Master and Slave Nodes (Rigid Link Function)

Size: px
Start display at page:

Download "Master and Slave Nodes (Rigid Link Function)"

Transcription

1 Master and Slave Nodes (Rigid Link Function) The rigid link function specified in Model>Boundaries>Rigid Link constrains geometric, relative movements of a structure. Geometric constraints of relative movements are established at a particular node to which one or more nodal degrees of freedom (d.o.f.) are subordinated. The particular reference node is called a Master Node, and the subordinated nodes are called Slave Nodes. The rigid link function includes the following four connections: 1. Rigid Body Connection 2. Rigid Plane Connection 3. Rigid Translation Connection 4. Rigid Rotation Connection Rigid Body Connection constrains the relative movements of the and slave nodes as if they are interconnected by a three dimensional rigid body. In this case, relative nodal displacements are kept constant, and the geometric relationships for the displacements are expressed by the following equations: U Xs = U Xm + R Ym ΔZ - R Zm ΔY U Ys = U Ym + R Zm ΔX - R Xm ΔZ U Zs = U Zm + R Xm ΔY - R Ym ΔX R Xs = R Xm R Ys = R Ym R Zs = R Zm where, ΔX = X m - X s, ΔY = Y m - Y s, ΔZ = Z m - Z s The subscripts, m and s, in the above equations represent a and slave nodes respectively. U X, U Y and U Z are displacements in the Global Coordinate System (GCS) X, Y and Z directions respectively, and R X, R Y and R Z are rotations about the GCS X, Y and Z-axes respectively. X m, Y m and Z m represent the coordinates of the, and X s, Y s and Z s represent the coordinates of a slave node. This feature may be applied to certain members whose stiffnesses are substantially larger than the remaining structural members such that their deformations can be ignored. It can be also used in the case of a stiffened plate to interconnect its plate and stiffener. 111

2 ANALYSIS FOR CIVIL STRUCTURES Rigid Plane Connection constrains the relative movements of the and slave nodes as if a planar rigid body parallel with the X-Y, Y-Z or Z-X plane interconnects them. The distances between the nodes projected on the plane in question remain constant. The geometric relationships for the displacements are expressed by the following equations: Rigid Plane Connection assigned to X-Y plane U Xs = U Xm - R Zm ΔY U Ys = U Ym + R Zm ΔX R Zs = R Zm Rigid Plane Connection assigned to Y-Z plane U Ys = U Ym - R Xm ΔZ U Zs = U Zm + R Xm ΔY R Xs = R Xm Rigid Plane Connection assigned to Z-X plane U Zs = U Zm - R Ym ΔX U Xs = U Xm + R Ym ΔZ R Ys = R Ym This feature is generally used to model floor diaphragms whose relative in-plane displacements are negligible. Rigid Translation Connection constrains relative translational movements of the and slave nodes in the X, Y or Z-axis direction. The geometric relationships for the displacements are expressed by the following equations: Displacement constraint in the X-axis direction U Xs = U Xm Displacement constraint in the Y-axis direction U Ys = U Ym Displacement constraint in the Z-axis direction U Zs = U Zm 112

3 Rigid Rotation Connection constrains the relative rotational movements of the and slave nodes about the X, Y or Z-axis. The geometric relationships for the displacements are expressed by the following equations: Rotational constraint about the X-axis R Xs = R Xm Rotational constraint about the Y-axis R Ys = R Ym Rotational constraint about the Z-axis R Zs = R Zm The following illustrates an application of Rigid Plane Connection to a building floor (or any other structural plate) diaphragm to help the user understand the concept of the rigid link feature. When a building is subjected to a lateral load, the relative horizontal deformation at any point in the floor plane is generally negligible compared to that from other structural members such as columns, walls and bracings. This rigid diaphragm action of the floor slab can be implemented by constraining all the relative inplane displacements to behave as a unit. The movements consist of two in-plane translational displacements and one rotational displacement about the vertical direction. 113

4 ANALYSIS FOR CIVIL STRUCTURES floor diaphrarm lateral load 1 2 Before deformation After deformation 1 2 Figure 1.71 Typical structure with floor diaphragm subjected to a lateral load As illustrated in Figure 1.71, when a structure is subjected to a lateral load and the in-plane stiffness of the floor is significantly greater than the horizontal stiffness of the columns, the in-plane deformations of the floor can be ignored. Accordingly, the values of δ 1 and δ 2 may be considered equal. 114

5 floor diaphragm torsional moment Ф 1 Ф 2 Ф 3 Ф 4 Ф 5 Figure 1.72 Single story structure with a floor (plate) diaphragm subjected to a torsional moment about the vertical axis When a single-level structure, as illustrated in Figure 1.72, is subjected to a torsional moment about the vertical direction and the in-plane stiffness of the floor is significantly greater than the horizontal stiffness of the columns, the entire floor diaphragm will be rotated by, where, Accordingly, the four degrees of freedom can be reduced to a single degree of freedom. 115

6 ANALYSIS FOR CIVIL STRUCTURES Figure 1.73 shows a process in which a total of 24 (6 4) degrees of freedom are compressed to 15 d.o.f. within the floor plane, considering its diaphragm actions. slave nodes floor diaphram floor diaphram UxUyRz slave node U X : displacement degree of freedom in the X-direction at the corresponding node U Y : displacement degree of freedom in the Y-direction at the corresponding node U Z : displacement degree of freedom in the Z-direction at the corresponding node R X : rotational degree of freedom about the X-axis at the corresponding node R Y : rotational degree of freedom about the Y-axis at the corresponding node R Z : rotational degree of freedom about the Z-axis at the corresponding node Figure 1.73 Reduction of d.o.f for floor diaphragm of significant in-plane stiffness 116

