = 5 = 1, so c = 1 The foci are at ( + 1, 0), or about ( + 4.6, 0). Draw the ellipse that passes through each vertex and co-vertex.

8 Graph the equation. Identify the vertices, co-vertices, and foci of the ellipse. 1. y x = 1 SOLUTION y x STEP 1 The equation is in standard form = 1 STEP Equations. Major Axis Vertices Co - vertices y x 0, + 3 Horizontal + 4, 0 + = The vertices of the ellipse are at (+ 4, 0) and co-vertices are at (0, + 3). Find the foci. c = a b = 4 3 = 7, so c = 7 The foci are at ( + 7, 0).

9 . y x = 1 SOLUTION y x STEP 1 The equation is in standard form = 1 Major Axis Vertices Co - vertices STEP Equations. y x Vertical 0, , = 1 The vertices of the ellipse are at (0, + 7) and co-vertices are at (+ 6, 0). Find the foci. c = a b = y 6 = 13, so c = 13 The foci are at (0, + 13 ). Draw the ellipse that passes through each vertex and co-vertex.

10 3. 5x + 9y = 5 SOLUTION STEP 1 Rewrite the equation in standard form. 5x + 9y 5x 5 + x 9 + = 5 Write original equation. 9y = 1 5 y 5 = 1 Divide each side by 5. Simplify. STEP Equations. x 3 y + 5 Major Axis = 1 Vertical The vertices of the ellipse are at (0 + 5), and co-vertices are at (+ 3, 0). Find the foci. c = a b = 5 9 = 16 so c = +4 The foci are at (0, + 4). Vertices (0 + 5), Co - vertices + 3, 0

11 Example Write the standard equation for an ellipse with foci at (-8,0) and (8,0) and with a major axis of 0. Sketch the graph. length of major axis: a a = 0, so a = a b = c 10 b = 8 b = b = 36, so b = 6 x y + =

12 Write an equation of the ellipse that has a vertex at (0, 4), a co-vertex at ( 3, 0), and center at (0, 0). SOLUTION Sketch the ellipse as a check for your final equation. By symmetry, the ellipse must also have a vertex at (0, 4) and a co-vertex at (3, 0). Because the vertex is on the y - axis and the co-vertex is on the x - axis, the major axis is vertical with a = 4, and the minor axis is horizontal with b = 3. y x An equation is = x y = 1 or

13 Write an equation of the ellipse that has a vertex at ( 8, 0), a focus at (4, 0), and center at (0, 0). SOLUTION Make a sketch of the ellipse. Because the given vertex and focus lie on the x - axis, the major axis is horizontal, with a = 8 and c = 4. To find b, use the equation c = a b. 4 = 8 b b = 8 4 = 48 b = 48, or 4 3 ANSWER An equation is x + 8 (4 y x y = 1 or = 1 3)

14 Example Find the vertices and co-vertices of the ellipse. x y + = vertices: (0,7) and (0,-7) co-vertices: (4,0) and (-4,0)

15 Example Write the standard equation of the ellipse. length of major axis: a a = 16, so a = 8 length of minor axis: b b = 8, so b = 4 x y + =

16 What are the major parts of an ellipse? Vertices, co-vertices, foci, center, major & minor axis What are the standard forms of an ellipse equation? How do you find the value of the foci c when given a & b? c= a b How do you graph an ellipse? Plot the vertices, the co-vertices and draw the ellipse. How do you find the equation of an ellipse from a graph? a = vertex of major axis goes into the denominator under major axis letter, and b = co-vertex of minor axis goes into the denominator under the minor axis letter in the formula.

17 HW 8.4 pg 513, #3-13 odd, 17-3 all pg 531 #7, 10, 17, 18

18 Warm-Up Write the standard equation for an ellipse with foci at (-5,0) and (5,0) and with a major axis of 18. Sketch the graph.

19 8.4 Day Ellipses What is the standard equation for an ellipse if the vertex has been translated?

20 Standard Equation of a Translated Ellipse Horizontal Major Axis: (x h) (y k) + =1 a b a > b a b = c length of major axis: a length of minor axis: b

21 Standard Equation of a Translated Ellipse Vertical Major Axis: (x h) (y k) + =1 b a a > b a b = c length of major axis: a length of minor axis: b

22 SOLUTION (x ) (y 1) Graph + = STEP 1 Find h, k, a, and b. The center is at (h, k) = (, 1). Because a = 16 and b = 9, you know that a = 4 and b = 3. STEP Plot the center, vertices and co-vertices. Vertices are at (h + a,k) are (6,1) and (,1)and co-vertices are at (h,k +b) are (,4) and (, ) STEP 3 Draw the ellipse that panes through each vertices and co-vertices

23 Write an equation of the ellipse with foci at (1, ) and (7, ) and co-vertices at (4, 0) and (4, 4). SOLUTION STEP 1 Determine the form of the equation. First sketch the ellipse. The foci lie on the major axis, so the axis is horizontal. The equation has this form: (x h) (y k) + = 1 a b STEP Identify h and k by finding the center, which is halfway between the foci (or the co-vertices) (h, k) =( 1 + 7, + ) = (4, ) STEP 3 Find b, the distance between a co-vertex and the center (4, ), and c, the distance between a focus and the center. Choose the co-vertex (4, 4) and the focus (1, ): b = 4 = and c = 1 4 = 3.

