We ELI1 02 Evaluating Ocean-bottom Seismic Acquisition in the North Sea - A Phased Survey Design Case Study

Size: px
Start display at page:

Download "We ELI1 02 Evaluating Ocean-bottom Seismic Acquisition in the North Sea - A Phased Survey Design Case Study"

Transcription

1 We ELI1 02 Evaluating Ocean-bottom Seismic Acquisition in the North Sea - A Phased Survey Design Case Study M. Branston* (Schlumberger Geosolutions), R. Campbell (Schlumberger Geosolutions), M. Rowlands (TOTAL E&P UK), B. Duquet (TOTAL E&P UK) & E. Palmer (Schlumberger Geosolutions) SUMMARY Ocean-bottom seismic (OBS) is experiencing a resurgence of popularity in the North Sea. This is due in part to recent advances in acquisition equipment and operational efficiency as well as advances in geometry design and processing algorithms. Using two recent case examples, we review the key stages of the evaluation process and share the derived conclusions. The primary goal of these studies was to investigate and validate the image improvement associated with an OBS survey. The studies helped establish the optimal OBS geometry design by benchmarking it against legacy data as well as a number of alternative towed streamer and ocean-bottom acquisition solutions. The secondary goal of these studies was to increase the understanding of OBS acquisition options that is, ocean-bottom node (OBN) acquisition and ocean-bottom cable (OBC) acquisition. Using a multiphase feasibility study, which integrates geometry design, illumination analysis, and finite-difference modelling, we were able to successfully evaluate the suitability and value of OBS for a number of seismic acquisitions in the North Sea. By investigating the natural sampling, illumination characteristics, and processing considerations of each geometry, we were able to design and optimise an OBS geometry that met the imaging and operational challenges of each area.

2 Introduction Ocean-bottom seismic (OBS) is experiencing a resurgence of popularity in the North Sea. This is due in part to recent advances in acquisition equipment and operational efficiency as well as advances in geometry design and processing algorithms. Using two recent case examples, we review the key stages of the evaluation process and share the derived conclusions. The primary goal of these studies was to investigate and validate the image improvement associated with an OBS survey. The studies helped establish the optimal OBS geometry design by benchmarking it against legacy data as well as a number of alternative towed streamer and ocean-bottom acquisition solutions. The ultimate selection of the acquisition solution was based on the quality of structural imaging over the area of interest. The secondary goal of these studies was to increase the understanding of OBS acquisition options that is, ocean-bottom node (OBN) acquisition and ocean-bottom cable (OBC) acquisition (both parallel and orthogonal acquisition). The merits and limitations of each option were investigated and documented in the optimisation process. Methodology A three-phase evaluation strategy was adopted to design and validate an ocean-bottom survey that would provide optimal illumination and imaging of the targets. A phased approach to the modelling allows for the complementary use of the available software tools. Once we have designed our geometries, we use ray-based illumination analysis to rank those geometries, as the method is quick and efficient. However, ray-based modelling requires a comparatively smooth model and does not ordinarily include all wave types (e.g., multiples and diffractions). To compensate for this, we use finite-difference modelling to model those geometries that perform best in the illumination analysis. A successful application of this approach is demonstrated by Christian et al. (2012). Phase 1: Geometry Design and Evaluation. The design process included assessing the offset and spatial sampling required to obtain optimal resolution to image steep dips as well as guard against aliasing in the various processing domains. Fold of coverage (including trace density and unique offset/azimuth coverage) and duration and relative cost of operation were established for the acquisition strategies such that the proposed solutions could be benchmarked against each other. In addition, frequency content (i.e., bandwidth), migration aperture, signal-to-noise ratio, and multiple suppression were factors considered. Determining the maximum usable offset at the target is an import requirement for the survey design. The maximum offset for each area was estimated in several ways: with a normal moveout (NMO) stretch limit of 1.2, simple ray tracing, and acoustic modelling of a synthetic gather (Figure 1). As advanced imaging processes now call for extra-long offsets, the maximum usable offset is an important consideration in designing an OBS survey. During subsequent processing of a new survey, the data will pass through transforms into several domains. In the design of OBS surveys, it is important to consider the aliasing criteria for such transforms and how it will impact processing. We also consider the aliasing criteria to preserve coherent noise. Following review of the preceding outlined analysis, several geometries were passed through to Phase 2 in which the illumination characteristics of each design would be reviewed. A key consideration during the evaluation of each proposed geometry is, of course, the time required for acquisition. To estimate this accurately, items such as water depth, tidal consideration, migration halo, and surface and seabed obstructions were taken into account. Reviewing the acquisition durations in such

3 practical detail allows a fair comparison of the geometries and their ability to illuminate the target. Figure 1 The maximum offset was estimated using acoustic modelling of a synthetic gather. The input model was based upon the P-wave Velocity (V p ) model supplied for the feasibility study. Phase 2: Ray-Based Modelling. The modelling for the 3D illumination analysis used a 3D Earth model to simulate acquisition of the proposed seismic surveys using advanced 3D ray tracing. The objective was to ascertain how the legacy seismic survey illuminated the target horizon and determine the impact that a variety of ocean-bottom seismic acquisition solutions would have on improving the target illumination. To achieve this, we generated illumination hit and amplitude maps (Figure 2). We also normalised the amplitudes to remove the acquisition effort (fold) from the results, enabling us to determine if a particular geometry had an inherently better ability to illuminate the target. Local imaging analysis was also conducted to ascertain the imaging and resolution characteristics of each survey. This workflow builds upon that proposed by Zuhlsdorff et al. (2010). To broaden the analysis, maps were generated to determine the hits and amplitudes upon the target horizon within certain ranges of incident angle. This was conducted for both the legacy geometry and the preferred OBS solutions, enabling further evaluation of the proposed acquisition and comparison with the legacy geometry. To optimise the extent of the survey, additional ray-based analysis was undertaken to establish the minimum survey area required to adequately illuminate the key areas of interest. This involved establishing which shots and receivers contributed to the target illumination within the usable offset ranges. Any improvement in illumination was benchmarked against the associated acquisition cost (Figure 3).

