4: Parametric curves and surfaces

Size: px
Start display at page:

Download "4: Parametric curves and surfaces"

Transcription

1 4: Parametric curves and surfaces Lecture 1: Euclidean, similarity, affine and projective transformations omogeneous coordinates and matrices Coordinate frames Perspective projection and its matri representation Lecture : Vanishing points orizons Applications of projective transformations Lecture 3: Conveity of point-sets, conve hull and algorithms Conics and quadrics, implicit and parametric forms, computation of intersections Lecture 4: Interpolating and Approimating Splines: Cubic splines, Bezier curves, B-splines 1

2 Introduction 41 In the last lecture we saw that curves can be represented conveniently in parametric form Eg in D and we saw some regular curves like ellipses, and so on In this lecture we introduce how to build irregular shaped curves in a piecewise fashion out of splines Splines are widely used in graphics and CAD indeed one of the pioneers of their computational use, Pierre Bézier, developed his ideas while working for Renault in the 1970 s Eample of an interpolating spline 4 An idea of what were are about can be gained by considering the following problem ow should one specify the path of a road through a number of villages Roads made up of separate functions Continuous Smooth! " Cont nd d? # $% # $% These are interpolating splines, because they actually go through the points Later we will see approimating splines, where the points are control points, which define the shape of the curve, but do not necessary lie on the curve Other constraints might be applied Eg, need to have particular orientation to meet other roads, rivers at right angles

3 Parameterization 43 Convenient to use as a global parameter along the entire curve, and as a local parameter running from 0 to 1 between points That is, within spline &, the local parameter is )( $ ' $*( $ Polynomials provide usable functions for the splines But what degree to use? Linear? a Roman Road spline, so not smooth! Quadratic? let s see P 0 P 1 P i i P p0 p1 p i p i+1 i+1 P m Quadratic splines? 44 Think just with the + part of, Using the global parameterization $5;:< / > !5;:< 758?@:< This suggests: Choose gradient C at D Use gradient and, to fit quadratic This fies gradient at D Use gradient and >, to fit net and so on Then repeat for part - / Using the local parameterization 3 4 > 465A7B5A: So for a continuous, smooth quadratic spline simply choose of gradient at the first (or any one) point, and the entire curve is fied y y 0 y 1 Too sensitive to choice of gradient Likely to oscillate 1st choice nd choice p p p Gradients equal 3

4 Cubic splines 45 Now consider just the local parameterization of the & th cubic spline sequence Again, we just look at similar equations are written for but you should realize that the 4, 7, etc are different 4 5A7 E5;: 5GF $ I KJL 1N 4O95A7P95A:Q95GFO KJL RST7P 1N RSBÜ7P95V?@:QW58XYFO F Re-arranging, and writing 3Z 7P R] :Q X/ %@ ^(_@% (8?ORS/(ARS (`?$ % (a!5vr 5VR We make the derivative equal at the junction of two splines The is called ermite interpolation So, for a b segment spline, there are b 5c degrees of freedom ow are the derivatives specified? 46 1 By eternal constraints (eg, the perpendicular road) Automatically: For eample, fit parabola to ed$,,, and use value of gradient at as the gradient R Also need to choose end point gradients: eg, set R cj and RSfGTJ 3 But, we could ask the nd derivatives to match as well This is a natural cubic spline 4

5 g b f p g b I g b Natural cubic splines 47 Try a counting argument to show that we have sufficient dof Again we think only about the cubic: the cubic is similiar Each of the b segments between D and D requires 4 parameters to specify the cubic in UNKNOWNS At each of b (U internal points on [\ Bḧi iz jjc Bḧi ed$ [\ Bḧ jjc ed$ # [\ kül jjc I g (h\ CONSTRAINTS At the end points Now, g b jjc ḧ@ so we can do it! f [\ Bḧ f I? CONSTRAINTS The etra two degrees of freedom are setting the second derivatives at the end points: l jjc BTJ l f 1N TJ I? CONSTRAINTS Computing Natural Cubic Splines 48 Don t solve for the cubic splines by inverting a g b b matri Instead Basic equations Leads to 4 5G7 E5A: 5AF $ ?@: E58XYF / 7 R #?i:q]58qyfor :Qh X/ %@(ti- (A?ORS/(8RS Put in s J and, into the first two FOh (`?$ %i(t@% 58RS<5uRS on the left Now equate the nd derivs ( v for the & (U\ th section, wcj for the & th I I g?@:qed$"5gqyfoed$?i:q?$yx/ %@<(tied$z (G?OR]{d$^(8RS{ 5 q} (`?< -i<(t@ed$z!58r]ed$"58r]~?<rx/ %i!(ti- (A?ORS/(8R] R]ed$5 R]W5uRS X} -i(tied$z 5

6 ˆ Computing Natural Cubic Splines, ctd 49 To repeat At the first point, C # KJL TJ R ed$ 5 g R 5uR TX/ % (a ed$ : So TJ and X/ % (a (8?OR (AR cj, so?or 5uR ÜX/ % (t Similarly for the end section l f [\ TJ, so?@: f 5GqYF f TJ from which R f d$!5u?or f ÜX/ % f (a f d$[ Gather all this together? g g g? ƒ R] R R R]f d$ RSf ƒ X/ %>*(t@0 X/ % (t@0 X/ % (tc1 X} -if,(t@f d X} -if,(t@f d$ ƒ Computing Natural Cubic Splines, ctd 410 Use row ops to simplify further to Ĉ ˆ$ ˆLf d$ ƒ R] R R R]f d$ RSf ƒ f ƒ R f R f 4 7 R Then back substitute to find, d$ and so in reverse order aving got the s substitute in to :Q X/ %@ ^(_@% (8?ORS/(ARS FO (`?$ %i*(ai-!5vrs95vrs 6