24 STEP 4 Find a. For an ellipse, a = b + c = + 3 = 13, so a = 13 ANSWER The standard form of the equation is (x 4) (y ) + =

25 Example An ellipse is defined by the equation 4x + 9y 16x + 18y = 11. Write the standard equation and identify the coordinates of the center, vertices, co-vertices, and foci. Sketch the graph of the ellipse. 4x 16x + 9y + 18y = 11 4(x 4x) + 9(y + y) = 11 4(x 4x + 4) + 9(y + y + 1) = (4) + 9(1) 4(x ) + 9(y + 1) = 36

26 Identify the coordinates of the center, vertices, co-vertices, and foci. Sketch the graph of the ellipse. center (h,k) = (, -1) a = 9 -> a = 3, b = 4 -> b = a b = c vertices (h±a, k) co-vertices (h,k±b) 9-4 = c (±3, -1) (,-1±) 5 = c (5,-1) and (-1,-1) (,1) and (,-3) 5 = c foci (h±c, k) (± 5, -1) (4.4,-1) and (-.4,-1)

27 Write an equation of the ellipse with foci at (3,5) and (3, 1) and vertices at (3,6) and (3, ). Plot the given points and make a rough sketch. The ellipse has a vertical axis, so its equation is in the form of: 6 Find the center which is halfway between the vertices Find a and c a = 6 = c = 5 =3 Find b using b= a c 4 6

28 What is the standard equation for an ellipse if the vertex has been translated?

29 HW 8.4 pg 513, #3-13 odd, 17-3 all pg 531 #7, 10, 17, 18

8.2 Graph and Write Equations of Parabolas

8.2 Graph and Write Equations of Parabolas 8.2 Graph and Write Equations of Parabolas Where is the focus and directrix compared to the vertex? How do you know what direction a parabola opens? How do you write the equation of a parabola given the

More information

Chapter 10. Exploring Conic Sections

Chapter 10. Exploring Conic Sections Chapter 10 Exploring Conic Sections Conics A conic section is a curve formed by the intersection of a plane and a hollow cone. Each of these shapes are made by slicing the cone and observing the shape

More information

Rewrite the equation in the left column into the format in the middle column. The answers are in the third column. 1. y 4y 4x 4 0 y k 4p x h y 2 4 x 0

Rewrite the equation in the left column into the format in the middle column. The answers are in the third column. 1. y 4y 4x 4 0 y k 4p x h y 2 4 x 0 Pre-Calculus Section 1.1 Completing the Square Rewrite the equation in the left column into the format in the middle column. The answers are in the third column. 1. y 4y 4x 4 0 y k 4p x h y 4 x 0. 3x 3y

More information

The point (x, y) lies on the circle of radius r and center (h, k) iff. x h y k r

The point (x, y) lies on the circle of radius r and center (h, k) iff. x h y k r NOTES +: ANALYTIC GEOMETRY NAME LESSON. GRAPHS OF EQUATIONS IN TWO VARIABLES (CIRCLES). Standard form of a Circle The point (x, y) lies on the circle of radius r and center (h, k) iff x h y k r Center:

More information

Algebra II Chapter 10 Conics Notes Packet. Student Name Teacher Name

Algebra II Chapter 10 Conics Notes Packet. Student Name Teacher Name Algebra II Chapter 10 Conics Notes Packet Student Name Teacher Name 1 Conic Sections 2 Identifying Conics Ave both variables squared?' No PARABOLA y = a(x- h)z + k x = a(y- k)z + h YEs Put l'h squared!'erms

More information

2.) Write the standard form of the equation of a circle whose endpoints of diameter are (4, 7) and (2,3).

2.) Write the standard form of the equation of a circle whose endpoints of diameter are (4, 7) and (2,3). Ch 10: Conic Sections Name: Objectives: Students will be able to: -graph parabolas, hyperbolas and ellipses and answer characteristic questions about these graphs. -write equations of conic sections Dec

More information

ALGEBRA II UNIT X: Conic Sections Unit Notes Packet

ALGEBRA II UNIT X: Conic Sections Unit Notes Packet Name: Period: ALGEBRA II UNIT X: Conic Sections Unit Notes Packet Algebra II Unit 10 Plan: This plan is subject to change at the teacher s discretion. Section Topic Formative Work Due Date 10.3 Circles

More information

8.5 Graph and Write Equations of Hyperbolas p.518 What are the parts of a hyperbola? What are the standard form equations of a hyperbola?

8.5 Graph and Write Equations of Hyperbolas p.518 What are the parts of a hyperbola? What are the standard form equations of a hyperbola? 8.5 Graph and Write Equations of Hyperbolas p.518 What are the parts of a hyperbola? What are the standard form equations of a hyperbola? How do you know which way it opens? Given a & b, how do you find

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Pre-Calculus Mid Term Review. January 2014 Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Use the graph of the function f, plotted with a solid

More information

1.) Write the equation of a circle in standard form with radius 3 and center (-3,4). Then graph the circle.