4 Figure 2 Illumination analysis was undertaken to evaluate each of the proposed acquisition geometries against one another. Plotted here are the results of simulating the migration amplitude across the target horizon. The plot is an XY orientation and the same colour scale is used throughout; blue is low amplitude, red is high amplitude. Figure 3 Illumination analysis across a key, steeply dipping horizon. The plot in the middle shows the illumination across that horizon for the existing survey area. The plot on the left and right show which shots and receivers (respectively) contributed to the illumination of the target. Phase 3: Finite-Difference Modelling. In the final phase of the evaluation, 3D finite-difference modelling was used to generate accurate synthetic shot gathers for OBS geometry and the legacy, narrow-azimuth geometry to quantify the benefits of the new acquisition program via high-fidelity imaging. To establish the potential success of future time-lapse analysis, the production simulations were integrated into the models to facilitate a 4D signal. Combining the image comparison with timelapse binning analysis helped establish the impact on future 4D analysis. 76th EAGE Conference & Exhibition 2014

5 Discussion of Ocean-Bottom Seismic Options OBS acquisition can be in the form of a cable (OBC) system or a node (OBN) system. Both systems have common advantages over conventional towed streamer systems, namely removal of receiver ghost from signature improved demultiple through PZ summation. In addition, the acquisition geometry and source/receiver spacing are somewhat different; consequently, each approach has a set of advantages and disadvantages inherent to their design. Considering these in addition to the illumination characteristics of each solution is an important aspect of this evaluation. OBC surveys are typically acquired with one of two generic geometry types - parallel or orthogonal geometry. OBN surveys use a sparse grid of receivers on the seabed together with a carpet of shots. It is noticeable that the OBN survey has a combination of advantages and disadvantages from both the OBC parallel and orthogonal techniques. Conclusions Using a multiphase feasibility study, which integrates geometry design, illumination analysis, and finite-difference modelling, we were able to successfully evaluate the suitability and value of OBS for a number of seismic acquisitions in the North Sea. By investigating the natural sampling, illumination characteristics, and processing considerations of each geometry, we were able to design and optimise an OBS geometry that met the imaging and operational challenges of each area. Acknowledgments The authors would like to thank TOTAL E&P UK and Schlumberger for permission to publish this work. Special thanks go to Pablo Alejandro, James Gara, and the Schlumberger Geosolutions processing team (which is located within TOTAL E&P UK) for the work they did to process the finite-difference results. References Christian, P., Pringle, T., Zuhlsdorff, L., Drottning, A., Brown, G. and Webb, B. [2012] A survey design case history using complimentary ray tracing and wavefield extrapolation techniques. 74 th EAGE Conference and Exhibition, Extended Abstracts, Z016. Zuhlsdorff, Z., Gjoystdal, H., Branston, M., Drottning, A., Bergfjord, E. and Rasmussen, T. [2010] An improved survey evaluation and design workflow. 72 nd EAGE Conference and Exhibition, Extended Abstracts, P294.

We Survey Design and Modeling Framework for Towed Multimeasurement Seismic Streamer Data

We Survey Design and Modeling Framework for Towed Multimeasurement Seismic Streamer Data We-04-12 Survey Design and Modeling Framework for Towed Multimeasurement Seismic Streamer Data K. Eggenberger* (Schlumberger), P. Christie (Schlumberger), M. Vassallo (Schlumberger) & D.J. van Manen (Schlumberger)

More information

Using Primaries and Multiples to Extend Reservoir Illumination for Time-lapse Monitoring - Application to Jubarte PRM

Using Primaries and Multiples to Extend Reservoir Illumination for Time-lapse Monitoring - Application to Jubarte PRM Using Primaries and Multiples to Extend Reservoir Illumination for Time-lapse Monitoring - Application to Jubarte PRM D. Lecerf* (PGS), A. Valenciano (PGS), N. Chemingui (PGS), S. Lu (PGS) & E. Hodges

More information

Tu STZ1 06 Looking Beyond Surface Multiple Predictions - A Demultiple Workflow for the Culzean High Density OBC Survey

Tu STZ1 06 Looking Beyond Surface Multiple Predictions - A Demultiple Workflow for the Culzean High Density OBC Survey Tu STZ1 06 Looking Beyond Surface Multiple Predictions - A Demultiple Workflow for the Culzean High Density OBC Survey S. Gupta (Schlumberger), A. Merry (Maersk Oil), L.P. Jensen (Maersk Oil), A. Clarke

More information

Y015 Complementary Data-driven Methods for Interbed Demultiple of Land Data

Y015 Complementary Data-driven Methods for Interbed Demultiple of Land Data Y015 Complementary Data-driven Methods for Interbed Demultiple of Land Data S. Sonika* (WesternGeco), A. Zarkhidze (WesternGeco), J. Heim (WesternGeco) & B. Dragoset (WesternGeco) SUMMARY Interbed multiples

More information

G009 Multi-dimensional Coherency Driven Denoising of Irregular Data

G009 Multi-dimensional Coherency Driven Denoising of Irregular Data G009 Multi-dimensional Coherency Driven Denoising of Irregular Data G. Poole* (CGGVeritas Services (UK) Ltd) SUMMARY Many land and ocean bottom datasets suffer from high levels of noise which make the

More information

Downloaded 09/20/16 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/20/16 to Redistribution subject to SEG license or copyright; see Terms of Use at Joint SRME and model-based water-layer demultiple for ocean bottom node Hui Huang*, Ping Wang, Jing Yang, Hui Chen (CGG); Pierre-Olivier Ariston, Imtiaz Ahmed, and Nick Bassett (BP) Summary Ocean bottom

More information

C009 Wide Azimuth 3D 4C OBC A Key Breakthrough to Lead to the Development of Hild Field

C009 Wide Azimuth 3D 4C OBC A Key Breakthrough to Lead to the Development of Hild Field C009 Wide Azimuth 3D 4C OBC A Key Breakthrough to Lead to the Development of Hild Field D. Vaxelaire* (Total SA), K. Kravik (Total E&P Norge), F. Bertini (Total E&P Norge) & J.M. Mougenot (Total SA) SUMMARY

More information

Optimising 4D Seismic with Evolving Technology over 20 Years of Reservoir Monitoring of the Gullfaks Field, North Sea

Optimising 4D Seismic with Evolving Technology over 20 Years of Reservoir Monitoring of the Gullfaks Field, North Sea Optimising 4D Seismic with Evolving Technology over 20 Years of Reservoir Monitoring of the Gullfaks Field, North Sea D.J. Anderson* (PGS), M. Wierzchowska (PGS), J. Oukili (PGS), D. Eckert (Statoil ASA),