7 displaced floor diaphram R Zm R Zs slave node initial floor diaphram U Xm U Ym R Zm U Xs U Ys R Zs : X-direction displacement of : Y-direction displacement of : rotation about Z-axis at : X-direction displacement of slave node : X-direction displacement of slave node : rotation about Z-axis at slave node Figure 1.74 Displacements of an infinitely stiff floor diaphragm due to horizontal loads As illustrated in Figure 1.74, if translational and rotational displacements take place simultaneously in an infinitely stiff floor diaphragm due to a lateral load, the displacements of a point on the floor plane can be obtained by: U Xs = U Xm - R Zm ΔY U Ys = U Ym + R Zm ΔX R Zs = R Zm Reducing number of degrees of freedom by geometric constraints can significantly reduce the computational time for analysis. For instance, if a building structure is analyzed with the floors modeled as plate or plane stress elements, the number of nodes will increase substantially. Each additional node 117

8 ANALYSIS FOR CIVIL STRUCTURES represents 3 additional degrees of freedom even if one considers d.o.f in lateral directions only. A large number of nodes in an analysis can result in excessive program execution time, or it may even surpass the program capacity. In general, solver time required is proportional to the number of degrees of freedom to the power of 3. It is, therefore, recommended that the number of degrees of freedom be minimized as long as the accuracy of the results is not compromised. Figure 1.75 shows applications of Rigid Body Connection and Rigid Plane Connection. Figure 1.75 (a) illustrates an application of Rigid Link using Rigid Body Connection. Here a rectangular tube is modeled with plate elements in the region where a detail review is required, beyond which a beam element represents the tube. Then, Rigid Body Connection joins the two regions. Figure 1.75 (b) shows an application of Rigid Plane Connection for a column offset in a two-dimensional plane. Whenever Rigid Link is used in a plane, geometric constraints must be assigned to two translational displacement components and one rotational component about the perpendicular axis to the plane. If a structural analysis model includes geometric constraints and is used for a dynamic analysis, the location of the must coincide with the mass center of all the masses pertaining to the slave nodes. This condition also applies to the masses converted from self-weights. rectangular tube modeled with plate elements Rigid Link rectangular tube modeled as a beam elemant : slave nodes (12 nodes) * all 6 degrees of freedom of the slave nodes are linked to the. (a) A tube modeled using a beam element and plate elements, and connected by Rigid Body Connection 118

9 slave node eccentricity eccentricity * all slave node s d.o.f. in the X-Z plane are linked to the master node (translational displacement d.o.f. in the X and Z directions and rotational d.o.f. about the Y-axis. (b) Eccentricity of an offset-column linked by Rigid Plane Connection Figure 1.75 Application examples of geometric constraints 119

Guidelines for proper use of Plate elements

Guidelines for proper use of Plate elements Guidelines for proper use of Plate elements In structural analysis using finite element method, the analysis model is created by dividing the entire structure into finite elements. This procedure is known

More information

Scientific Manual FEM-Design 17.0

Scientific Manual FEM-Design 17.0 Scientific Manual FEM-Design 17. 1.4.6 Calculations considering diaphragms All of the available calculation in FEM-Design can be performed with diaphragms or without diaphragms if the diaphragms were defined

More information

Introduction. Section 3: Structural Analysis Concepts - Review

Introduction. Section 3: Structural Analysis Concepts - Review Introduction In this class we will focus on the structural analysis of framed structures. Framed structures consist of components with lengths that are significantly larger than crosssectional areas. We

More information

Scientific Manual FEM-Design 16.0

Scientific Manual FEM-Design 16.0 1.4.6 Calculations considering diaphragms All of the available calculation in FEM-Design can be performed with diaphragms or without diaphragms if the diaphragms were defined in the model. B the different

More information

3D Coordinate Transformation Calculations. Space Truss Member

3D Coordinate Transformation Calculations. Space Truss Member 3D oordinate Transformation alculations Transformation of the element stiffness equations for a space frame member from the local to the global coordinate system can be accomplished as the product of three

More information

THREE DIMENSIONAL ACES MODELS FOR BRIDGES

THREE DIMENSIONAL ACES MODELS FOR BRIDGES THREE DIMENSIONAL ACES MODELS FOR BRIDGES Noel Wenham, Design Engineer, Wyche Consulting Joe Wyche, Director, Wyche Consulting SYNOPSIS Plane grillage models are widely used for the design of bridges,

More information

Chapter 3 Analysis of Original Steel Post

Chapter 3 Analysis of Original Steel Post Chapter 3. Analysis of original steel post 35 Chapter 3 Analysis of Original Steel Post This type of post is a real functioning structure. It is in service throughout the rail network of Spain as part

More information

53:244 (58:254) Energy Principles in Structural Mechanics. virtual work, principles of stationary and minimum potential energy;

53:244 (58:254) Energy Principles in Structural Mechanics. virtual work, principles of stationary and minimum potential energy; Introduction, course perspective, course organization. Material: Derivation of basic principles of mechanics; principle of virtual work, principles of stationary and minimum potential energy; Hamilton