1.) Write the equation of a circle in standard form with radius 3 and center (-3,4). Then graph the circle. Welcome to the world of conic sections! http://www.youtube.com/watch?v=bfonicn4bbg Some examples of conics in the real world: Parabolas Ellipse Hyperbola Your Assignment: Circle -Find at least four pictures

More information

Conic Sections. College Algebra

Conic Sections. College Algebra Conic Sections College Algebra Conic Sections A conic section, or conic, is a shape resulting from intersecting a right circular cone with a plane. The angle at which the plane intersects the cone determines

More information

WHAT YOU SHOULD LEARN

WHAT YOU SHOULD LEARN GRAPHS OF EQUATIONS WHAT YOU SHOULD LEARN Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs of equations. Find equations of and sketch graphs of

More information

Chapter 10 Test Review

Chapter 10 Test Review Name: Class: Date: Chapter 10 Test Review Short Answer 1. Write an equation of a parabola with a vertex at the origin and a focus at ( 2, 0). 2. Write an equation of a parabola with a vertex at the origin

More information

We start by looking at a double cone. Think of this as two pointy ice cream cones that are connected at the small tips:

We start by looking at a double cone. Think of this as two pointy ice cream cones that are connected at the small tips: Math 1330 Conic Sections In this chapter, we will study conic sections (or conics). It is helpful to know exactly what a conic section is. This topic is covered in Chapter 8 of the online text. We start

More information

Summary of Formulas: see

Summary of Formulas: see To review the Conic Sections, Identify them and sketch them from the given equations, watch the following set of YouTube videos. They are followed by several practice problems for you to try, covering

More information

7. r = r = r = r = r = 2 5

7. r = r = r = r = r = 2 5 Exercise a: I. Write the equation in standard form of each circle with its center at the origin and the given radius.. r = 4. r = 6 3. r = 7 r = 5 5. r = 6. r = 6 7. r = 0.3 8. r =.5 9. r = 4 0. r = 3.

More information

Name: Class: Date: Conics Multiple Choice Pre-Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: Conics Multiple Choice Pre-Test. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Conics Multiple Choice Pre-Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1 Graph the equation x 2 + y 2 = 36. Then describe the

More information

Algebra II Lesson 10-5: Hyperbolas Mrs. Snow, Instructor

Algebra II Lesson 10-5: Hyperbolas Mrs. Snow, Instructor Algebra II Lesson 10-5: Hyperbolas Mrs. Snow, Instructor In this section, we will look at the hyperbola. A hyperbola is a set of points P in a plane such that the absolute value of the difference between

More information

Pre-Calculus. 2) Find the equation of the circle having (2, 5) and (-2, -1) as endpoints of the diameter.

Pre-Calculus. 2) Find the equation of the circle having (2, 5) and (-2, -1) as endpoints of the diameter. Pre-Calculus Conic Review Name Block Date Circles: 1) Determine the center and radius of each circle. a) ( x 5) + ( y + 6) = 11 b) x y x y + 6 + 16 + 56 = 0 ) Find the equation of the circle having (,

More information

CHAPTER 8 QUADRATIC RELATIONS AND CONIC SECTIONS

CHAPTER 8 QUADRATIC RELATIONS AND CONIC SECTIONS CHAPTER 8 QUADRATIC RELATIONS AND CONIC SECTIONS Big IDEAS: 1) Writing equations of conic sections ) Graphing equations of conic sections 3) Solving quadratic systems Section: Essential Question 8-1 Apply

More information

Module 3: Stand Up Conics

Module 3: Stand Up Conics MATH55 Module 3: Stand Up Conics Main Math concepts: Conic Sections (i.e. Parabolas, Ellipses, Hyperbolas), nd degree equations Auxilliary ideas: Analytic vs. Co-ordinate-free Geometry, Parameters, Calculus.

More information

Pre-Calculus Guided Notes: Chapter 10 Conics. A circle is

Pre-Calculus Guided Notes: Chapter 10 Conics. A circle is Name: Pre-Calculus Guided Notes: Chapter 10 Conics Section Circles A circle is _ Example 1 Write an equation for the circle with center (3, ) and radius 5. To do this, we ll need the x1 y y1 distance formula:

More information

PreCalculus Chapter 9 Practice Test Name:

PreCalculus Chapter 9 Practice Test Name: This ellipse has foci 0,, and therefore has a vertical major axis. The standard form for an ellipse with a vertical major axis is: 1 Note: graphs of conic sections for problems 1 to 1 were made with the

More information

Algebra II. Slide 1 / 181. Slide 2 / 181. Slide 3 / 181. Conic Sections Table of Contents

Algebra II. Slide 1 / 181. Slide 2 / 181. Slide 3 / 181. Conic Sections Table of Contents Slide 1 / 181 Algebra II Slide 2 / 181 Conic Sections 2015-04-21 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 181 Review of Midpoint and Distance Formulas Introduction

More information

3. Solve the following. Round to the nearest thousandth.

3. Solve the following. Round to the nearest thousandth. This review does NOT cover everything! Be sure to go over all notes, homework, and tests that were given throughout the semester. 1. Given g ( x) i, h( x) x 4x x, f ( x) x, evaluate the following: a) f

More information

= ( )= To find the domain, we look at the vertical asymptote(s) (where denominator equals zero) , =0

= ( )= To find the domain, we look at the vertical asymptote(s) (where denominator equals zero) , =0 Precalculus College Algebra Review for Final Name It is also a good idea to go back through your old tests and quizzes to review. 1. Find (+1) given ()=3 +1 2. Determine () given ()=+2 and ()= (+1)=3(+1)

More information

Each point P in the xy-plane corresponds to an ordered pair (x, y) of real numbers called the coordinates of P.