More information

Challenges and Opportunities in 3D Imaging of Sea Surface Related Multiples Shaoping Lu*, N.D. Whitmore and A.A. Valenciano, PGS

Challenges and Opportunities in 3D Imaging of Sea Surface Related Multiples Shaoping Lu*, N.D. Whitmore and A.A. Valenciano, PGS Challenges and Opportunities in 3D Imaging of Sea Surface Related Multiples Shaoping Lu*, N.D. Whitmore and A.A. Valenciano, PGS Summary Conventional shot domain migration constructs a subsurface image

More information

Summary. Introduction

Summary. Introduction Multivessel coil shooting acquisition with simultaneous sources Nick Moldoveanu¹, Ying Ji², Craig Beasley¹ ¹WesternGeco, ²Schlumberger Cambridge Research Summary Multivessel coil shooting is a towed-streamer

More information

Improved Imaging through Pre-stack Trace Interpolation for missing offsets of OBC data A case study from North Tapti area of West Coast, India

Improved Imaging through Pre-stack Trace Interpolation for missing offsets of OBC data A case study from North Tapti area of West Coast, India P-256 Improved Imaging through Pre-stack Trace Interpolation for missing offsets of OBC data A case study from North Tapti area of West Coast, India M Lal, CPS Rana, Ramji Pathak, BN Bhatta, DP Sinha,

More information

Full Azimuth Seismic Acquisition with Coil Shooting

Full Azimuth Seismic Acquisition with Coil Shooting P-224 Full Azimuth Seismic Acquisition with Coil Shooting Edward Hager*, WesternGeco Summary The wavefield created by a seismic source propagates in all three dimensions. Marine seismic towed streamer

More information

G017 Beyond WAZ - A Modeling-based Evaluation of Extensions to Current Wide Azimuth Streamer Acquisition Geometries

G017 Beyond WAZ - A Modeling-based Evaluation of Extensions to Current Wide Azimuth Streamer Acquisition Geometries G017 Beyond WAZ - A Modeling-based Evaluation of Extensions to Current Wide Azimuth Streamer Acquisition Geometries M. Cvetkovic* (ION Geophysical), Z. Zhou (ION Geophysical / GXT Imaging Solutions) &

More information

Mitigation of the 3D Cross-line Acquisition Footprint Using Separated Wavefield Imaging of Dual-sensor Streamer Seismic

Mitigation of the 3D Cross-line Acquisition Footprint Using Separated Wavefield Imaging of Dual-sensor Streamer Seismic Mitigation of the 3D Cross-line Acquisition Footprint Using Separated Wavefield Imaging of Dual-sensor Streamer Seismic A.S. Long* (PGS), S. Lu (PGS), D. Whitmore (PGS), H. LeGleut (PGS), R. Jones (Lundin

More information

Progress Report on: Interferometric Interpolation of 3D SSP Data

Progress Report on: Interferometric Interpolation of 3D SSP Data Progress Report on: Interferometric Interpolation of 3D SSP Data Sherif M. Hanafy ABSTRACT We present the theory and numerical results for interferometrically interpolating and extrapolating 3D marine

More information

Acquisition of high shot density blended seismic data: a WAZ sea trial Thomas Mensch*, Damien Grenié, Risto Siliqi and Yunfeng Li.

Acquisition of high shot density blended seismic data: a WAZ sea trial Thomas Mensch*, Damien Grenié, Risto Siliqi and Yunfeng Li. Acquisition of high shot density blended seismic data: a WAZ sea trial Thomas Mensch*, Damien Grenié, Risto Siliqi and Yunfeng Li Summary In this paper, we present the results of a high shot density sea

More information

Application of 3D source deghosting and designature to deep-water ocean bottom node data Xu Li*, Jing Yang, Hui Chen, Melanie Vu, and Ping Wang (CGG)

Application of 3D source deghosting and designature to deep-water ocean bottom node data Xu Li*, Jing Yang, Hui Chen, Melanie Vu, and Ping Wang (CGG) Xu Li*, Jing Yang, Hui Chen, Melanie Vu, and Ping Wang (CGG) Summary Compared to towed-streamer data, deep-water ocean bottom node (OBN) data by nature have a broader bandwidth; however, the presence of

More information

CLASSIFICATION OF MULTIPLES

CLASSIFICATION OF MULTIPLES Introduction Subsurface images provided by the seismic reflection method are the single most important tool used in oil and gas exploration. Almost exclusively, our conceptual model of the seismic reflection

More information

Mitigating Uncertainties in Towed Streamer Acquisition and Imaging by Survey Planning

Mitigating Uncertainties in Towed Streamer Acquisition and Imaging by Survey Planning Mitigating Uncertainties in Towed Streamer Acquisition and Imaging by Survey Planning M.T. Widmaier* (Petroleum Geo-Services) SUMMARY Uncertainties in seismic images or reservoir characterisation can very

More information

Time-lapse acquisition with a dual-sensor streamer over a conventional baseline survey

Time-lapse acquisition with a dual-sensor streamer over a conventional baseline survey Time-lapse acquisition with a dual-sensor streamer over a conventional baseline survey Anthony Day, * Martin Widmaier, Torben Høy and Berit Osnes, PGS, describe an experiment to validate the use of a dual-sensor

More information

Examples of GLOBE Claritas Processing

Examples of GLOBE Claritas Processing V6.0 Examples of GLOBE Claritas Processing Refraction Statics Removal of Noise (Land, 3D) Removal of Swell Noise Interpolation : shots/receivers Interpolation : 5D (STITCH) Demultiple : High Resolution

More information

Ocean Bottom Node Acquisition

Ocean Bottom Node Acquisition Ocean Bottom Node Acquisition 8 March 2012 Bjorn Olofsson (SeaBird Exploration, on behalf of Fugro) Ocean Bottom Node Acquisition What is it? 4 component seismic sensor: 3 geophones (XYZ) - also MEMS or

More information

The ups and downs of ocean-bottom seismic processing: Applications of wavefield separation and up-down deconvolution

The ups and downs of ocean-bottom seismic processing: Applications of wavefield separation and up-down deconvolution SPECIAL M u l t SECTION: i c o m p o Mn ue ln t t i cs oe mi s p m o i nc e n t s e i s m i c The ups and downs of ocean-bottom seismic processing: Applications of wavefield separation and up-down deconvolution

More information

P071 Land Data Regularization and Interpolation Using Azimuth Moveout (AMO)

P071 Land Data Regularization and Interpolation Using Azimuth Moveout (AMO) P071 Land Data Regularization and Interpolation Using Azimuth Moveout (AMO) A.M. Popovici* (3DGeo Development Inc.), S. Crawley (3DGeo), D. Bevc (3DGeo) & D. Negut (Arcis Processing) SUMMARY Azimuth Moveout

More information

Seismic Time Processing. The Basis for Modern Seismic Exploration

Seismic Time Processing. The Basis for Modern Seismic Exploration The Future of E&P Seismic Time Processing The Basis for Modern Seismic Exploration Fusion is a leading provider of Seismic Processing for the oil and gas industry from field tapes through final migration.