7 Approimating curves as opposed to interpolating 411 In D %Š" 1" %Š each a polynomial in Š Local control of curve Important eamples are Bézier curves and B-splines Used in graphics, CAD, drawing packages Bézier curves 41 Bezier curves were one of the earliest spline curves The curves were originally devised using the de Casteljau construction First consider a Bezier curve of degree 1, between D and D, [ (tš Œ 5;Š/ Now consider three control points, D and set Then Ž [ (tš Œ!5;Š/ Ž [ (tš Œ"5;Š/ [ (tš Ž 5tŠ Ž 1#Œ follows a quadratic Bezier curve s [(aš!5u?išk [ (_Š" Œ5GŠ 0 a 0 0 u (1 u) 1 a 1 1 7

8 Ž Carrying on 413 Now consider four control points, D l and set Ž 1(_Š" Œ 5tŠ} Ž 1(_Š" Œ!5tŠ} 1(_Š" Œ 5tŠ} 1(_Š" Ž 5GŠ Ž 1(_Š" Ž "5GŠ Ž 1(_Š" 5GŠ Then u 0 follows a cubic Bezier curve 0 1 u 3 u 1 %Š" B - %Š %Š" 1 z [(oš" Œ 5 X3Š [(Š 5 X3Š 1/(Š 5)Š/z T % Y J Šš Bézier curves of degree %Š [(aš 58X@Šk [ (aš ZZ 5AX3Š N [ (tš Œ 5;Š % Y J Šš Properties jjc B! and [\, so that a Bézier curve interpolates its end control points Ÿ EœŒiž cx/ ^( œœ Geometric significance? The curve lies inside the conve hull of its control points The control points need not be planar Is it always smooth It can have inflections It can self-cross 8

9 Blending functions actually Bernstein basis functions 415 %Š" B [(aš 58X3Š [ (aš ZZ 58X@Š N [ (tš Œ 5;Š One can think of the coefficients of the control points as blending functions These are symmetric under Š 1 (tš" 1 ( 1 - u ) 3 u 3 3 u ( 1 - u ) 3 u ( 1 - u ) Bézier curves of degree 416 The de Casteljau construction can be epressed as eg for ² %Š +ª < TX -Š Œ < (cubic Bézier): %Š ± ²³ µ [(aš -Š 1(_Š" -Š X/ [ (tš" Š -Š X/ [ (tš" Š -Š Š Note that (what is the geom significance?) d Š Y $¹ J Šš +ª -Š Šo5º [ (tš 1 Y $¹ -Š»hJ % Y J Šš 9

10 ± ± µ µ ± µ 5 µ ± µ atri form 417 Another representation is %Š" B %Š %Š" %Š" -Š 1! % %Š [ (tš ¾Š Š Š/[ (ÀX 5`X (E % Collecting these together: %Š ¾ Š Š Š/ ÃTÄWÅYÆ%Ç-ÈlÆ-ÉÊ J J J (ÁX X J J X (Áq X J ( X (ÀX ƒ ± % Ä ÅYÆ%Ç-ÈlÆ-É is the Bezier basis matri for order 3 Eample 418 Where is jj<ëìo?? Í3 Î? g Î/Ï z XÀXEN J J J (ÀX X J J X (Àq X J (E X (ÀX k Î!5 X Î ƒ "5! X Î Î So, it is a centre-weighted centroid 10

11 Ò Parametric surface (Tensor Product) 419 We would like to represent a surface using control points and blending functions, in the same manner as a curve %Š - -Š %Š" PÐ/ %Š" 1 z %Š For a surface, we need two parameters: %Š*Ñ< - %Š^1Ñ$ 1" %Š*Ñ< QÐ/ %Š*1Ñ< 1 Z f Ò f %Š*Ñ< Œ f with f a grid of 3D points Natural choice f %Š^1Ñ$ k fá %Š This is simply a product of Bézier curves -Š*Ñ< k f %Š" Í f %Ñ< %Ñ< "f Ï The 16 control points for a Bézier bicubic patch 40 u 0 v u 0 v 1 %Š^1Ñ$ k 10 Properties jj<pjc B 1 +^ KJ9m\ k! Conve hull property f ª +ª Ò v ËNË+Ë f 1 1 f -Š u %Ñ$ Œ"f u 1 v so that corners are pinned f -Š*Ñ< k ± f ª < f -Š µ ± +ª < u 1 v 1 -Ñ< µ, 11

12 Another way of picturing the process 41 You might prefer to look at the epression %Š^1Ñ< Ó f f %Š"! %Ó %Ñ$ Œ f in a rather different way For b TJ<m@0?WPXÂ Ó %Ñ< Œ"f for Then construct a Bezier curve out of J Ñv defines four separate Bezier curves, each parallel to the Ñ these for J Ñ ie ais ÓÔf f -Š! Ó %Ñ< Œ f u v 13 3 u v Choose a value of Ñ and you have four points on these curves 03 Then pick a point on this curve by choosing Š atri form 4 Another representation is using matrices Recall -Š ÃSÄÕÊ %Š*Ñ< kvãâäõö6ä E $ g`ø W YÙ}Ú where Ö 1 1#T! kœ kœ#t #T #! ƒ ¾ Ñ`Ñ>Ñ [ 1

13 Graphics application of Bézier tensor product surface 43 ore teapots 44 13

14 ² & ² ² Other properties of Bezier curves 45 Switching to higher degree A Bezier curve of degree ² is also a Bezier curve of degree 5U ² This means that the 5c ² control points can be replaced by 5V? ² control points in different positions and the curve shape remains unchanged, and hence one can increase the degree arbitrarily ere are the epressions for moving the control points to increase the degree by 1! & 5T ² & Ï!{d$"5 Í3( 5T 3+ËNË+Ë0 " Degree 7 Degree 4 Piecewise Bezier curves 46 Suppose we require many control points Piecewise Bézier curves Need an etra point inserted midway This will be a point of infleion 14