Each point P in the xy-plane corresponds to an ordered pair (x, y) of real numbers called the coordinates of P. Lecture 7, Part I: Section 1.1 Rectangular Coordinates Rectangular or Cartesian coordinate system Pythagorean theorem Distance formula Midpoint formula Lecture 7, Part II: Section 1.2 Graph of Equations

More information

Math 8 Honors Coordinate Geometry part 3 Unit Updated July 29, 2016

Math 8 Honors Coordinate Geometry part 3 Unit Updated July 29, 2016 Review how to find the distance between two points To find the distance between two points, use the Pythagorean theorem. The difference between is one leg and the difference between and is the other leg.

More information

Unit 12 Topics in Analytic Geometry - Classwork

Unit 12 Topics in Analytic Geometry - Classwork Unit 1 Topics in Analytic Geometry - Classwork Back in Unit 7, we delved into the algebra and geometry of lines. We showed that lines can be written in several forms: a) the general form: Ax + By + C =

More information

Mid-Chapter Quiz: Lessons 7-1 through 7-3

Mid-Chapter Quiz: Lessons 7-1 through 7-3 Write an equation for and graph a parabola with the given focus F and vertex V 1. F(1, 5), V(1, 3) Because the focus and vertex share the same x coordinate, the graph is vertical. The focus is (h, k +

More information

Geometry: Conic Sections

Geometry: Conic Sections Conic Sections Introduction When a right circular cone is intersected by a plane, as in figure 1 below, a family of four types of curves results. Because of their relationship to the cone, they are called

More information

, minor axis of length 12. , asymptotes y 2x. 16y

, minor axis of length 12. , asymptotes y 2x. 16y Math 4 Midterm 1 Review CONICS [1] Find the equations of the following conics. If the equation corresponds to a circle find its center & radius. If the equation corresponds to a parabola find its focus

More information

Multivariable Calculus

Multivariable Calculus Multivariable Calculus Chapter 10 Topics in Analytic Geometry (Optional) 1. Inclination of a line p. 5. Circles p. 4 9. Determining Conic Type p. 13. Angle between lines p. 6. Parabolas p. 5 10. Rotation

More information

Ex. 1-3: Put each circle below in the correct equation form as listed!! above, then determine the center and radius of each circle.

Ex. 1-3: Put each circle below in the correct equation form as listed!! above, then determine the center and radius of each circle. Day 1 Conics - Circles Equation of a Circle The circle with center (h, k) and radius r is the set of all points (x, y) that satisfies!! (x h) 2 + (y k) 2 = r 2 Ex. 1-3: Put each circle below in the correct

More information

Chapter 10. Homework

Chapter 10. Homework Chapter 0 Homework Lesson 0- pages 538 5 Exercises. 2. Hyperbola: center (0, 0), y-intercepts at ±, no x-intercepts, the lines of symmetry are the x- and y-axes; domain: all real numbers, range: y 5 3

More information

13.1 2/20/2018. Conic Sections. Conic Sections: Parabolas and Circles

13.1 2/20/2018. Conic Sections. Conic Sections: Parabolas and Circles 13 Conic Sections 13.1 Conic Sections: Parabolas and Circles 13.2 Conic Sections: Ellipses 13.3 Conic Sections: Hyperbolas 13.4 Nonlinear Systems of Equations 13.1 Conic Sections: Parabolas and Circles

More information

Graphs of Equations. MATH 160, Precalculus. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Graphs of Equations

Graphs of Equations. MATH 160, Precalculus. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Graphs of Equations Graphs of Equations MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: sketch the graphs of equations, find the x- and y-intercepts

More information

We start by looking at a double cone. Think of this as two pointy ice cream cones that are connected at the small tips:

We start by looking at a double cone. Think of this as two pointy ice cream cones that are connected at the small tips: Math 1330 Chapter 8 Conic Sections In this chapter, we will study conic sections (or conics). It is helpful to know exactly what a conic section is. This topic is covered in Chapter 8 of the online text.

More information

Z+z 1 X2 Y2. or y, Graph / 4 25 jj y=±x. x2+y 2=

Z+z 1 X2 Y2. or y, Graph / 4 25 jj y=±x. x2+y 2= Conic Sections Understanding the graphs of conic sections is made easier if you first begin with the simplest form of a conic section. These would be the graphs that are centered at the origin. If we can

More information

Direction Fields; Euler s Method

Direction Fields; Euler s Method Direction Fields; Euler s Method It frequently happens that we cannot solve first order systems dy (, ) dx = f xy or corresponding initial value problems in terms of formulas. Remarkably, however, this

More information

Section Graphs and Lines

Section Graphs and Lines Section 1.1 - Graphs and Lines The first chapter of this text is a review of College Algebra skills that you will need as you move through the course. This is a review, so you should have some familiarity