More information

Inversion after depth imaging

Inversion after depth imaging Robin P. Fletcher *, Stewart Archer, Dave Nichols, and Weijian Mao, WesternGeco Summary In many areas, depth imaging of seismic data is required to construct an accurate view of the reservoir structure.

More information

Shot-based pre-processing solutions for wide azimuth towed streamer datasets

Shot-based pre-processing solutions for wide azimuth towed streamer datasets first break volume 25, March 2007 focus on azimuth Shot-based pre-processing solutions for wide azimuth towed streamer datasets Philippe Herrmann, 1* Gordon Poole, 2 Antonio Pica, 1 Sylvain Le Roy, 1 and

More information

Enhanced Angular Illumination from Separated Wavefield Imaging (SWIM)

Enhanced Angular Illumination from Separated Wavefield Imaging (SWIM) Enhanced Angular Illumination from Separated Wavefield Imaging (SWIM) S. Lu* (Petroleum Geo-Services), N.D. Whitmore (Petroleum Geo- Services), A.A. Valenciano (Petroleum Geo-Services) & N. Chemingui (Petroleum

More information

Th ELI1 12 Joint Crossline Reconstruction and 3D Deghosting of Shallow Seismic Events from Multimeasurement Streamer Data

Th ELI1 12 Joint Crossline Reconstruction and 3D Deghosting of Shallow Seismic Events from Multimeasurement Streamer Data Th ELI1 12 Joint Crossline Reconstruction and 3D Deghosting of Shallow Seismic Events from Multimeasurement Streamer Data Y.I. Kamil* (Schlumberger), M. Vassallo (Schlumberger), W. Brouwer (Schlumberger),

More information

Subsalt steep dip imaging study with 3D acoustic modeling Lei Zhuo* and Chu-Ong Ting, CGGVeritas

Subsalt steep dip imaging study with 3D acoustic modeling Lei Zhuo* and Chu-Ong Ting, CGGVeritas Lei Zhuo* and Chu-Ong Ting, CGGVeritas Summary We present a 3D acoustic wave equation modeling study with the objective of understanding imaging challenges for steep dips (faults and three-way closure)

More information

Considerations in 3D depth-specific P-S survey design

Considerations in 3D depth-specific P-S survey design Considerations in 3D depth-specific P-S survey design Don C. Lawton and Peter W. Cary 3D P-S survey design ABSTRACT A new sparse-shot design for 3D P-S surveys is introduced. In the sparse shot design

More information

G012 Scattered Ground-roll Attenuation for 2D Land Data Using Seismic Interferometry

G012 Scattered Ground-roll Attenuation for 2D Land Data Using Seismic Interferometry G012 Scattered Ground-roll Attenuation for 2D Land Data Using Seismic Interferometry D.F. Halliday* (Schlumberger Cambridge Research), P.J. Bilsby (WesternGeco), J. Quigley (WesternGeco) & E. Kragh (Schlumberger

More information

We N Depth Domain Inversion Case Study in Complex Subsalt Area

We N Depth Domain Inversion Case Study in Complex Subsalt Area We N104 12 Depth Domain Inversion Case Study in Complex Subsalt Area L.P. Letki* (Schlumberger), J. Tang (Schlumberger) & X. Du (Schlumberger) SUMMARY Geophysical reservoir characterisation in a complex

More information

A Novel 3-D De-multiple Workflow for Shallow Water Environments - a Case Study from the Brage field, North Sea

A Novel 3-D De-multiple Workflow for Shallow Water Environments - a Case Study from the Brage field, North Sea A Novel 3-D De-multiple Workflow for Shallow Water Environments - a Case Study from the Brage field, North Sea J. Oukili* (PGS), T. Jokisch (PGS), A. Pankov (PGS), B. Farmani (PGS), G. Ronhølt (PGS), Ø.

More information

Shallow Reverberation Prediction Methodology with SRME

Shallow Reverberation Prediction Methodology with SRME Shallow Reverberation Prediction Methodology with SRME S.R. Barnes* (Petroleum Geo-Services), R.F. Hegge (Petroleum Geo- Services), R. van Borselen (Petroleum Geo-Services) & J. Owen (Petroleum Geo-Services)

More information

CFP migration; practical aspects

CFP migration; practical aspects 13 CFP migration; practical aspects Jan Thorbecke 1 13.1 Introduction In the past year the Common Focus Point (CFP) technology has become an important paradigm in the DELPHI research program. The interpretation

More information

3D angle gathers from wave-equation extended images Tongning Yang and Paul Sava, Center for Wave Phenomena, Colorado School of Mines

3D angle gathers from wave-equation extended images Tongning Yang and Paul Sava, Center for Wave Phenomena, Colorado School of Mines from wave-equation extended images Tongning Yang and Paul Sava, Center for Wave Phenomena, Colorado School of Mines SUMMARY We present a method to construct 3D angle gathers from extended images obtained

More information

NORSAR-3D. Predict and Understand Seismic. Exploring the Earth. Find the answers with NORSAR-3D seismic ray-modelling

NORSAR-3D. Predict and Understand Seismic. Exploring the Earth. Find the answers with NORSAR-3D seismic ray-modelling Exploring the Earth NORSAR-3D Predict and Understand Seismic Is undershooting possible? Which is the best survey geometry? MAZ, WAZ, RAZ, Coil, OBS? Why are there shadow zones? Can they be illuminated?