More information

17. SEISMIC ANALYSIS MODELING TO SATISFY BUILDING CODES

17. SEISMIC ANALYSIS MODELING TO SATISFY BUILDING CODES 17. SEISMIC ANALYSIS MODELING TO SATISFY BUILDING CODES The Current Building Codes Use the Terminology: Principal Direction without a Unique Definition 17.1 INTRODUCTION { XE "Building Codes" }Currently

More information

An introduction to understanding the deflection of beams using the Push Me Pull Me models on Expedition Workshed

An introduction to understanding the deflection of beams using the Push Me Pull Me models on Expedition Workshed Worksheet 2 Deflections of Beams An introduction to understanding the deflection of beams using the Push Me Pull Me models on Expedition Workshed introduction Understanding how structures deform and deflect

More information

Connection Elements and Connection Library

Connection Elements and Connection Library Connection Elements and Connection Library Lecture 2 L2.2 Overview Introduction Defining Connector Elements Understanding Connector Sections Understanding Connection Types Understanding Connector Local

More information

Example Lecture 12: The Stiffness Method Prismatic Beams. Consider again the two span beam previously discussed and determine

Example Lecture 12: The Stiffness Method Prismatic Beams. Consider again the two span beam previously discussed and determine Example 1.1 Consider again the two span beam previously discussed and determine The shearing force M1 at end B of member B. The bending moment M at end B of member B. The shearing force M3 at end B of

More information

Tech Tip. The concise guide to Nastran Rigid Elements

Tech Tip. The concise guide to Nastran Rigid Elements Tech Tip The concise guide to Nastran Rigid Elements The Nastran group of elements often described as the "Rigid Elements" are very useful engineering analysis tools. "Rigid Element" is a slight misnomer,

More information

SAP2000. Linear and Nonlinear Static and Dynamic Analysis and Design of Three-Dimensional Structures BASIC ANALYSIS REFERENCE

SAP2000. Linear and Nonlinear Static and Dynamic Analysis and Design of Three-Dimensional Structures BASIC ANALYSIS REFERENCE SAP2000 Linear and Nonlinear Static and Dynamic Analysis and Design of Three-Dimensional Structures BASIC ANALYSIS REFERENCE COMPUTERS & STRUCTURES INC. Computers and Structures, Inc. Berkeley, California,

More information

Finite Element Analysis Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology Madras. Module - 01 Lecture - 15

Finite Element Analysis Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology Madras. Module - 01 Lecture - 15 Finite Element Analysis Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology Madras Module - 01 Lecture - 15 In the last class we were looking at this 3-D space frames; let me summarize

More information

Application nr. 2 (Global Analysis) Effects of deformed geometry of the structures. Structural stability of frames. Sway frames and non-sway frames.

Application nr. 2 (Global Analysis) Effects of deformed geometry of the structures. Structural stability of frames. Sway frames and non-sway frames. Application nr. 2 (Global Analysis) Effects of deformed geometry of the structures. Structural stability of frames. Sway frames and non-sway frames. Object of study: multistorey structure (SAP 2000 Nonlinear)

More information

Tekla Structures Analysis Guide. Product version 21.0 March Tekla Corporation

Tekla Structures Analysis Guide. Product version 21.0 March Tekla Corporation Tekla Structures Analysis Guide Product version 21.0 March 2015 2015 Tekla Corporation Contents 1 Getting started with analysis... 7 1.1 What is an analysis model... 7 Analysis model objects...9 1.2 About

More information

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering Introduction A SolidWorks simulation tutorial is just intended to illustrate where to

More information

FB-MULTIPIER vs ADINA VALIDATION MODELING

FB-MULTIPIER vs ADINA VALIDATION MODELING FB-MULTIPIER vs ADINA VALIDATION MODELING 1. INTRODUCTION 1.1 Purpose of FB-MultiPier Validation testing Performing validation of structural analysis software delineates the capabilities and limitations

More information

Step by Step. Advanced Tutorial for AxisVM X4. Edited by: Inter-CAD Kft.

Step by Step. Advanced Tutorial for AxisVM X4. Edited by: Inter-CAD Kft. Step by Step Advanced Tutorial for AxisVM X4 Edited by: Inter-CAD Kft. 2018 Inter-CAD Kft. All rights reserved All brand and product names are trademarks or registered trademarks. Intentionally blank page

More information

Finite Element Method. Chapter 7. Practical considerations in FEM modeling

Finite Element Method. Chapter 7. Practical considerations in FEM modeling Finite Element Method Chapter 7 Practical considerations in FEM modeling Finite Element Modeling General Consideration The following are some of the difficult tasks (or decisions) that face the engineer

More information

Highlights from Chapter 12 of ASCE 7-16 Provisions for Linear Dynamic Analysis

Highlights from Chapter 12 of ASCE 7-16 Provisions for Linear Dynamic Analysis Highlights from Chapter 12 of ASCE 7-16 Provisions for Linear Dynamic Analysis Finley Charney, Ph.D., P.E. Professor of Structural Engineering, Virginia Tech Member of the ASCE 7-16 Seismic Subcommittee

More information

Example 1: Give the coordinates of the points on the graph.