More information

Math 2 Coordinate Geometry Part 3 Inequalities & Quadratics

Math 2 Coordinate Geometry Part 3 Inequalities & Quadratics Math 2 Coordinate Geometry Part 3 Inequalities & Quadratics 1 DISTANCE BETWEEN TWO POINTS - REVIEW To find the distance between two points, use the Pythagorean theorem. The difference between x 1 and x

More information

5.3 Vertex Form of Quadratics 2017.notebook. October 20, Homework Answers:

5.3 Vertex Form of Quadratics 2017.notebook. October 20, Homework Answers: Homework Answers: 21. 23. 25. 27. 52. 69. 70. 71. 50. a. Vertex (315, 630) b. Domain: (0, 630) Range: (0, 630) c. 360 ft d. 630ft 1 Graph WARM UP 1) Find the vertex of the quadratic function: 2) Complete

More information

HYPERBOLAS BY: Valencia Williams

HYPERBOLAS BY: Valencia Williams HYPERBOLAS BY: Valencia Williams A hyperbola is the set of all points (x, y) in a plane such that the absolute value of the difference of the distance from 2 fixed points (foci) is a positive constant.

More information

Unit 8, Ongoing Activity, Little Black Book of Algebra II Properties

Unit 8, Ongoing Activity, Little Black Book of Algebra II Properties Unit 8, Ongoing Activity, Little Black Book of Algebra II Properties Little Black Book of Algebra II Properties Unit 8 Conic Sections 8.1 Circle write the definition, provide examples of both the standard

More information

Algebra II. 6 th Six Weeks

Algebra II. 6 th Six Weeks Algebra II 6 th Six Weeks 0 1 Chapter 9 Test Review 7 Circles HW: PP 1-4 Circles WS EXTRA GRAPH PP37-38 4 Ellipses 8 Parabolas HW: PP 5-7 Parabolas WS 1 5 Ellipses CW: Chapter 9 Test Review Sheet 9 Parabolas

More information

10.2: Parabolas. Chapter 10: Conic Sections. Conic sections are plane figures formed by the intersection of a double-napped cone and a plane.

10.2: Parabolas. Chapter 10: Conic Sections. Conic sections are plane figures formed by the intersection of a double-napped cone and a plane. Conic sections are plane figures formed b the intersection of a double-napped cone and a plane. Chapter 10: Conic Sections Ellipse Hperbola The conic sections ma be defined as the sets of points in the

More information

Section 1.1 The Distance and Midpoint Formulas

Section 1.1 The Distance and Midpoint Formulas Section 1.1 The Distance and Midpoint Formulas 1 y axis origin x axis 2 Plot the points: ( 3, 5), (0,7), ( 6,0), (6,4) 3 Distance Formula y x 4 Finding the Distance Between Two Points Find the distance

More information

1.8 Coordinate Geometry. Copyright Cengage Learning. All rights reserved.

1.8 Coordinate Geometry. Copyright Cengage Learning. All rights reserved. 1.8 Coordinate Geometry Copyright Cengage Learning. All rights reserved. Objectives The Coordinate Plane The Distance and Midpoint Formulas Graphs of Equations in Two Variables Intercepts Circles Symmetry

More information

Conics. By: Maya, Dietrich, and Jesse

Conics. By: Maya, Dietrich, and Jesse Conics By: Maya, Dietrich, and Jesse Exploring Conics (This is basically the summary too) A conic section curve formed by intersection of a plane and double cone: by changing plane, one can create parabola,

More information

Substituting a 2 b 2 for c 2 and using a little algebra, we can then derive the standard equation for an ellipse centred at the origin,

Substituting a 2 b 2 for c 2 and using a little algebra, we can then derive the standard equation for an ellipse centred at the origin, Conics onic sections are the curves which result from the intersection of a plane with a cone. These curves were studied and revered by the ancient Greeks, and were written about extensively by both Euclid

More information

Quadratics and their Properties

Quadratics and their Properties Algebra 2 Quadratics and their Properties Name: Ms. Williams/Algebra 2 Pd: 1 Table of Contents Day 1: COMPLETING THE SQUARE AND SHIFTING PARABOLAS SWBAT: Write a quadratic from standard form to vertex

More information

Algebra II. Midpoint and Distance Formula. Slide 1 / 181 Slide 2 / 181. Slide 3 / 181. Slide 4 / 181. Slide 6 / 181. Slide 5 / 181.

Algebra II. Midpoint and Distance Formula. Slide 1 / 181 Slide 2 / 181. Slide 3 / 181. Slide 4 / 181. Slide 6 / 181. Slide 5 / 181. Slide 1 / 181 Slide 2 / 181 lgebra II onic Sections 2015-04-21 www.njctl.org Slide 3 / 181 Slide 4 / 181 Table of ontents click on the topic to go to that section Review of Midpoint and istance Formulas

More information

Study Guide and Review

Study Guide and Review Graph the hyperbola given by each equation. 30. = 1 The equation is in standard form, and h = 6 and k = 3. Because a 2 = 30 and b 2 = 8, a = 5.5 and b =. The values of a and b can be used to find c. c

More information

2-9 Operations with Complex Numbers

2-9 Operations with Complex Numbers 2-9 Operations with Complex Numbers Warm Up Lesson Presentation Lesson Quiz Algebra 2 Warm Up Express each number in terms of i. 1. 9i 2. Find each complex conjugate. 3. 4. Find each product. 5. 6. Objective