More information

Reflection seismic Method - 3D

Reflection seismic Method - 3D Reflection seismic Method - 3D 3-D acquisition 3-D binning Land Marine 3-D data processing and display Reading: Sheriff and Geldart, Chapter 12 Land 3-D acquisition Key considerations: Cost minimize the

More information

Attenuation of water-layer-related multiples Clement Kostov*, Richard Bisley, Ian Moore, Gary Wool, Mohamed Hegazy, Glenn Miers, Schlumberger

Attenuation of water-layer-related multiples Clement Kostov*, Richard Bisley, Ian Moore, Gary Wool, Mohamed Hegazy, Glenn Miers, Schlumberger Clement Kostov*, Richard Bisley, Ian Moore, Gary Wool, Mohamed Hegazy, Glenn Miers, Schlumberger Summary We present a method for modeling and separation of waterlayer-related multiples in towed streamer

More information

Edinburgh Research Explorer

Edinburgh Research Explorer Edinburgh Research Explorer Marchenko Imaging of Volve Field, North Sea Citation for published version: Ravasi, M, Vasconcelos, I, Kritski, A, Curtis, A, Da Costa Filho, CA & Meles, G 5, 'Marchenko Imaging

More information

G021 Subsalt Velocity Analysis Using One-Way Wave Equation Based Poststack Modeling

G021 Subsalt Velocity Analysis Using One-Way Wave Equation Based Poststack Modeling G021 Subsalt Velocity Analysis Using One-Way Wave Equation Based Poststack Modeling B. Wang* (CGG Americas Inc.), F. Qin (CGG Americas Inc.), F. Audebert (CGG Americas Inc.) & V. Dirks (CGG Americas Inc.)

More information

A new approach to compensate for illumination differences in 4D surveys with different individual acquisition geometries

A new approach to compensate for illumination differences in 4D surveys with different individual acquisition geometries A new approach to compensate for illumination differences in 4D surveys with different individual acquisition geometries Didier Lecerf 1* and Martin Besselievre 2 demonstrate how the concept of Point Spread

More information

C014 Shot Based Pre-Processing Solutions for a WATS Survey An Example from a Field Trial in Green Canyon Gulf of Mexico

C014 Shot Based Pre-Processing Solutions for a WATS Survey An Example from a Field Trial in Green Canyon Gulf of Mexico C014 Shot Based Pre-Processing Solutions for a WATS Survey An Example from a Field Trial in Green Canyon Gulf of Mexico M. Magesan (CGGVeritas), J.-C. Ferran* (CGGVeritas), S. Kaculini (CGGVeritas), C.J.

More information

P068 Case Study 4D Processing OBC versus Streamer Example of OFON filed, Block OML102, Nigeria

P068 Case Study 4D Processing OBC versus Streamer Example of OFON filed, Block OML102, Nigeria P068 Case Study 4D Processing OBC versus Streamer Example of OFON filed, Block OML102, Nigeria T. Castex* (Total SA), P. Charrier (CGG), M.N. Dufrene (Total SA) & C. Orji (EPNL) SUMMARY This case study

More information

Least-squares Wave-Equation Migration for Broadband Imaging

Least-squares Wave-Equation Migration for Broadband Imaging Least-squares Wave-Equation Migration for Broadband Imaging S. Lu (Petroleum Geo-Services), X. Li (Petroleum Geo-Services), A. Valenciano (Petroleum Geo-Services), N. Chemingui* (Petroleum Geo-Services),

More information

Effectively Handling Different Types of Data in Facility Areas for Improved 4D Imaging

Effectively Handling Different Types of Data in Facility Areas for Improved 4D Imaging Effectively Handling Different Types of Data in Facility Areas for Improved 4D Imaging D. Chu* (ExxonMobil Exploration Company), G. Mohler (ExxonMobil Exploration Company), G. Chen (ExxonMobil Exploration

More information

We D03 Limitations of 2D Deghosting and Redatuming in Time-lapse Processing of Towed-streamer Data

We D03 Limitations of 2D Deghosting and Redatuming in Time-lapse Processing of Towed-streamer Data We D03 Limitations of 2D Deghosting and Redatuming in Time-lapse Processing of Towed-streamer Data K. Eggenberger* (Schlumberger), P. Caprioli (Schlumberger) & R. Bloor (Schlumberger) SUMMARY Implications

More information

Dip or Strike? Complementing geophysical sampling requirements and acquisition efficiency

Dip or Strike? Complementing geophysical sampling requirements and acquisition efficiency Dip or Strike? Complementing geophysical sampling requirements and acquisition efficiency Sandeep K Chandola 1*, Low Cheng Foo 1, M Nabil El Kady 1, Thomas Olanrenwaju Ajewole 1, Satyabrata Nayak 1, M

More information

An implementable alternate survey geometry design for ideal Land 3D Seismic Acquisition

An implementable alternate survey geometry design for ideal Land 3D Seismic Acquisition P-093 Summary An implementable alternate survey geometry design for ideal Land Hanuman Sastry Maduri*, Agarwal D.N., ONGC Different 3D Acquisition Geometries are used on land for acquiring 3D Seismic Data

More information

Tu A11 01 Seismic Re-processing and Q-FWI Model Building to Optimise AVO and Resolution in the Shallow Wisting Discovery

Tu A11 01 Seismic Re-processing and Q-FWI Model Building to Optimise AVO and Resolution in the Shallow Wisting Discovery Tu A11 01 Seismic Re-processing and Q-FWI Model Building to Optimise AVO and Resolution in the Shallow Wisting Discovery G. Apeland* (WesternGeco), P. Smith (WesternGeco), O. Lewis (WesternGeco), S. Way

More information

Refraction Full-waveform Inversion in a Shallow Water Environment

Refraction Full-waveform Inversion in a Shallow Water Environment Refraction Full-waveform Inversion in a Shallow Water Environment Z. Zou* (PGS), J. Ramos-Martínez (PGS), S. Kelly (PGS), G. Ronholt (PGS), L.T. Langlo (PGS), A. Valenciano Mavilio (PGS), N. Chemingui

More information

Successes and challenges in 3D interpolation and deghosting of single-component marinestreamer

Successes and challenges in 3D interpolation and deghosting of single-component marinestreamer Successes and challenges in 3D interpolation and deghosting of single-component marinestreamer data James Rickett*, Schlumberger Gould Research Summary Combining deghosting with crossline interpolation

More information

A Short Narrative on the Scope of Work Involved in Data Conditioning and Seismic Reservoir Characterization