15 b b ± µ Ü f B-Splines 47 Like draftsperson s spline, but approimating A B-spline consists of several curve segments, each represented by a polynomial Controlled smoothness: eg cubic B-splines are Û, or can be made to be less: Û or Û Key advantage: Local control: moving a control point only affects part of the curve This isn t the case with a Bezier curve of high degree But often it is said not to be the case with, say, cubic Bezier curves But introducing the etra points does provide decoupling Eample - a cubic B-spline 48 5c (8? control points, [ NË{Ë~Ë{[ f, with b cubic polynomial curve segments Ü»hX ÜYÝ +Ë{Ë{Ë~ Each curve segment is defined as "Z %Š" B ¾ ÞŠŠ Š Ö ed ed "ed$! ß àp Ö) q g J (ÁX J X J X (Áq X J ( X (ÁX ƒ If the spline is closed then Ö is the same for all curve segments and ḧ f If the spline is open then the matrices Ö can be modified at the curve ends so that the curve segments interpolate the end control points 15

16 Ý B-splines, ctd 49 1 join 5 0 influenced by 1 1 influenced by 1 1 Conve hull property 1 1á 3 join 4 Spline demo: Tracking application of B-splines 430 Used in computer vision as Active Contours ere the local control is a bonus See Blake and Isard Active Contours Springer

Interactive Graphics. Lecture 9: Introduction to Spline Curves. Interactive Graphics Lecture 9: Slide 1

Interactive Graphics. Lecture 9: Introduction to Spline Curves. Interactive Graphics Lecture 9: Slide 1 Interactive Graphics Lecture 9: Introduction to Spline Curves Interactive Graphics Lecture 9: Slide 1 Interactive Graphics Lecture 13: Slide 2 Splines The word spline comes from the ship building trade

More information

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2013 3D Object Representations Raw data Point cloud Range image Polygon soup Surfaces Mesh Subdivision Parametric Implicit Solids Voxels

More information

3D Modeling Parametric Curves & Surfaces

3D Modeling Parametric Curves & Surfaces 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2012 3D Object Representations Raw data Point cloud Range image Polygon soup Solids Voxels BSP tree CSG Sweep Surfaces Mesh Subdivision

More information

Lecture 9: Introduction to Spline Curves

Lecture 9: Introduction to Spline Curves Lecture 9: Introduction to Spline Curves Splines are used in graphics to represent smooth curves and surfaces. They use a small set of control points (knots) and a function that generates a curve through

More information

Central issues in modelling

Central issues in modelling Central issues in modelling Construct families of curves, surfaces and volumes that can represent common objects usefully; are easy to interact with; interaction includes: manual modelling; fitting to

More information

CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016

CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 Announcements Project 3 due tomorrow Midterm 2 next

More information

Lecture IV Bézier Curves

Lecture IV Bézier Curves Lecture IV Bézier Curves Why Curves? Why Curves? Why Curves? Why Curves? Why Curves? Linear (flat) Curved Easier More pieces Looks ugly Complicated Fewer pieces Looks smooth What is a curve? Intuitively:

More information

Curves. Computer Graphics CSE 167 Lecture 11

Curves. Computer Graphics CSE 167 Lecture 11 Curves Computer Graphics CSE 167 Lecture 11 CSE 167: Computer graphics Polynomial Curves Polynomial functions Bézier Curves Drawing Bézier curves Piecewise Bézier curves Based on slides courtesy of Jurgen

More information

Curved PN Triangles. Alex Vlachos Jörg Peters

Curved PN Triangles. Alex Vlachos Jörg Peters 1 Curved PN Triangles Alex Vlachos AVlachos@ati.com Jörg Peters jorg@cise.ufl.edu Outline 2 Motivation Constraints Surface Properties Performance Demo Quick Demo 3 Constraints 4 Software Developers Must

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) CS480: Computer Graphics Curves and Surfaces Sung-Eui Yoon ( 윤성의 ) Course URL: http://jupiter.kaist.ac.kr/~sungeui/cg Today s Topics Surface representations Smooth curves Subdivision 2 Smooth Curves and

More information

2D Spline Curves. CS 4620 Lecture 18

2D Spline Curves. CS 4620 Lecture 18 2D Spline Curves CS 4620 Lecture 18 2014 Steve Marschner 1 Motivation: smoothness In many applications we need smooth shapes that is, without discontinuities So far we can make things with corners (lines,

More information

Parametric Curves. University of Texas at Austin CS384G - Computer Graphics

Parametric Curves. University of Texas at Austin CS384G - Computer Graphics Parametric Curves University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Parametric Representations 3 basic representation strategies: Explicit: y = mx + b Implicit: ax + by + c

More information

2D Spline Curves. CS 4620 Lecture 13

2D Spline Curves. CS 4620 Lecture 13 2D Spline Curves CS 4620 Lecture 13 2008 Steve Marschner 1 Motivation: smoothness In many applications we need smooth shapes [Boeing] that is, without discontinuities So far we can make things with corners

More information

CSE 167: Introduction to Computer Graphics Lecture #13: Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017

CSE 167: Introduction to Computer Graphics Lecture #13: Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017 CSE 167: Introduction to Computer Graphics Lecture #13: Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017 Announcements Project 4 due Monday Nov 27 at 2pm Next Tuesday:

More information

CS130 : Computer Graphics Curves (cont.) Tamar Shinar Computer Science & Engineering UC Riverside

CS130 : Computer Graphics Curves (cont.) Tamar Shinar Computer Science & Engineering UC Riverside CS130 : Computer Graphics Curves (cont.) Tamar Shinar Computer Science & Engineering UC Riverside Blending Functions Blending functions are more convenient basis than monomial basis canonical form (monomial