More information

Unit 5: Quadratic Functions

Unit 5: Quadratic Functions Unit 5: Quadratic Functions LESSON #5: THE PARABOLA GEOMETRIC DEFINITION DIRECTRIX FOCUS LATUS RECTUM Geometric Definition of a Parabola Quadratic Functions Geometrically, a parabola is the set of all

More information

Algebra. Chapter 4: FUNCTIONS. Name: Teacher: Pd:

Algebra. Chapter 4: FUNCTIONS. Name: Teacher: Pd: Algebra Chapter 4: FUNCTIONS Name: Teacher: Pd: Table of Contents Day1: Chapter 4-1: Relations SWBAT: (1) Identify the domain and range of relations and functions (2) Match simple graphs with situations

More information

Name. Center axis. Introduction to Conic Sections

Name. Center axis. Introduction to Conic Sections Name Introduction to Conic Sections Center axis This introduction to conic sections is going to focus on what they some of the skills needed to work with their equations and graphs. year, we will only

More information

Chapter 9 Topics in Analytic Geometry

Chapter 9 Topics in Analytic Geometry Chapter 9 Topics in Analytic Geometry What You ll Learn: 9.1 Introduction to Conics: Parabolas 9.2 Ellipses 9.3 Hyperbolas 9.5 Parametric Equations 9.6 Polar Coordinates 9.7 Graphs of Polar Equations 9.1

More information

1.) ( ) Step 1: Factor the numerator and the denominator. Find the domain. is in lowest terms.

1.) ( ) Step 1: Factor the numerator and the denominator. Find the domain. is in lowest terms. GP3-HW11 College Algebra Sketch the graph of each rational function. 1.) Step 1: Factor the numerator and the denominator. Find the domain. { } Step 2: Rewrite in lowest terms. The rational function is

More information

9.3 Hyperbolas and Rotation of Conics

9.3 Hyperbolas and Rotation of Conics 9.3 Hyperbolas and Rotation of Conics Copyright Cengage Learning. All rights reserved. What You Should Learn Write equations of hyperbolas in standard form. Find asymptotes of and graph hyperbolas. Use

More information

Exam 2 Review. 2. What the difference is between an equation and an expression?

Exam 2 Review. 2. What the difference is between an equation and an expression? Exam 2 Review Chapter 1 Section1 Do You Know: 1. What does it mean to solve an equation? 2. What the difference is between an equation and an expression? 3. How to tell if an equation is linear? 4. How

More information

CK 12 Algebra II with Trigonometry Concepts 1

CK 12 Algebra II with Trigonometry Concepts 1 10.1 Parabolas with Vertex at the Origin Answers 1. up 2. left 3. down 4.focus: (0, 0.5), directrix: y = 0.5 5.focus: (0.0625, 0), directrix: x = 0.0625 6.focus: ( 1.25, 0), directrix: x = 1.25 7.focus:

More information

In this section, we will study the following topics:

In this section, we will study the following topics: 6.1 Radian and Degree Measure In this section, we will study the following topics: Terminology used to describe angles Degree measure of an angle Radian measure of an angle Converting between radian and

More information

This is called the vertex form of the quadratic equation. To graph the equation

This is called the vertex form of the quadratic equation. To graph the equation Name Period Date: Topic: 7-5 Graphing ( ) Essential Question: What is the vertex of a parabola, and what is its axis of symmetry? Standard: F-IF.7a Objective: Graph linear and quadratic functions and show

More information

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc. 8 Complex Numbers, Polar Equations, and Parametric Equations Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 8.5 Polar Equations and Graphs Polar Coordinate System Graphs of Polar Equations Conversion

More information

Section 7.6 Graphs of the Sine and Cosine Functions

Section 7.6 Graphs of the Sine and Cosine Functions Section 7.6 Graphs of the Sine and Cosine Functions We are going to learn how to graph the sine and cosine functions on the xy-plane. Just like with any other function, it is easy to do by plotting points.

More information

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables Guided Practice Example 1 Find the y-intercept and vertex of the function f(x) = 2x 2 + x + 3. Determine whether the vertex is a minimum or maximum point on the graph. 1. Determine the y-intercept. The

More information

What you will learn today

What you will learn today What you will learn today Conic Sections (in 2D coordinates) Cylinders (3D) Quadric Surfaces (3D) Vectors and the Geometry of Space 1/24 Parabolas ellipses Hyperbolas Shifted Conics Conic sections result

More information

UNIT 3 Quadratic Relations JOURNAL

UNIT 3 Quadratic Relations JOURNAL 1 U n i t 10D Date: Name: UNIT Quadratic Relations JOURNAL Big idea/learning Goals Not everything in real life can be modeled by a linear relations which look like:. Non-linear relations can look like

More information

OpenStax-CNX module: m The Ellipse. OpenStax College. Abstract

OpenStax-CNX module: m The Ellipse. OpenStax College. Abstract OpenStax-CNX module: m49438 1 The Ellipse OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 In this section, you will: Write equations

More information

Exploring Quadratic Graphs

Exploring Quadratic Graphs Exploring Quadratic Graphs The general quadratic function is y=ax 2 +bx+c It has one of two basic graphs shapes, as shown below: It is a symmetrical "U"-shape or "hump"-shape, depending on the sign of

More information

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved.