Example 1: Give the coordinates of the points on the graph. Ordered Pairs Often, to get an idea of the behavior of an equation, we will make a picture that represents the solutions to the equation. A graph gives us that picture. The rectangular coordinate plane,

More information

Coupled Rotor Housing Dynamics Using Component Mode Synthesis

Coupled Rotor Housing Dynamics Using Component Mode Synthesis Coupled Rotor Housing Dynamics Using Component Mode Synthesis 1 Presented by Stephen James Engineer, Rotating Machinery Dynamics Group Southwest Research Institute San Antonio, Texas Introduction Objective

More information

midas Civil Advanced Webinar Date: February 9th, 2012 Topic: General Use of midas Civil Presenter: Abhishek Das Bridging Your Innovations to Realities

midas Civil Advanced Webinar Date: February 9th, 2012 Topic: General Use of midas Civil Presenter: Abhishek Das Bridging Your Innovations to Realities Advanced Webinar Date: February 9th, 2012 Topic: General Use of midas Civil Presenter: Abhishek Das Contents: Overview Modeling Boundary Conditions Loading Analysis Results Design and Misc. Introduction

More information

Modeling with CMU Mini-FEA Program

Modeling with CMU Mini-FEA Program Modeling with CMU Mini-FEA Program Introduction Finite element analsis (FEA) allows ou analze the stresses and displacements in a bod when forces are applied. FEA determines the stresses and displacements

More information

E and. L q. AE q L AE L. q L

E and. L q. AE q L AE L. q L STRUTURL NLYSIS [SK 43] EXERISES Q. (a) Using basic concepts, members towrds local axes is, E and q L, prove that the equilibrium equation for truss f f E L E L E L q E q L With f and q are both force

More information

Challenge Problem 5 - The Solution Dynamic Characteristics of a Truss Structure

Challenge Problem 5 - The Solution Dynamic Characteristics of a Truss Structure Challenge Problem 5 - The Solution Dynamic Characteristics of a Truss Structure In the final year of his engineering degree course a student was introduced to finite element analysis and conducted an assessment

More information

[3] Rigid Body Analysis

[3] Rigid Body Analysis [3] Rigid Body Analysis Page 1 of 53 [3] Rigid Body Analysis [3.1] Equilibrium of a Rigid Body [3.2] Equations of Equilibrium [3.3] Equilibrium in 3-D [3.4] Simple Trusses [3.5] The Method of Joints [3.6]

More information

Solve the problem described in the figure below for the joint action of Ε y, E x

Solve the problem described in the figure below for the joint action of Ε y, E x EXAMPLE 4 Correcting mistakes in SAP 2000 Solve the problem described in the figure below for the joint action of Ε y, E x Input data - Column EZ (both in 1 st and 2 nd floor) has dimensions 50/30 (X/Y)

More information

SAFI Sample Projects. Design of a Steel Structure. SAFI Quality Software Inc. 3393, chemin Sainte-Foy Ste-Foy, Quebec, G1X 1S7 Canada

SAFI Sample Projects. Design of a Steel Structure. SAFI Quality Software Inc. 3393, chemin Sainte-Foy Ste-Foy, Quebec, G1X 1S7 Canada SAFI Sample Projects Design of a Steel Structure SAFI Quality Software Inc. 3393, chemin Sainte-Foy Ste-Foy, Quebec, G1X 1S7 Canada Contact: Rachik Elmaraghy, P.Eng., M.A.Sc. Tel.: 1-418-654-9454 1-800-810-9454

More information

2: Static analysis of a plate

2: Static analysis of a plate 2: Static analysis of a plate Topics covered Project description Using SolidWorks Simulation interface Linear static analysis with solid elements Finding reaction forces Controlling discretization errors

More information

Module 1: Introduction to Finite Element Analysis. Lecture 4: Steps in Finite Element Analysis

Module 1: Introduction to Finite Element Analysis. Lecture 4: Steps in Finite Element Analysis 25 Module 1: Introduction to Finite Element Analysis Lecture 4: Steps in Finite Element Analysis 1.4.1 Loading Conditions There are multiple loading conditions which may be applied to a system. The load

More information

Robotics (Kinematics) Winter 1393 Bonab University

Robotics (Kinematics) Winter 1393 Bonab University Robotics () Winter 1393 Bonab University : most basic study of how mechanical systems behave Introduction Need to understand the mechanical behavior for: Design Control Both: Manipulators, Mobile Robots

More information

LESM. Linear Elements Structure Model. Version 1.0 August Luiz Fernando Martha

LESM. Linear Elements Structure Model. Version 1.0 August Luiz Fernando Martha LESM Linear Elements Structure Model Version 1.0 August 2017 http://www.tecgraf.puc-rio.br/lesm by Luiz Fernando Martha (lfm@tecgraf.puc-rio.br) Rafael Lopez Rangel (rafaelrangel@tecgraf.puc-rio.br) Pontifical

More information

NonLinear Analysis of a Cantilever Beam

NonLinear Analysis of a Cantilever Beam NonLinear Analysis of a Cantilever Beam Introduction This tutorial was created using ANSYS 7.0 The purpose of this tutorial is to outline the steps required to do a simple nonlinear analysis of the beam

More information

Beams. Lesson Objectives:

Beams. Lesson Objectives: Beams Lesson Objectives: 1) Derive the member local stiffness values for two-dimensional beam members. 2) Assemble the local stiffness matrix into global coordinates. 3) Assemble the structural stiffness

More information

Supplementary Information. Design of Hierarchical Structures for Synchronized Deformations

Supplementary Information. Design of Hierarchical Structures for Synchronized Deformations Supplementary Information Design of Hierarchical Structures for Synchronized Deformations Hamed Seifi 1, Anooshe Rezaee Javan 1, Arash Ghaedizadeh 1, Jianhu Shen 1, Shanqing Xu 1, and Yi Min Xie 1,2,*