More information

Parametric Curves. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Parametric Curves. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Parametric Curves University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Parametric Representations 3 basic representation strategies: Explicit: y = mx + b Implicit: ax + by + c

More information

CSE 167: Introduction to Computer Graphics Lecture 12: Bézier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013

CSE 167: Introduction to Computer Graphics Lecture 12: Bézier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 CSE 167: Introduction to Computer Graphics Lecture 12: Bézier Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 Announcements Homework assignment 5 due tomorrow, Nov

More information

Design considerations

Design considerations Curves Design considerations local control of shape design each segment independently smoothness and continuity ability to evaluate derivatives stability small change in input leads to small change in

More information

Interactive Computer Graphics. Warping and morphing. Warping and Morphing. Warping and Morphing. Lecture 14+15: Warping and Morphing. What is.

Interactive Computer Graphics. Warping and morphing. Warping and Morphing. Warping and Morphing. Lecture 14+15: Warping and Morphing. What is. Interactive Computer Graphics Warping and morphing Lecture 14+15: Warping and Morphing Lecture 14: Warping and Morphing: Slide 1 Lecture 14: Warping and Morphing: Slide 2 Warping and Morphing What is Warping

More information

Curves and Surfaces Computer Graphics I Lecture 9

Curves and Surfaces Computer Graphics I Lecture 9 15-462 Computer Graphics I Lecture 9 Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] February 19, 2002 Frank Pfenning Carnegie

More information

Curves and Surfaces Computer Graphics I Lecture 10

Curves and Surfaces Computer Graphics I Lecture 10 15-462 Computer Graphics I Lecture 10 Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] September 30, 2003 Doug James Carnegie

More information

The Free-form Surface Modelling System

The Free-form Surface Modelling System 1. Introduction The Free-form Surface Modelling System Smooth curves and surfaces must be generated in many computer graphics applications. Many real-world objects are inherently smooth (fig.1), and much

More information

An introduction to interpolation and splines

An introduction to interpolation and splines An introduction to interpolation and splines Kenneth H. Carpenter, EECE KSU November 22, 1999 revised November 20, 2001, April 24, 2002, April 14, 2004 1 Introduction Suppose one wishes to draw a curve

More information

Information Coding / Computer Graphics, ISY, LiTH. Splines

Information Coding / Computer Graphics, ISY, LiTH. Splines 28(69) Splines Originally a drafting tool to create a smooth curve In computer graphics: a curve built from sections, each described by a 2nd or 3rd degree polynomial. Very common in non-real-time graphics,

More information

Intro to Modeling Modeling in 3D

Intro to Modeling Modeling in 3D Intro to Modeling Modeling in 3D Polygon sets can approximate more complex shapes as discretized surfaces 2 1 2 3 Curve surfaces in 3D Sphere, ellipsoids, etc Curved Surfaces Modeling in 3D ) ( 2 2 2 2

More information

Computergrafik. Matthias Zwicker. Herbst 2010

Computergrafik. Matthias Zwicker. Herbst 2010 Computergrafik Matthias Zwicker Universität Bern Herbst 2010 Today Curves NURBS Surfaces Parametric surfaces Bilinear patch Bicubic Bézier patch Advanced surface modeling Piecewise Bézier curves Each segment

More information

(Refer Slide Time: 00:02:24 min)

(Refer Slide Time: 00:02:24 min) CAD / CAM Prof. Dr. P. V. Madhusudhan Rao Department of Mechanical Engineering Indian Institute of Technology, Delhi Lecture No. # 9 Parametric Surfaces II So these days, we are discussing the subject

More information

Parametric curves. Reading. Curves before computers. Mathematical curve representation. CSE 457 Winter Required:

Parametric curves. Reading. Curves before computers. Mathematical curve representation. CSE 457 Winter Required: Reading Required: Angel 10.1-10.3, 10.5.2, 10.6-10.7, 10.9 Parametric curves CSE 457 Winter 2014 Optional Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics and Geometric

More information

Rendering Curves and Surfaces. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Rendering Curves and Surfaces. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Rendering Curves and Surfaces Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Objectives Introduce methods to draw curves - Approximate

More information

MA 323 Geometric Modelling Course Notes: Day 14 Properties of Bezier Curves

MA 323 Geometric Modelling Course Notes: Day 14 Properties of Bezier Curves MA 323 Geometric Modelling Course Notes: Day 14 Properties of Bezier Curves David L. Finn In this section, we discuss the geometric properties of Bezier curves. These properties are either implied directly

More information

08 - Designing Approximating Curves

08 - Designing Approximating Curves 08 - Designing Approximating Curves Acknowledgement: Olga Sorkine-Hornung, Alexander Sorkine-Hornung, Ilya Baran Last time Interpolating curves Monomials Lagrange Hermite Different control types Polynomials

More information

Curves and Surfaces. Shireen Elhabian and Aly A. Farag University of Louisville

Curves and Surfaces. Shireen Elhabian and Aly A. Farag University of Louisville Curves and Surfaces Shireen Elhabian and Aly A. Farag University of Louisville February 21 A smile is a curve that sets everything straight Phyllis Diller (American comedienne and actress, born 1917) Outline

More information

Splines. Connecting the Dots

Splines. Connecting the Dots Splines or: Connecting the Dots Jens Ogniewski Information Coding Group Linköping University Before we start... Some parts won t be part of the exam Basically all that is not described in the book. More

More information

Computer Graphics Curves and Surfaces. Matthias Teschner

Computer Graphics Curves and Surfaces. Matthias Teschner Computer Graphics Curves and Surfaces Matthias Teschner Outline Introduction Polynomial curves Bézier curves Matrix notation Curve subdivision Differential curve properties Piecewise polynomial curves