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved. 2 Polynomial and Rational Functions Copyright Cengage Learning. All rights reserved. 2.7 Graphs of Rational Functions Copyright Cengage Learning. All rights reserved. What You Should Learn Analyze and

More information

Unit 6 Part I. Quadratic Functions 2/9/2017 2/23/2017

Unit 6 Part I. Quadratic Functions 2/9/2017 2/23/2017 Unit 6 Part I Quadratic Functions 2/9/2017 2/23/2017 By DeviantArt user MagicFiretrucks Name: By the end of this unit, you will be able to Analyze the characteristics of graphs of quadratic functions Graph

More information

P.5 Rational Expressions

P.5 Rational Expressions P.5 Rational Expressions I Domain Domain: Rational expressions : Finding domain a. polynomials: b. Radicals: keep it real! i. sqrt(x-2) x>=2 [2, inf) ii. cubert(x-2) all reals since cube rootscan be positive

More information

Conic Sections: Parabolas

Conic Sections: Parabolas Conic Sections: Parabolas Why are the graphs of parabolas, ellipses, and hyperbolas called 'conic sections'? Because if you pass a plane through a double cone, the intersection of the plane and the cone

More information

Name: Date: Practice Final Exam Part II covering sections a108. As you try these problems, keep referring to your formula sheet.

Name: Date: Practice Final Exam Part II covering sections a108. As you try these problems, keep referring to your formula sheet. Name: Date: Practice Final Eam Part II covering sections 9.1-9.4 a108 As ou tr these problems, keep referring to our formula sheet. 1. Find the standard form of the equation of the circle with center at

More information

UNIT 3B CREATING AND GRAPHING EQUATIONS Lesson 4: Solving Systems of Equations Instruction

UNIT 3B CREATING AND GRAPHING EQUATIONS Lesson 4: Solving Systems of Equations Instruction Prerequisite Skills This lesson requires the use of the following skills: graphing multiple equations on a graphing calculator graphing quadratic equations graphing linear equations Introduction A system

More information

Lecture 34: Curves defined by Parametric equations

Lecture 34: Curves defined by Parametric equations Curves defined by Parametric equations When the path of a particle moving in the plane is not the graph of a function, we cannot describe it using a formula that express y directly in terms of x, or x

More information

11.9 Three dimensional Coordinates

11.9 Three dimensional Coordinates 11.9 Three dimensional Coordinates Apr 1 10:06 AM 1 A Three Dimensional Coordinate System Dec 9 5:26 PM 2 With an ordered triple (x, y, z) Dec 9 5:26 PM 3 x axis y axis z axis Dec 9 5:26 PM 4 Dec 9 5:26

More information

To sketch the graph we need to evaluate the parameter t within the given interval to create our x and y values.

To sketch the graph we need to evaluate the parameter t within the given interval to create our x and y values. Module 10 lesson 6 Parametric Equations. When modeling the path of an object, it is useful to use equations called Parametric equations. Instead of using one equation with two variables, we will use two

More information

Section 7.2 Characteristics of Quadratic Functions

Section 7.2 Characteristics of Quadratic Functions Section 7. Characteristics of Quadratic Functions A QUADRATIC FUNCTION is a function of the form " # $ N# 1 & ;# & 0 Characteristics Include:! Three distinct terms each with its own coefficient:! An x

More information

a. Plot the point (x, y, z) and understand it as a vertex of a rectangular prism. c. Recognize and understand equations of planes and spheres.

a. Plot the point (x, y, z) and understand it as a vertex of a rectangular prism. c. Recognize and understand equations of planes and spheres. Standard: MM3G3 Students will investigate planes and spheres. a. Plot the point (x, y, z) and understand it as a vertex of a rectangular prism. b. Apply the distance formula in 3-space. c. Recognize and

More information

Parabolas Section 11.1

Parabolas Section 11.1 Conic Sections Parabolas Section 11.1 Verte=(, ) Verte=(, ) Verte=(, ) 1 3 If the equation is =, then the graph opens in the direction. If the equation is =, then the graph opens in the direction. Parabola---

More information

c = 6 c 2 = 6 2 Equations of Ellipses - Guided Lesson Explanation Explanation#1 Step1) First we should see what we have find out.

c = 6 c 2 = 6 2 Equations of Ellipses - Guided Lesson Explanation Explanation#1 Step1) First we should see what we have find out. Equations of Ellipses - Guided Lesson Explanation Explanation#1 Step1) First we should see what we have find out. Step) + To write the equation in standard form, the center, a and b must be found. The

More information

Assignment 3/17/15. Section 10.2(p 568) 2 12 (E) (E)

Assignment 3/17/15. Section 10.2(p 568) 2 12 (E) (E) Section 10.2 Warm Up Assignment 3/17/15 Section 10.2(p 568) 2 12 (E) 24 40 (E) Objective We are going to find equations for parabolas identify the vertex, focus, and directrix of a parabola The parabola

More information

MAC 1105 Fall Term 2018

MAC 1105 Fall Term 2018 MAC 1105 Fall Term 2018 Each objective covered in MAC 1105 is listed below. Along with each objective is the homework list used with MyMathLab (MML) and a list to use with the text (if you want to use

More information

3.5D Graphing Rational Functions

3.5D Graphing Rational Functions 3.5D Graphing Rational Functions A. Strategy 1. Find all asymptotes (vertical, horizontal, oblique, curvilinear) and holes for the function. 2. Find the and intercepts. 3. Plot the and intercepts, draw

More information

Figures adapted from Mathworld.wolfram.com and vectosite.net.