More information

1.2 Connection configurations:

1.2 Connection configurations: 1.2 Connection configurations: 1.2.1 Simple connections: Simple connections are assumed to transfer shear only shear at some nominal eccentricity. Therefore such connections can be used only in non-sway

More information

DIFFERENT TECHNIQUES FOR THE MODELING OF POST-TENSIONED CONCRETE BOX-GIRDER BRIDGES

DIFFERENT TECHNIQUES FOR THE MODELING OF POST-TENSIONED CONCRETE BOX-GIRDER BRIDGES DIFFERENT TECHNIQUES FOR THE MODELING OF POST-TENSIONED CONCRETE BOX-GIRDER BRIDGES Deepak Rayamajhi Naveed Anwar Jimmy Chandra Graduate Student Associate Director Graduate Student Structural Engineering

More information

Lesson 6: Assembly Structural Analysis

Lesson 6: Assembly Structural Analysis Lesson 6: Assembly Structural Analysis In this lesson you will learn different approaches to analyze the assembly using assembly analysis connection properties between assembly components. In addition

More information

MULTI-SPRING REPRESENTATION OF FASTENERS FOR MSC/NASTRAN MODELING

MULTI-SPRING REPRESENTATION OF FASTENERS FOR MSC/NASTRAN MODELING MULTI-SPRING REPRESENTATION OF FASTENERS FOR MSC/NASTRAN MODELING Alexander Rutman, Ph. D, Joseph Bales-Kogan, M. Sc. ** Boeing Commercial Airplane Group Strut Structures Technology MS K95-04 380 South

More information

Example 12 - Jumping Bicycle

Example 12 - Jumping Bicycle Example 12 - Jumping Bicycle Summary The purpose of this example is to illustrate how to use the RADIOSS description when resolving a demonstration example. The particularities of the example can be summarized

More information

Rectangular Coordinates in Space

Rectangular Coordinates in Space Rectangular Coordinates in Space Philippe B. Laval KSU Today Philippe B. Laval (KSU) Rectangular Coordinates in Space Today 1 / 11 Introduction We quickly review one and two-dimensional spaces and then

More information

Introduction to ANSYS Mechanical

Introduction to ANSYS Mechanical Lecture 6 Modeling Connections 15.0 Release Introduction to ANSYS Mechanical 1 2012 ANSYS, Inc. February 12, 2014 Chapter Overview In this chapter, we will extend the discussion of contact control begun

More information

LS-DYNA s Linear Solver Development Phase1: Element Validation Part II

LS-DYNA s Linear Solver Development Phase1: Element Validation Part II LS-DYNA s Linear Solver Development Phase1: Element Validation Part II Allen T. Li 1, Zhe Cui 2, Yun Huang 2 1 Ford Motor Company 2 Livermore Software Technology Corporation Abstract This paper continues

More information

Finite Element Buckling Analysis Of Stiffened Plates

Finite Element Buckling Analysis Of Stiffened Plates International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 2 (February 2014), PP.79-83 Finite Element Buckling Analysis Of Stiffened

More information

Tutorial 1: Welded Frame - Problem Description

Tutorial 1: Welded Frame - Problem Description Tutorial 1: Welded Frame - Problem Description Introduction In this first tutorial, we will analyse a simple frame: firstly as a welded frame, and secondly as a pin jointed truss. In each case, we will

More information

Lecture 5 Modeling Connections

Lecture 5 Modeling Connections Lecture 5 Modeling Connections 16.0 Release Introduction to ANSYS Mechanical 1 2015 ANSYS, Inc. February 27, 2015 Chapter Overview In this chapter, we will extend the discussion of contact control begun

More information

Generative Part Structural Analysis Fundamentals

Generative Part Structural Analysis Fundamentals CATIA V5 Training Foils Generative Part Structural Analysis Fundamentals Version 5 Release 19 September 2008 EDU_CAT_EN_GPF_FI_V5R19 About this course Objectives of the course Upon completion of this course

More information

SCIA.ESA PT. Advanced Calculations

SCIA.ESA PT. Advanced Calculations SCIA.ESA PT Advanced Calculations Advanced Calculations WELCOME 1 PARAMETERS CONTROLLING THE CALCULATION 3 Finite Element (FE) mesh... 3 General FE mesh parameters... 3 Solver... 5 Introduction to solver...

More information

Modelling of Wind Turbine Blades with ABAQUS. Senior Scientist March 12, 2015 DTU Risø Campus

Modelling of Wind Turbine Blades with ABAQUS. Senior Scientist March 12, 2015 DTU Risø Campus Modelling of Wind Turbine Blades with ABAQUS Robert D. Bitsche Composites Seminar, Senior Scientist March 12, 2015 DTU Risø Campus Modelling of Wind Turbine Blades: State of the Art Element types: Layered

More information

Module 3: Buckling of 1D Simply Supported Beam

Module 3: Buckling of 1D Simply Supported Beam Module : Buckling of 1D Simply Supported Beam Table of Contents Page Number Problem Description Theory Geometry 4 Preprocessor 7 Element Type 7 Real Constants and Material Properties 8 Meshing 9 Solution

More information

User s Manual ❹ Tools

User s Manual ❹ Tools User s Manual ❹ Tools 2 CONTENTS I. THE NEW UPGRADED INTERFACE of SCADA Pro 5 II. DETAILED DESCRIPTION OF THE NEW INTERFACE 6 1. Tools 6 1.1 Structural Elements 6 1.2 USC-WCS 12 1.3 Model 13 1.4 Members

More information

ixcube 4-10 Brief introduction for membrane and cable systems.

ixcube 4-10 Brief introduction for membrane and cable systems. ixcube 4-10 Brief introduction for membrane and cable systems. ixcube is the evolution of 20 years of R&D in the field of membrane structures so it takes a while to understand the basic features. You must

More information

This document gives a detailed summary of the new features and improvements of FEM- Design version 16.