More information

Know it. Control points. B Spline surfaces. Implicit surfaces

Know it. Control points. B Spline surfaces. Implicit surfaces Know it 15 B Spline Cur 14 13 12 11 Parametric curves Catmull clark subdivision Parametric surfaces Interpolating curves 10 9 8 7 6 5 4 3 2 Control points B Spline surfaces Implicit surfaces Bezier surfaces

More information

ECE 600, Dr. Farag, Summer 09

ECE 600, Dr. Farag, Summer 09 ECE 6 Summer29 Course Supplements. Lecture 4 Curves and Surfaces Aly A. Farag University of Louisville Acknowledgements: Help with these slides were provided by Shireen Elhabian A smile is a curve that

More information

Lesson 8.1 Exercises, pages

Lesson 8.1 Exercises, pages Lesson 8.1 Eercises, pages 1 9 A. Complete each table of values. a) -3 - -1 1 3 3 11 8 5-1 - -7 3 11 8 5 1 7 To complete the table for 3, take the absolute value of each value of 3. b) - -3 - -1 1 3 3

More information

Curves and Surfaces 1

Curves and Surfaces 1 Curves and Surfaces 1 Representation of Curves & Surfaces Polygon Meshes Parametric Cubic Curves Parametric Bi-Cubic Surfaces Quadric Surfaces Specialized Modeling Techniques 2 The Teapot 3 Representing

More information

Geometric Modeling of Curves

Geometric Modeling of Curves Curves Locus of a point moving with one degree of freedom Locus of a one-dimensional parameter family of point Mathematically defined using: Explicit equations Implicit equations Parametric equations (Hermite,

More information

(Spline, Bezier, B-Spline)

(Spline, Bezier, B-Spline) (Spline, Bezier, B-Spline) Spline Drafting terminology Spline is a flexible strip that is easily flexed to pass through a series of design points (control points) to produce a smooth curve. Spline curve

More information

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 Lecture 25: Bezier Subdivision And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 1. Divide and Conquer If we are going to build useful

More information

For each question, indicate whether the statement is true or false by circling T or F, respectively.

For each question, indicate whether the statement is true or false by circling T or F, respectively. True/False For each question, indicate whether the statement is true or false by circling T or F, respectively. 1. (T/F) Rasterization occurs before vertex transformation in the graphics pipeline. 2. (T/F)

More information

Introduction to Computer Graphics

Introduction to Computer Graphics Introduction to Computer Graphics 2016 Spring National Cheng Kung University Instructors: Min-Chun Hu 胡敏君 Shih-Chin Weng 翁士欽 ( 西基電腦動畫 ) Data Representation Curves and Surfaces Limitations of Polygons Inherently

More information

Rational Bezier Surface

Rational Bezier Surface Rational Bezier Surface The perspective projection of a 4-dimensional polynomial Bezier surface, S w n ( u, v) B i n i 0 m j 0, u ( ) B j m, v ( ) P w ij ME525x NURBS Curve and Surface Modeling Page 97

More information

Homogeneous Coordinates. Lecture18: Camera Models. Representation of Line and Point in 2D. Cross Product. Overall scaling is NOT important.

Homogeneous Coordinates. Lecture18: Camera Models. Representation of Line and Point in 2D. Cross Product. Overall scaling is NOT important. Homogeneous Coordinates Overall scaling is NOT important. CSED44:Introduction to Computer Vision (207F) Lecture8: Camera Models Bohyung Han CSE, POSTECH bhhan@postech.ac.kr (",, ) ()", ), )) ) 0 It is

More information

Parametric curves. Brian Curless CSE 457 Spring 2016

Parametric curves. Brian Curless CSE 457 Spring 2016 Parametric curves Brian Curless CSE 457 Spring 2016 1 Reading Required: Angel 10.1-10.3, 10.5.2, 10.6-10.7, 10.9 Optional Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics

More information

Lecture 5 C Programming Language

Lecture 5 C Programming Language Lecture 5 C Programming Language Summary of Lecture 5 Pointers Pointers and Arrays Function arguments Dynamic memory allocation Pointers to functions 2D arrays Addresses and Pointers Every object in the

More information

Bezier Curves, B-Splines, NURBS

Bezier Curves, B-Splines, NURBS Bezier Curves, B-Splines, NURBS Example Application: Font Design and Display Curved objects are everywhere There is always need for: mathematical fidelity high precision artistic freedom and flexibility

More information

Fall CSCI 420: Computer Graphics. 4.2 Splines. Hao Li.

Fall CSCI 420: Computer Graphics. 4.2 Splines. Hao Li. Fall 2014 CSCI 420: Computer Graphics 4.2 Splines Hao Li http://cs420.hao-li.com 1 Roller coaster Next programming assignment involves creating a 3D roller coaster animation We must model the 3D curve

More information

Curves and Curved Surfaces. Adapted by FFL from CSE167: Computer Graphics Instructor: Ronen Barzel UCSD, Winter 2006

Curves and Curved Surfaces. Adapted by FFL from CSE167: Computer Graphics Instructor: Ronen Barzel UCSD, Winter 2006 Curves and Curved Surfaces Adapted by FFL from CSE167: Computer Graphics Instructor: Ronen Barzel UCSD, Winter 2006 Outline for today Summary of Bézier curves Piecewise-cubic curves, B-splines Surface

More information

Intro to Curves Week 4, Lecture 7

Intro to Curves Week 4, Lecture 7 CS 430/536 Computer Graphics I Intro to Curves Week 4, Lecture 7 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel University

More information

Image Warping, mesh, and triangulation CSE399b, Spring 07 Computer Vision

Image Warping, mesh, and triangulation CSE399b, Spring 07 Computer Vision http://grail.cs.washington.edu/projects/rotoscoping/ Image Warping, mesh, and triangulation CSE399b, Spring 7 Computer Vision Man of the slides from A. Efros. Parametric (global) warping Eamples of parametric