A Short Narrative on the Scope of Work Involved in Data Conditioning and Seismic Reservoir Characterization A Short Narrative on the Scope of Work Involved in Data Conditioning and Seismic Reservoir Characterization March 18, 1999 M. Turhan (Tury) Taner, Ph.D. Chief Geophysicist Rock Solid Images 2600 South

More information

2011 SEG SEG San Antonio 2011 Annual Meeting 3938

2011 SEG SEG San Antonio 2011 Annual Meeting 3938 Depth imaging Coil data: Multi azimuthal tomography earth model building and depth imaging the full azimuth Tulip coil project Michele Buia 1, Peter Brown 2, Bakhrudin Mansyur 2, Michelle Tham 3, Suyang

More information

P292 Acquisition Footprint Removal from Time Lapse Datasets

P292 Acquisition Footprint Removal from Time Lapse Datasets P292 Acquisition Footprint Removal from Time Lapse Datasets E. Zabihi Naeini* (CGGVeritas) SUMMARY Water layer variations and acquisition differences are two important factors that introduce time shift

More information

Th Towards Improved Time-lapse Seismic Repetition Accuracy by Use of Multimeasurement Streamer Reconstruction

Th Towards Improved Time-lapse Seismic Repetition Accuracy by Use of Multimeasurement Streamer Reconstruction Th-11-02 Towards Improved Time-lapse Seismic Repetition Accuracy by Use of Multimeasurement Streamer Reconstruction P.J. Smith* (WesternGeco), J. Thekkekara (WesternGeco), G. Byerley (Apache North Sea

More information

Downloaded 10/29/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 10/29/15 to Redistribution subject to SEG license or copyright; see Terms of Use at Pitfalls in seismic processing: part 1 groundroll sourced acquisition footprint Sumit Verma*, Marcus P. Cahoj, Tengfei Lin, Fangyu Li, Bryce Hutchinson and Kurt J. Marfurt, the University of Oklahoma Summary

More information

cv R z design. In this paper, we discuss three of these new methods developed in the last five years.

cv R z design. In this paper, we discuss three of these new methods developed in the last five years. Nick Moldoveanu, Robin Fletcher, Anthony Lichnewsky, Darrell Coles, WesternGeco Hugues Djikpesse, Schlumberger Doll Research Summary In recent years new methods and tools were developed in seismic survey

More information

Multisensor streamer recording and its implications for time-lapse seismic and repeatability

Multisensor streamer recording and its implications for time-lapse seismic and repeatability SPECIAL 4D SECTION: 4 D Multisensor streamer recording and its implications for time-lapse seismic and repeatability Kurt Eggenberger, Philip Christie, Dirk-Jan van Manen, and Massimiliano Vassallo, Schlumberger

More information

Tu N Maximising the Value of Seismic Data for Continued Mature Field Development in the East Shetland Basin

Tu N Maximising the Value of Seismic Data for Continued Mature Field Development in the East Shetland Basin Tu N103 16 Maximising the Value of Seismic Data for Continued Mature Field Development in the East Shetland Basin P. Mitchell (TAQA Bratani Limited), J. Raffle* (ION GXT), P. Brown (ION GXT), I. Humberstone

More information

Adaptive Waveform Inversion: Theory Mike Warner*, Imperial College London, and Lluís Guasch, Sub Salt Solutions Limited

Adaptive Waveform Inversion: Theory Mike Warner*, Imperial College London, and Lluís Guasch, Sub Salt Solutions Limited Adaptive Waveform Inversion: Theory Mike Warner*, Imperial College London, and Lluís Guasch, Sub Salt Solutions Limited Summary We present a new method for performing full-waveform inversion that appears

More information

Downloaded 09/09/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/09/15 to Redistribution subject to SEG license or copyright; see Terms of Use at Recovering the Reflectivity Matrix and Angle-dependent Plane-wave Reflection Coefficients from Imaging of Multiples Alba Ordoñez PGS/UiO*, Walter Söllner PGS, Tilman Klüver PGS and Leiv J. Gelius UiO Summary

More information

G042 Subsalt Imaging Challenges - A Deepwater Imaging Analysis

G042 Subsalt Imaging Challenges - A Deepwater Imaging Analysis G042 Subsalt Imaging Challenges - A Deepwater Imaging Analysis M. Cogan* (WesternGeco), J. Gardner (WesternGeco) & N. Moldoveanu (WesternGeco) SUMMARY Upon completion of the final reverse-time migration

More information

Tu LHR5 02 Sparse Nodes and Shallow Water - PS Imaging Challenges on the Alwyn North Field

Tu LHR5 02 Sparse Nodes and Shallow Water - PS Imaging Challenges on the Alwyn North Field Tu LHR5 02 Sparse Nodes and Shallow Water - PS Imaging Challenges on the Alwyn North Field J. Holden (CGG), D. Fritz (CGG), O. Bukola (CGG), J. McLeman (CGG), R. Refaat (CGG), C. Page* (CGG), J. Brunelliere

More information

TU STZ1 04 DEMULTIPLE DEMULTIPLE OF HIGH RESOLUTION P-CABLE DATA IN THE NORWEGIAN BARENTS SEA - AN ITERATIVE APPROACH

TU STZ1 04 DEMULTIPLE DEMULTIPLE OF HIGH RESOLUTION P-CABLE DATA IN THE NORWEGIAN BARENTS SEA - AN ITERATIVE APPROACH Technical paper TU STZ1 04 DEMULTIPLE DEMULTIPLE OF HIGH RESOLUTION P-CABLE DATA IN THE NORWEGIAN BARENTS SEA - AN ITERATIVE APPROACH Authors A.J. Hardwick* (TGS), S. Jansen (TGS) & B. Kjølhamar (TGS)

More information

y Input k y2 k y1 Introduction

y Input k y2 k y1 Introduction A regularization workflow for the processing of cross-spread COV data Gordon Poole 1, Philippe Herrmann 1, Erika Angerer 2, and Stephane Perrier 1 1 : CGG-Veritas, 2 : OMV Data regularization is critical

More information

G034 Improvements in 4D Seismic Processing - Foinaven 4 Years On

G034 Improvements in 4D Seismic Processing - Foinaven 4 Years On G034 Improvements in 4D Seismic Processing - Foinaven 4 Years On C. Lacombe* (CGGVeritas UK), S. Campbell (BP Aberdeen) & S. White (CGGVeritas UK) SUMMARY Using a case history from West of Shetlands, the

More information

Reverse time migration of multiples: Applications and challenges

Reverse time migration of multiples: Applications and challenges Reverse time migration of multiples: Applications and challenges Zhiping Yang 1, Jeshurun Hembd 1, Hui Chen 1, and Jing Yang 1 Abstract Marine seismic acquisitions record both primary and multiple wavefields.