This document gives a detailed summary of the new features and improvements of FEM- Design version 16. This document gives a detailed summary of the new features and improvements of FEM- Design version 16. We hope you will enjoy using the program and its new tools and possibilities. We wish you success.

More information

Effect of Diagonal Modes on Response Spectrum Analysis

Effect of Diagonal Modes on Response Spectrum Analysis Effect of Diagonal Modes on Response Spectrum Analysis T. Naga Manikanta & O. R. Jaiswal Department of Applied Mechanics Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India Summary:

More information

Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering

Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering Here SolidWorks stress simulation tutorials will be re-visited to show how they

More information

MAE Advanced Computer Aided Design. 01. Introduction Doc 02. Introduction to the FINITE ELEMENT METHOD

MAE Advanced Computer Aided Design. 01. Introduction Doc 02. Introduction to the FINITE ELEMENT METHOD MAE 656 - Advanced Computer Aided Design 01. Introduction Doc 02 Introduction to the FINITE ELEMENT METHOD The FEM is A TOOL A simulation tool The FEM is A TOOL NOT ONLY STRUCTURAL! Narrowing the problem

More information

Finite Element Analysis of Slab and a Comparative Study with Others Analytical Solution

Finite Element Analysis of Slab and a Comparative Study with Others Analytical Solution 7 th ICCT Finite Element Analysis of Slab and a Comparative Study with Others Analytical Solution M. W. Bari, Rajshahi University of Engineering & Technology, BANGLADESH M. M. Rahman, Rajshahi University

More information

SAFE Version Release Date:

SAFE Version Release Date: SAFE Version 12.3.2 Release Date: 2012-01-12 SAFE Version 12.3.2 is an update to Versions 12.0.0 to 12.3.1, and is distributed electronically by download from the internet. PLEASE READ THIS FILE! It contains

More information

ME scope Application Note 04 Using SDM for Sub-Structuring

ME scope Application Note 04 Using SDM for Sub-Structuring App Note 04 www.vibetech.com 2-Aug-18 ME scope Application Note 04 Using SDM for Sub-Structuring NOTE: The steps in this Application Note can be duplicated using any Package that includes the VES-5000

More information

The concise guide to Nastran Rigid Elements

The concise guide to Nastran Rigid Elements The concise guide to Nastran Rigid Elements The Nastran group of elements often described as the "Rigid elements" are very useful engineering analysis tools. "Rigid Element" is a slight misnomer, but the

More information

Set No. 1 IV B.Tech. I Semester Regular Examinations, November 2010 FINITE ELEMENT METHODS (Mechanical Engineering) Time: 3 Hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks

More information

SNAP Centre Workshop. Graphing Lines

SNAP Centre Workshop. Graphing Lines SNAP Centre Workshop Graphing Lines 45 Graphing a Line Using Test Values A simple way to linear equation involves finding test values, plotting the points on a coordinate plane, and connecting the points.

More information

Revised Iain A MacLeod

Revised Iain A MacLeod LUSAS User Guidelines Revised 20.06.14 Iain A MacLeod Contents 1 Geometrical features and meshes... 1 2 Toolbars... 1 3 Inserting points... 1 4 Inserting a line between two points... 1 5 Creating a dataset...

More information

ANALYSIS OF BOX CULVERT - COST OPTIMIZATION FOR DIFFERENT ASPECT RATIOS OF CELL

ANALYSIS OF BOX CULVERT - COST OPTIMIZATION FOR DIFFERENT ASPECT RATIOS OF CELL ANALYSIS OF BOX CULVERT - COST OPTIMIZATION FOR DIFFERENT ASPECT RATIOS OF CELL M.G. Kalyanshetti 1, S.A. Gosavi 2 1 Assistant professor, Civil Engineering Department, Walchand Institute of Technology,

More information

Buckling of Rigid Frames I

Buckling of Rigid Frames I CIVE.5120 Structural Stability (3-0-3) 02/28/17 Buckling of Rigid Frames I Prof. Tzuyang Yu Structural Engineering Research Group (SERG) Department of Civil and Environmental Engineering University of

More information

SALT TELESCOPE INSTRUMENT STRUCTURE ANALYSIS

SALT TELESCOPE INSTRUMENT STRUCTURE ANALYSIS CONTRACT NO.: 5258 TASK NO.: 780 SALT TELESCOPE INSTRUMENT STRUCTURE ANALSIS SAI-RPT-438 10/05/01 REVISION 1.0 Prepared by: Swales Aerospace 5050 Powder Mill Road Beltsville, MD 20705 DOCUMENT CHANGE RECORD

More information

A New XYZ Compliant Parallel Mechanism for Micro-/Nano-Manipulation: Design and Analysis

A New XYZ Compliant Parallel Mechanism for Micro-/Nano-Manipulation: Design and Analysis micromachines Article A New XYZ Compliant Parallel Mechanism for Micro-/Nano-Manipulation: Design and Analysis Haiyang Li, Guangbo Hao * and Richard C. Kavanagh School of Engineering-Electrical and Electronic

More information

Revised Sheet Metal Simulation, J.E. Akin, Rice University

Revised Sheet Metal Simulation, J.E. Akin, Rice University Revised Sheet Metal Simulation, J.E. Akin, Rice University A SolidWorks simulation tutorial is just intended to illustrate where to find various icons that you would need in a real engineering analysis.