More information

Intro to Curves Week 1, Lecture 2

Intro to Curves Week 1, Lecture 2 CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2 David Breen, William Regli and Maxim Peysakhov Department of Computer Science Drexel University Outline Math review Introduction to 2D curves

More information

Curves and Surfaces. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd

Curves and Surfaces. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd Curves and Surfaces Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 4/11/2007 Final projects Surface representations Smooth curves Subdivision Todays Topics 2 Final Project Requirements

More information

Interactive Graphics Using Parametric Equations (Day 2)

Interactive Graphics Using Parametric Equations (Day 2) Interactive Graphics Using Parametric Equations (Day 2) Dr. Niels Lobo Computer Science Bezier Curves Google bezier curves`` Casselman's Bezier curves Andysspline Bezier Curves Bezier Photo: Automotive

More information

GL9: Engineering Communications. GL9: CAD techniques. Curves Surfaces Solids Techniques

GL9: Engineering Communications. GL9: CAD techniques. Curves Surfaces Solids Techniques 436-105 Engineering Communications GL9:1 GL9: CAD techniques Curves Surfaces Solids Techniques Parametric curves GL9:2 x = a 1 + b 1 u + c 1 u 2 + d 1 u 3 + y = a 2 + b 2 u + c 2 u 2 + d 2 u 3 + z = a

More information

CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2

CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2 CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2 David Breen, William Regli and Maxim Peysakhov Department of Computer Science Drexel University 1 Outline Math review Introduction to 2D curves

More information

COMPUTER AIDED ENGINEERING DESIGN (BFF2612)

COMPUTER AIDED ENGINEERING DESIGN (BFF2612) COMPUTER AIDED ENGINEERING DESIGN (BFF2612) BASIC MATHEMATICAL CONCEPTS IN CAED by Dr. Mohd Nizar Mhd Razali Faculty of Manufacturing Engineering mnizar@ump.edu.my COORDINATE SYSTEM y+ y+ z+ z+ x+ RIGHT

More information

Splines. Parameterization of a Curve. Curve Representations. Roller coaster. What Do We Need From Curves in Computer Graphics? Modeling Complex Shapes

Splines. Parameterization of a Curve. Curve Representations. Roller coaster. What Do We Need From Curves in Computer Graphics? Modeling Complex Shapes CSCI 420 Computer Graphics Lecture 8 Splines Jernej Barbic University of Southern California Hermite Splines Bezier Splines Catmull-Rom Splines Other Cubic Splines [Angel Ch 12.4-12.12] Roller coaster

More information

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016 Computergrafik Matthias Zwicker Universität Bern Herbst 2016 Today Curves NURBS Surfaces Parametric surfaces Bilinear patch Bicubic Bézier patch Advanced surface modeling 2 Piecewise Bézier curves Each

More information

LECTURE #6. Geometric Modelling for Engineering Applications. Geometric modeling for engineering applications

LECTURE #6. Geometric Modelling for Engineering Applications. Geometric modeling for engineering applications LECTURE #6 Geometric modeling for engineering applications Geometric Modelling for Engineering Applications Introduction to modeling Geometric modeling Curve representation Hermite curve Bezier curve B-spline

More information

Three-Dimensional Object Representations Chapter 8

Three-Dimensional Object Representations Chapter 8 Three-Dimensional Object Representations Chapter 8 3D Object Representation A surace can be analticall generated using its unction involving the coordinates. An object can be represented in terms o its

More information

Surfaces for CAGD. FSP Tutorial. FSP-Seminar, Graz, November

Surfaces for CAGD. FSP Tutorial. FSP-Seminar, Graz, November Surfaces for CAGD FSP Tutorial FSP-Seminar, Graz, November 2005 1 Tensor Product Surfaces Given: two curve schemes (Bézier curves or B splines): I: x(u) = m i=0 F i(u)b i, u [a, b], II: x(v) = n j=0 G

More information

MA 323 Geometric Modelling Course Notes: Day 28 Data Fitting to Surfaces

MA 323 Geometric Modelling Course Notes: Day 28 Data Fitting to Surfaces MA 323 Geometric Modelling Course Notes: Day 28 Data Fitting to Surfaces David L. Finn Today, we want to exam interpolation and data fitting problems for surface patches. Our general method is the same,

More information

Reading. Parametric surfaces. Surfaces of revolution. Mathematical surface representations. Required:

Reading. Parametric surfaces. Surfaces of revolution. Mathematical surface representations. Required: Reading Required: Angel readings for Parametric Curves lecture, with emphasis on 11.1.2, 11.1.3, 11.1.5, 11.6.2, 11.7.3, 11.9.4. Parametric surfaces Optional Bartels, Beatty, and Barsky. An Introduction

More information

Curves D.A. Forsyth, with slides from John Hart

Curves D.A. Forsyth, with slides from John Hart Curves D.A. Forsyth, with slides from John Hart Central issues in modelling Construct families of curves, surfaces and volumes that can represent common objects usefully; are easy to interact with; interaction

More information

Parametric Surfaces. Michael Kazhdan ( /657) HB , FvDFH 11.2

Parametric Surfaces. Michael Kazhdan ( /657) HB , FvDFH 11.2 Parametric Surfaces Michael Kazhdan (601.457/657) HB 10.6 -- 10.9, 10.1 FvDFH 11.2 Announcement OpenGL review session: When: Wednesday (10/1) @ 7:00-9:00 PM Where: Olin 05 Cubic Splines Given a collection