More information

Downloaded 10/23/13 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 10/23/13 to Redistribution subject to SEG license or copyright; see Terms of Use at ACQUISITION APERTURE CORRECTION IN ANGLE-DOMAIN TOWARDS THE TRUE- REFLECTION RTM Rui Yan 1*, Huimin Guan 2, Xiao-Bi Xie 1, Ru-Shan Wu 1, 1 IGPP, Earth and Planetary Sciences Department, University of California,

More information

Reflection seismic Method - 2D

Reflection seismic Method - 2D Reflection seismic Method - 2D Acoustic Impedance Seismic events Wavelets Convolutional model Resolution Stacking and Signal/Noise Data orders Reading: Sheriff and Geldart, Chapters 6, 8 Acoustic Impedance

More information

A comparison between time domain and depth domain inversion to acoustic impedance Laurence Letki*, Kevin Darke, and Yan Araujo Borges, Schlumberger

A comparison between time domain and depth domain inversion to acoustic impedance Laurence Letki*, Kevin Darke, and Yan Araujo Borges, Schlumberger Laurence Letki*, Kevin Darke, and Yan Araujo Borges, Schlumberger Summary Geophysical reservoir characterization in a complex geologic environment remains a challenge. Conventional amplitude inversion

More information

Planning Land 3-D Seismic Surveys

Planning Land 3-D Seismic Surveys Planning Land 3-D Seismic Surveys Andreas Cordsen, Mike Galbraith, and John Peirce Edited by Bob A. Hardage Series Editor: Stephen J. Hill Geophysical Developments Series No. 9 Society of Exploration Geophysicists

More information

Seismic Attributes on Frequency-enhanced Seismic Data

Seismic Attributes on Frequency-enhanced Seismic Data Seismic Attributes on Frequency-enhanced Seismic Data Satinder Chopra* Arcis Corporation, Calgary, Canada schopra@arcis.com Kurt J. Marfurt The University of Oklahoma, Norman, US and Somanath Misra Arcis

More information

Recovering the Reflectivity Matrix and Angledependent Plane-wave Reflection Coefficients from Imaging of Multiples

Recovering the Reflectivity Matrix and Angledependent Plane-wave Reflection Coefficients from Imaging of Multiples Recovering the Reflectivity Matrix and Angledependent Plane-wave Reflection Coefficients from Imaging of Multiples A. Ordoñez* (PGS), W.F. Sollner (PGS), T. Klüver (PGS) & L.G. Gelius (UiO) SUMMARY A joint

More information

Seismic Reflection Method

Seismic Reflection Method Seismic Reflection Method 1/GPH221L9 I. Introduction and General considerations Seismic reflection is the most widely used geophysical technique. It can be used to derive important details about the geometry

More information

Challenges of pre-salt imaging in Brazil s Santos Basin: A case study on a variable-depth streamer data set Summary

Challenges of pre-salt imaging in Brazil s Santos Basin: A case study on a variable-depth streamer data set Summary Challenges of pre-salt imaging in Brazil s Santos Basin: A case study on a variable-depth streamer data set Jeremy Langlois, Bing Bai, and Yan Huang (CGGVeritas) Summary Recent offshore discoveries in

More information

Enhanced adaptive subtraction method for simultaneous source separation Zhaojun Liu*, Bin Wang, Jim Specht, Jeffery Sposato and Yongbo Zhai, TGS

Enhanced adaptive subtraction method for simultaneous source separation Zhaojun Liu*, Bin Wang, Jim Specht, Jeffery Sposato and Yongbo Zhai, TGS Enhanced adaptive subtraction method for simultaneous source separation Zhaojun Liu*, Bin Wang, Jim Specht, Jeffery Sposato and Yongbo Zhai, TGS Summary We have developed an iterative adaptive subtraction

More information

Summary. Introduction

Summary. Introduction Chris Davison*, Andrew Ratcliffe, Sergio Grion (CGGeritas), Rodney Johnston, Carlos Duque, Jeremy Neep, Musa Maharramov (BP). Summary Azimuthal velocity models for HTI (Horizontal Transverse Isotropy)

More information

Th P7 04 Analysis of Multi Measurement Broadband Data - A Case Study from the North Sea

Th P7 04 Analysis of Multi Measurement Broadband Data - A Case Study from the North Sea Th P7 04 Analysis of Multi Measurement Broadband Data - A Case Study from the North Sea A. Raj* (Schlumberger), O.P. Munkvold (Statoil), L.P. Letki (Schlumberger), P. Smith (Schlumberger), A. Zarkhidze

More information

P. Bilsby (WesternGeco), D.F. Halliday* (Schlumberger Cambridge Research) & L.R. West (WesternGeco)

P. Bilsby (WesternGeco), D.F. Halliday* (Schlumberger Cambridge Research) & L.R. West (WesternGeco) I040 Case Study - Residual Scattered Noise Attenuation for 3D Land Seismic Data P. Bilsby (WesternGeco), D.F. Halliday* (Schlumberger Cambridge Research) & L.R. West (WesternGeco) SUMMARY We show that

More information

Th LHR5 08 Multi-modal Surface Wave Inversion and Application to North Sea OBN Data

Th LHR5 08 Multi-modal Surface Wave Inversion and Application to North Sea OBN Data Th LHR5 08 Multi-modal Surface Wave Inversion and pplication to North Sea ON Data S. Hou (CGG), D. Zheng (CGG), X.G. Miao* (CGG) & R.R. Haacke (CGG) SUMMRY Surface-wave inversion (SWI) for S-wave velocity

More information

We LHR5 06 Multi-dimensional Seismic Data Decomposition for Improved Diffraction Imaging and High Resolution Interpretation

We LHR5 06 Multi-dimensional Seismic Data Decomposition for Improved Diffraction Imaging and High Resolution Interpretation We LHR5 06 Multi-dimensional Seismic Data Decomposition for Improved Diffraction Imaging and High Resolution Interpretation G. Yelin (Paradigm), B. de Ribet* (Paradigm), Y. Serfaty (Paradigm) & D. Chase