More information

Structural modal analysis - 2D frame

Structural modal analysis - 2D frame Structural modal analysis - 2D frame Determine the first six vibration characteristics, namely natural frequencies and mode shapes, of a structure depicted in Fig. 1, when Young s modulus= 27e9Pa, Poisson

More information

NON-PARAMETRIC SHAPE OPTIMIZATION IN INDUSTRIAL CONTEXT

NON-PARAMETRIC SHAPE OPTIMIZATION IN INDUSTRIAL CONTEXT NON-PARAMETRIC SHAPE OPTIMIZATION IN INDUSTRIAL CONTEXT Michael Böhm, Peter Clausen FE-DESIGN GmbH, Paris, April 3rd, 2012 Overview Introduction / FE-Design Optimization in Industry and Requirements Shape

More information

MANUAL COMPUTERS & STRUCTURES INC.

MANUAL COMPUTERS & STRUCTURES INC. SAP2000 Integrated Finite Element Analysis and Design of Structures VERIFICATION MANUAL COMPUTERS & STRUCTURES INC. Computers and Structures, Inc. Berkeley, California, USA Version 6.1 Revised July 1997

More information

Simulation of Overhead Crane Wire Ropes Utilizing LS-DYNA

Simulation of Overhead Crane Wire Ropes Utilizing LS-DYNA Simulation of Overhead Crane Wire Ropes Utilizing LS-DYNA Andrew Smyth, P.E. LPI, Inc., New York, NY, USA Abstract Overhead crane wire ropes utilized within manufacturing plants are subject to extensive

More information

Frame Analysis Using Visual Analysis

Frame Analysis Using Visual Analysis Frame Analysis Using Visual Analysis 1. The software is available at the Open Access Labs (OAL) and the Virtual OAL at http://voal.tamu.edu in Programs under the Windows Start menu. The software can also

More information

WP1 NUMERICAL BENCHMARK INVESTIGATION

WP1 NUMERICAL BENCHMARK INVESTIGATION WP1 NUMERICAL BENCHMARK INVESTIGATION 1 Table of contents 1 Introduction... 3 2 1 st example: beam under pure bending... 3 2.1 Definition of load application and boundary conditions... 4 2.2 Definition

More information

D DAVID PUBLISHING. Stability Analysis of Tubular Steel Shores. 1. Introduction

D DAVID PUBLISHING. Stability Analysis of Tubular Steel Shores. 1. Introduction Journal of Civil Engineering and Architecture 1 (216) 563-567 doi: 1.17265/1934-7359/216.5.5 D DAVID PUBLISHING Fábio André Frutuoso Lopes, Fernando Artur Nogueira Silva, Romilde Almeida de Oliveira and

More information

Structural static analysis - Analyzing 2D frame

Structural static analysis - Analyzing 2D frame Structural static analysis - Analyzing 2D frame In this tutorial we will analyze 2D frame (see Fig.1) consisting of 2D beams with respect to resistance to two different kinds of loads: (a) the downward

More information

Module: 2 Finite Element Formulation Techniques Lecture 3: Finite Element Method: Displacement Approach

Module: 2 Finite Element Formulation Techniques Lecture 3: Finite Element Method: Displacement Approach 11 Module: 2 Finite Element Formulation Techniques Lecture 3: Finite Element Method: Displacement Approach 2.3.1 Choice of Displacement Function Displacement function is the beginning point for the structural

More information

Wind Vibration Analysis Giant Magellan Telescope

Wind Vibration Analysis Giant Magellan Telescope Wind Vibration Analysis Giant Magellan Telescope prepared for Carnegie Observatories 813 Santa Barbara Street Pasadena, CA 91101 prepared by Simpson Gumpertz & Heger Inc. 41 Seyon Street, Building 1, Suite

More information

How to Model Friction in SIMPACK

How to Model Friction in SIMPACK How to Model Friction in SIMPACK 1. General Modelling friction in multi-body systems is somewhat challenging. The friction law itself is a simple function, see figure. However, if the relative velocity

More information

VARIOUS APPROACHES USED IN THE SEISMIC QUALIFICATION OF THE PIPING SYSTEMS IN NUCLEAR FACILITIES. Introduction

VARIOUS APPROACHES USED IN THE SEISMIC QUALIFICATION OF THE PIPING SYSTEMS IN NUCLEAR FACILITIES. Introduction VARIOUS APPROACHES USED IN THE SEISMIC QUALIFICATION OF THE PIPING SYSTEMS IN NUCLEAR FACILITIES A. Musil, P. Markov Stevenson&Associates, Pilsen, Czech Republic Introduction In the firm Stevenson&Associates

More information

Midas Link for Revit Structure

Midas Link for Revit Structure Midas Gen Technical Paper Table of Contents Introduction Getting Started Send Model to midas Gen Update Model from midas Gen Applicable data for midas Link for Revit Structure What is Updated from midas

More information

Advanced model of steel joints loaded by internal forces from 3D frame structures

Advanced model of steel joints loaded by internal forces from 3D frame structures Advanced model of steel joints loaded by internal forces from 3D frame structures Lubomír Šabatka, IDEA RS s.r.o František Wald, FSv ČVUT Praha Jaromír Kabeláč, Hypatia Solutions s.r.o Drahoslav Kolaja,