Figures adapted from Mathworld.wolfram.com and vectosite.net. MTH 11 CONIC SECTIONS 1 The four basic types of conic sections we will discuss are: circles, parabolas, ellipses, and hyperbolas. They were named conic by the Greeks who used them to describe the intersection

More information

Dependent Variable Independent Variable dependent variable : independent variable function: domain ran ge

Dependent Variable Independent Variable dependent variable : independent variable function: domain ran ge FUNCTIONS The values of one variable often depend on the values for another: The temperature at which water boils depends on elevation (the boiling point drops as you go up). The amount by which your savings

More information

Warm-Up Exercises. Find the x-intercept and y-intercept 1. 3x 5y = 15 ANSWER 5; y = 2x + 7 ANSWER ; 7

Warm-Up Exercises. Find the x-intercept and y-intercept 1. 3x 5y = 15 ANSWER 5; y = 2x + 7 ANSWER ; 7 Warm-Up Exercises Find the x-intercept and y-intercept 1. 3x 5y = 15 ANSWER 5; 3 2. y = 2x + 7 7 2 ANSWER ; 7 Chapter 1.1 Graph Quadratic Functions in Standard Form A quadratic function is a function that

More information

KEMATH1 Calculus for Chemistry and Biochemistry Students. Francis Joseph H. Campeña, De La Salle University Manila

KEMATH1 Calculus for Chemistry and Biochemistry Students. Francis Joseph H. Campeña, De La Salle University Manila KEMATH1 Calculus for Chemistry and Biochemistry Students Francis Joseph H Campeña, De La Salle University Manila January 26, 2015 Contents 1 Conic Sections 2 11 A review of the coordinate system 2 12 Conic

More information

Lecture 5. If, as shown in figure, we form a right triangle With P1 and P2 as vertices, then length of the horizontal

Lecture 5. If, as shown in figure, we form a right triangle With P1 and P2 as vertices, then length of the horizontal Distance; Circles; Equations of the form Lecture 5 y = ax + bx + c In this lecture we shall derive a formula for the distance between two points in a coordinate plane, and we shall use that formula to

More information

Walt Whitman High School SUMMER REVIEW PACKET. For students entering AP CALCULUS BC

Walt Whitman High School SUMMER REVIEW PACKET. For students entering AP CALCULUS BC Walt Whitman High School SUMMER REVIEW PACKET For students entering AP CALCULUS BC Name: 1. This packet is to be handed in to your Calculus teacher on the first day of the school year.. All work must be

More information

Bell Ringer Write each phrase as a mathematical expression. Thinking with Mathematical Models

Bell Ringer Write each phrase as a mathematical expression. Thinking with Mathematical Models Bell Ringer Write each phrase as a mathematical expression. 1. the sum of nine and eight 2. the sum of nine and a number 3. nine increased by a number x 4. fourteen decreased by a number p 5. the product

More information

Quadratic Functions (Section 2-1)

Quadratic Functions (Section 2-1) Quadratic Functions (Section 2-1) Section 2.1, Definition of Polynomial Function f(x) = a is the constant function f(x) = mx + b where m 0 is a linear function f(x) = ax 2 + bx + c with a 0 is a quadratic

More information

CHAPTER 2 REVIEW COORDINATE GEOMETRY MATH Warm-Up: See Solved Homework questions. 2.2 Cartesian coordinate system

CHAPTER 2 REVIEW COORDINATE GEOMETRY MATH Warm-Up: See Solved Homework questions. 2.2 Cartesian coordinate system CHAPTER 2 REVIEW COORDINATE GEOMETRY MATH6 2.1 Warm-Up: See Solved Homework questions 2.2 Cartesian coordinate system Coordinate axes: Two perpendicular lines that intersect at the origin O on each line.

More information

Chapter 8.1 Conic Sections/Parabolas. Honors Pre-Calculus Rogers High School

Chapter 8.1 Conic Sections/Parabolas. Honors Pre-Calculus Rogers High School Chapter 8.1 Conic Sections/Parabolas Honors Pre-Calculus Rogers High School Introduction to Conic Sections Conic sections are defined geometrically as the result of the intersection of a plane with a right

More information

Chapter 11. Parametric Equations And Polar Coordinates

Chapter 11. Parametric Equations And Polar Coordinates Instructor: Prof. Dr. Ayman H. Sakka Chapter 11 Parametric Equations And Polar Coordinates In this chapter we study new ways to define curves in the plane, give geometric definitions of parabolas, ellipses,

More information

Lesson 2.4 Exercises, pages

Lesson 2.4 Exercises, pages Lesson. Eercises, pages 13 10 A 3. Sketch the graph of each function. ( - )( + 1) a) = b) = + 1 ( )( 1) 1 (- + )( - ) - ( )( ) 0 0 The function is undefined when: 1 There is a hole at 1. The function can

More information