More information

Curves and Surfaces 2

Curves and Surfaces 2 Curves and Surfaces 2 Computer Graphics Lecture 17 Taku Komura Today More about Bezier and Bsplines de Casteljau s algorithm BSpline : General form de Boor s algorithm Knot insertion NURBS Subdivision

More information

Until now we have worked with flat entities such as lines and flat polygons. Fit well with graphics hardware Mathematically simple

Until now we have worked with flat entities such as lines and flat polygons. Fit well with graphics hardware Mathematically simple Curves and surfaces Escaping Flatland Until now we have worked with flat entities such as lines and flat polygons Fit well with graphics hardware Mathematically simple But the world is not composed of

More information

MAT 22B-001: Differential Equations

MAT 22B-001: Differential Equations MAT 22B-001: Differential Equations Final Exam Solutions Note: There is a table of the Laplace transform in the last page Name: SSN: Total Score: Problem 1 (5 pts) Solve the following initial value problem

More information

In this course we will need a set of techniques to represent curves and surfaces in 2-d and 3-d. Some reasons for this include

In this course we will need a set of techniques to represent curves and surfaces in 2-d and 3-d. Some reasons for this include Parametric Curves and Surfaces In this course we will need a set of techniques to represent curves and surfaces in 2-d and 3-d. Some reasons for this include Describing curves in space that objects move

More information

Roadmap for tonight. What are Bezier curves (mathematically)? Programming Bezier curves (very high level view).

Roadmap for tonight. What are Bezier curves (mathematically)? Programming Bezier curves (very high level view). Roadmap for tonight Some background. What are Bezier curves (mathematically)? Characteristics of Bezier curves. Demo. Programming Bezier curves (very high level view). Why Bezier curves? Bezier curves

More information

Consider functions such that then satisfies these properties: So is represented by the cubic polynomials on on and on.

Consider functions such that then satisfies these properties: So is represented by the cubic polynomials on on and on. 1 of 9 3/1/2006 2:28 PM ne previo Next: Trigonometric Interpolation Up: Spline Interpolation Previous: Piecewise Linear Case Cubic Splines A piece-wise technique which is very popular. Recall the philosophy

More information

Curves & Surfaces. Last Time? Progressive Meshes. Selective Refinement. Adjacency Data Structures. Mesh Simplification. Mesh Simplification

Curves & Surfaces. Last Time? Progressive Meshes. Selective Refinement. Adjacency Data Structures. Mesh Simplification. Mesh Simplification Last Time? Adjacency Data Structures Curves & Surfaces Geometric & topologic information Dynamic allocation Efficiency of access Mesh Simplification edge collapse/vertex split geomorphs progressive transmission

More information

Need for Parametric Equations

Need for Parametric Equations Curves and Surfaces Curves and Surfaces Need for Parametric Equations Affine Combinations Bernstein Polynomials Bezier Curves and Surfaces Continuity when joining curves B Spline Curves and Surfaces Need

More information

MA 323 Geometric Modelling Course Notes: Day 21 Three Dimensional Bezier Curves, Projections and Rational Bezier Curves

MA 323 Geometric Modelling Course Notes: Day 21 Three Dimensional Bezier Curves, Projections and Rational Bezier Curves MA 323 Geometric Modelling Course Notes: Day 21 Three Dimensional Bezier Curves, Projections and Rational Bezier Curves David L. Finn Over the next few days, we will be looking at extensions of Bezier

More information

Properties of Blending Functions

Properties of Blending Functions Chapter 5 Properties of Blending Functions We have just studied how the Bernstein polynomials serve very nicely as blending functions. We have noted that a degree n Bézier curve always begins at P 0 and

More information

Rational Bezier Curves

Rational Bezier Curves Rational Bezier Curves Use of homogeneous coordinates Rational spline curve: define a curve in one higher dimension space, project it down on the homogenizing variable Mathematical formulation: n P(u)

More information

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg COMPUTER AIDED GEOMETRIC DESIGN Thomas W. Sederberg January 31, 2011 ii T. W. Sederberg iii Preface This semester is the 24 th time I have taught a course at Brigham Young University titled, Computer Aided

More information

Today s class. Geometric objects and transformations. Informationsteknologi. Wednesday, November 7, 2007 Computer Graphics - Class 5 1

Today s class. Geometric objects and transformations. Informationsteknologi. Wednesday, November 7, 2007 Computer Graphics - Class 5 1 Toda s class Geometric objects and transformations Wednesda, November 7, 27 Computer Graphics - Class 5 Vector operations Review of vector operations needed for working in computer graphics adding two

More information

Bezier Curves. An Introduction. Detlef Reimers

Bezier Curves. An Introduction. Detlef Reimers Bezier Curves An Introduction Detlef Reimers detlefreimers@gmx.de http://detlefreimers.de September 1, 2011 Chapter 1 Bezier Curve Basics 1.1 Linear Interpolation This section will give you a basic introduction

More information

A Practical Review of Uniform B-Splines

A Practical Review of Uniform B-Splines A Practical Review of Uniform B-Splines Kristin Branson A B-spline is a convenient form for representing complicated, smooth curves. A uniform B-spline of order k is a piecewise order k Bezier curve, and

More information

Curves and Surfaces for Computer-Aided Geometric Design

Curves and Surfaces for Computer-Aided Geometric Design Curves and Surfaces for Computer-Aided Geometric Design A Practical Guide Fourth Edition Gerald Farin Department of Computer Science Arizona State University Tempe, Arizona /ACADEMIC PRESS I San Diego

More information

15.10 Curve Interpolation using Uniform Cubic B-Spline Curves. CS Dept, UK

15.10 Curve Interpolation using Uniform Cubic B-Spline Curves. CS Dept, UK 1 An analysis of the problem: To get the curve constructed, how many knots are needed? Consider the following case: So, to interpolate (n +1) data points, one needs (n +7) knots,, for a uniform cubic B-spline