More information

This is NOT a truss, this is a frame, consisting of beam elements. This changes several things

This is NOT a truss, this is a frame, consisting of beam elements. This changes several things CES 44 - Stress Analysis Spring 999 Ex. #, the following -D frame is to be analyzed using Sstan (read the online stan intro first, and Ch-6 in Hoit) 5 k 9 E= 9000 ksi 8 I= 600 in*in*in*in 5 A= 0 in*in

More information

FOUNDATION IN OVERCONSOLIDATED CLAY

FOUNDATION IN OVERCONSOLIDATED CLAY 1 FOUNDATION IN OVERCONSOLIDATED CLAY In this chapter a first application of PLAXIS 3D is considered, namely the settlement of a foundation in clay. This is the first step in becoming familiar with the

More information

SIMPACKS s FEA Interface New Features in 8.5 and Further Development. Stefan Dietz, INTEC GmbH

SIMPACKS s FEA Interface New Features in 8.5 and Further Development. Stefan Dietz, INTEC GmbH SIMPACKS s FEA Interface New Features in 8.5 and Further Development Stefan Dietz, INTEC GmbH Contents New Features in 8.5 integration into SIMPACK GUI generalised file interface between FE-codes and SIMPACK

More information

Shape optimization of compression structures

Shape optimization of compression structures 26 30 September, 2016, Tokyo, Japan K. Kawaguch M. Ohsak T. Takeuchi (eds.) Shape optimization of compression structures Petra GIDAK*, Mario UROŠ a, Damir LAZAREVIĆ a *Faculty of civil engineering, University

More information

General modeling guidelines

General modeling guidelines General modeling guidelines Some quotes from industry FEA experts: Finite element analysis is a very powerful tool with which to design products of superior quality. Like all tools, it can be used properly,

More information

1. Carlos A. Felippa, Introduction to Finite Element Methods,

1. Carlos A. Felippa, Introduction to Finite Element Methods, Chapter Finite Element Methods In this chapter we will consider how one can model the deformation of solid objects under the influence of external (and possibly internal) forces. As we shall see, the coupled

More information

GBTUL 1.0. Buckling and Vibration Analysis of Thin-Walled Members USER MANUAL. Rui Bebiano Nuno Silvestre Dinar Camotim

GBTUL 1.0. Buckling and Vibration Analysis of Thin-Walled Members USER MANUAL. Rui Bebiano Nuno Silvestre Dinar Camotim GBTUL 1.0 Buckling and Vibration Analysis of Thin-Walled Members USER MANUAL Rui Bebiano Nuno Silvestre Dinar Camotim Department of Civil Engineering and Architecture, DECivil/IST Technical University

More information

C. Topkaya, J. A. Yura, E. B. Williamson, and K. H. Frank Research Report

C. Topkaya, J. A. Yura, E. B. Williamson, and K. H. Frank Research Report Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient s Catalog No. FHWA/TX-03/1898-3 4. Title and Subtitle 5. Report Date UTrAp: Finite-Element-Based Software for

More information

1. Define the material properties. Activate the Data Entry menu if it s not already visible, and click on Materials.

1. Define the material properties. Activate the Data Entry menu if it s not already visible, and click on Materials. CE 533, Fall 2014 Guide for Using RISA3D 1 / 9 Example Structure. The procedure for calculating frequencies and modes shapes of a multidegree of freedom (MDOF) system will be demonstrated using the following

More information

Tutorial on Modeling of Expansion Joints using CAEPIPE

Tutorial on Modeling of Expansion Joints using CAEPIPE Tutorial on Modeling of Expansion Joints using CAEPIPE The following examples illustrate the modeling of various types of expansion joints in CAEPIPE stress models. Example 1: Tied Bellow (without gaps)

More information

Finite Element Analysis Using NEi Nastran

Finite Element Analysis Using NEi Nastran Appendix B Finite Element Analysis Using NEi Nastran B.1 INTRODUCTION NEi Nastran is engineering analysis and simulation software developed by Noran Engineering, Inc. NEi Nastran is a general purpose finite

More information

Advanced 3-D Tutorial

Advanced 3-D Tutorial Advanced 3-D Tutorial Introduction To demonstrate some of the features of VisualAnalysis we have put together this advanced tutorial for you to use. This tutorial assumes that you have a basic knowledge

More information

Numerically Generated Tangent Sti ness Matrices for Geometrically Non-Linear Structures

Numerically Generated Tangent Sti ness Matrices for Geometrically Non-Linear Structures Numerically Generated Tangent Sti ness Matrices for Geometrically Non-Linear Structures Sonia Lebofsky Athesis submitted in partial fulfillment of the requirements for the degree of Master of Science in

More information

Massachusetts Institute of Technology Department of Computer Science and Electrical Engineering 6.801/6.866 Machine Vision QUIZ II

Massachusetts Institute of Technology Department of Computer Science and Electrical Engineering 6.801/6.866 Machine Vision QUIZ II Massachusetts Institute of Technology Department of Computer Science and Electrical Engineering 6.801/6.866 Machine Vision QUIZ II Handed out: 001 Nov. 30th Due on: 001 Dec. 10th Problem 1: (a (b Interior

More information

Forces acting on a lamina

Forces acting on a lamina Forces acting on a lamina This example considers the net effect of a number of forces acting on an extended body and can be used to show the concept moments. It is designed to follow on from Forces acting

More information