More information

Computer Graphics. Unit VI: Curves And Fractals. By Vaishali Kolhe

Computer Graphics. Unit VI: Curves And Fractals. By Vaishali Kolhe Computer Graphics Unit VI: Curves And Fractals Introduction Two approaches to generate curved line 1. Curve generation algorithm Ex. DDA Arc generation algorithm 2. Approximate curve by number of straight

More information

Animation Curves and Splines 2

Animation Curves and Splines 2 Animation Curves and Splines 2 Animation Homework Set up Thursday a simple avatar E.g. cube/sphere (or square/circle if 2D) Specify some key frames (positions/orientations) Associate Animation a time with

More information

COMP3421. Global Lighting Part 2: Radiosity

COMP3421. Global Lighting Part 2: Radiosity COMP3421 Global Lighting Part 2: Radiosity Recap: Global Lighting The lighting equation we looked at earlier only handled direct lighting from sources: We added an ambient fudge term to account for all

More information

Keyword: Quadratic Bézier Curve, Bisection Algorithm, Biarc, Biarc Method, Hausdorff Distances, Tolerance Band.

Keyword: Quadratic Bézier Curve, Bisection Algorithm, Biarc, Biarc Method, Hausdorff Distances, Tolerance Band. Department of Computer Science Approximation Methods for Quadratic Bézier Curve, by Circular Arcs within a Tolerance Band Seminar aus Informatik Univ.-Prof. Dr. Wolfgang Pree Seyed Amir Hossein Siahposhha

More information

Transformations. Examples of transformations: shear. scaling

Transformations. Examples of transformations: shear. scaling Transformations Eamples of transformations: translation rotation scaling shear Transformations More eamples: reflection with respect to the y-ais reflection with respect to the origin Transformations Linear

More information

Transformation of curve. a. reflect the portion of the curve that is below the x-axis about the x-axis

Transformation of curve. a. reflect the portion of the curve that is below the x-axis about the x-axis Given graph of y f = and sketch:. Linear Transformation cf ( b + a) + d a. translate a along the -ais. f b. scale b along the -ais c. scale c along the y-ais d. translate d along the y-ais Transformation

More information

Midterm Exam Fundamentals of Computer Graphics (COMP 557) Thurs. Feb. 19, 2015 Professor Michael Langer

Midterm Exam Fundamentals of Computer Graphics (COMP 557) Thurs. Feb. 19, 2015 Professor Michael Langer Midterm Exam Fundamentals of Computer Graphics (COMP 557) Thurs. Feb. 19, 2015 Professor Michael Langer The exam consists of 10 questions. There are 2 points per question for a total of 20 points. You

More information

Parameterization. Michael S. Floater. November 10, 2011

Parameterization. Michael S. Floater. November 10, 2011 Parameterization Michael S. Floater November 10, 2011 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to generate from point

More information

Introduction p. 1 What Is Geometric Modeling? p. 1 Computer-aided geometric design Solid modeling Algebraic geometry Computational geometry

Introduction p. 1 What Is Geometric Modeling? p. 1 Computer-aided geometric design Solid modeling Algebraic geometry Computational geometry Introduction p. 1 What Is Geometric Modeling? p. 1 Computer-aided geometric design Solid modeling Algebraic geometry Computational geometry Representation Ab initio design Rendering Solid modelers Kinematic

More information

Spline Notes. Marc Olano University of Maryland, Baltimore County. February 20, 2004

Spline Notes. Marc Olano University of Maryland, Baltimore County. February 20, 2004 Spline Notes Marc Olano University of Maryland, Baltimore County February, 4 Introduction I. Modeled after drafting tool A. Thin strip of wood or metal B. Control smooth curved path by running between

More information

Curve Representation ME761A Instructor in Charge Prof. J. Ramkumar Department of Mechanical Engineering, IIT Kanpur

Curve Representation ME761A Instructor in Charge Prof. J. Ramkumar Department of Mechanical Engineering, IIT Kanpur Curve Representation ME761A Instructor in Charge Prof. J. Ramkumar Department of Mechanical Engineering, IIT Kanpur Email: jrkumar@iitk.ac.in Curve representation 1. Wireframe models There are three types

More information

B-spline Curves. Smoother than other curve forms

B-spline Curves. Smoother than other curve forms Curves and Surfaces B-spline Curves These curves are approximating rather than interpolating curves. The curves come close to, but may not actually pass through, the control points. Usually used as multiple,

More information

5.1 Introduction to the Graphs of Polynomials

5.1 Introduction to the Graphs of Polynomials Math 3201 5.1 Introduction to the Graphs of Polynomials In Math 1201/2201, we examined three types of polynomial functions: Constant Function - horizontal line such as y = 2 Linear Function - sloped line,

More information

Projective 2D Geometry

Projective 2D Geometry Projective D Geometry Multi View Geometry (Spring '08) Projective D Geometry Prof. Kyoung Mu Lee SoEECS, Seoul National University Homogeneous representation of lines and points Projective D Geometry Line

More information

Advanced Graphics. Beziers, B-splines, and NURBS. Alex Benton, University of Cambridge Supported in part by Google UK, Ltd

Advanced Graphics. Beziers, B-splines, and NURBS. Alex Benton, University of Cambridge Supported in part by Google UK, Ltd Advanced Graphics Beziers, B-splines, and NURBS Alex Benton, University of Cambridge A.Benton@damtp.cam.ac.uk Supported in part by Google UK, Ltd Bezier splines, B-Splines, and NURBS Expensive products

More information

Interpolation by Spline Functions

Interpolation by Spline Functions Interpolation by Spline Functions Com S 477/577 Sep 0 007 High-degree polynomials tend to have large oscillations which are not the characteristics of the original data. To yield smooth interpolating curves

More information