More information

Anatomy of common scatterpoint (CSP) gathers formed during equivalent offset prestack migration (EOM)

Anatomy of common scatterpoint (CSP) gathers formed during equivalent offset prestack migration (EOM) Anatomy of CSP gathers Anatomy of common scatterpoint (CSP) gathers formed during equivalent offset prestack migration (EOM) John C. Bancroft and Hugh D. Geiger SUMMARY The equivalent offset method of

More information

Practical implementation of SRME for land multiple attenuation

Practical implementation of SRME for land multiple attenuation Practical implementation of SRME for land multiple attenuation Juefu Wang* and Shaowu Wang, CGGVeritas, Calgary, Canada juefu.wang@cggveritas.com Summary We present a practical implementation of Surface

More information

Azimuth Moveout (AMO) for data regularization and interpolation. Application to shallow resource plays in Western Canada

Azimuth Moveout (AMO) for data regularization and interpolation. Application to shallow resource plays in Western Canada Azimuth Moveout (AMO) for data regularization and interpolation. Application to shallow resource plays in Western Canada Dan Negut, Samo Cilensek, Arcis Processing, Alexander M. Popovici, Sean Crawley,

More information

Crosswell Imaging by 2-D Prestack Wavepath Migration

Crosswell Imaging by 2-D Prestack Wavepath Migration Crosswell Imaging by 2-D Prestack Wavepath Migration Hongchuan Sun ABSTRACT Prestack wavepath migration (WM) is applied to 2-D synthetic crosswell data, and the migrated images are compared to those from

More information

Target-oriented wavefield tomography: A field data example

Target-oriented wavefield tomography: A field data example Target-oriented wavefield tomography: A field data example Yaxun Tang and Biondo Biondi ABSTRACT We present a strategy for efficient migration velocity analysis in complex geological settings. The proposed

More information

Common-angle processing using reflection angle computed by kinematic pre-stack time demigration

Common-angle processing using reflection angle computed by kinematic pre-stack time demigration Common-angle processing using reflection angle computed by kinematic pre-stack time demigration Didier Lecerf*, Philippe Herrmann, Gilles Lambaré, Jean-Paul Tourré and Sylvian Legleut, CGGVeritas Summary

More information

A case study for salt model building using CFP full azimuth data W. Gao*, Z. Guo, M. Guo, Q. Zhang, S. Hightower, G. Cloudy Jr. and Z.

A case study for salt model building using CFP full azimuth data W. Gao*, Z. Guo, M. Guo, Q. Zhang, S. Hightower, G. Cloudy Jr. and Z. case study for salt model building using CFP full azimuth data W. Gao*, Z. Guo, M. Guo, Q. Zhang, S. Hightower, G. Cloudy Jr. and Z. Li, TGS Summary We present a case study of the salt model building for

More information

Tu-P05-05 Multi-azimuth Anisotropic Tomography and PreSDM of a North Sea Streamer Survey

Tu-P05-05 Multi-azimuth Anisotropic Tomography and PreSDM of a North Sea Streamer Survey Tu-P05-05 Multi-azimuth Anisotropic Tomography and PreSDM of a North Sea Streamer Survey D. Sekulic* (ION Geophysical), O. Matveenko (Total E&P Norge), J.K. Fruehn (ION GXT) & G. Mikkelsen (Total E&P Norge)

More information

Wave-equation migration from topography: Imaging Husky

Wave-equation migration from topography: Imaging Husky Stanford Exploration Project, Report 123, October 31, 2005, pages 49 56 Short Note Wave-equation migration from topography: Imaging Husky Jeff Shragge 1 INTRODUCTION Imaging land seismic data is wrought

More information

Multifocusing. The Breakthrough in Seismic Imaging

Multifocusing. The Breakthrough in Seismic Imaging Multifocusing The Breakthrough in Seismic Imaging Conventional Processing GeoMage MF Processing Conventional Processing GeoMage MF Processing Time versus Depth Recorded seismic data Wavefield parameter

More information

Adaptive de-ghosting by kurtosis maximisation. Sergio Grion, Rob Telling, Janet Barnes, Dolphin Geophysical. Summary

Adaptive de-ghosting by kurtosis maximisation. Sergio Grion, Rob Telling, Janet Barnes, Dolphin Geophysical. Summary Adaptive de-ghosting by kurtosis maximisation Sergio Grion, Rob Telling, Janet Barnes, Dolphin Geophysical Summary We discuss the reasons for adaptive de-ghosting and its advantages. The success of broadband

More information

Five Dimensional Interpolation:exploring different Fourier operators

Five Dimensional Interpolation:exploring different Fourier operators Five Dimensional Interpolation:exploring different Fourier operators Daniel Trad CREWES-University of Calgary Summary Five-Dimensional interpolation has become a very popular method to pre-condition data

More information

EarthStudy 360. Full-Azimuth Angle Domain Imaging and Analysis

EarthStudy 360. Full-Azimuth Angle Domain Imaging and Analysis EarthStudy 360 Full-Azimuth Angle Domain Imaging and Analysis 1 EarthStudy 360 A New World of Information for Geoscientists Expanding the Frontiers of Subsurface Exploration Paradigm EarthStudy 360 is

More information

Principles and Techniques of VSP Data Processing

Principles and Techniques of VSP Data Processing Principles and Techniques of VSP Data Processing A.A. TABAKOV, V.N. FERENTSI Geovers Ltd., Narodnogo Opolcheniya St., 38/3, Moscow, Russia. H.GARVINI Geofields Ltd., Av.13 # 8060 OFICINA 301, Bogota, Colombia

More information

Coherent partial stacking by offset continuation of 2-D prestack data

Coherent partial stacking by offset continuation of 2-D prestack data Stanford Exploration Project, Report 82, May 11, 2001, pages 1 124 Coherent partial stacking by offset continuation of 2-D prestack data Nizar Chemingui and Biondo Biondi 1 ABSTRACT Previously, we introduced

More information

Multicomponent wide-azimuth seismic data for defining fractured reservoirs

Multicomponent wide-azimuth seismic data for defining fractured reservoirs Multicomponent wide-azimuth seismic data for defining fractured reservoirs Evaluating and exploiting azimuthal anisotropy Data Processing Figure 1 A typical surface outcrop showing aligned fractures Figure

More information

Th SRS3 07 A Global-scale AVO-based Pre-stack QC Workflow - An Ultra-dense Dataset in Tunisia

Th SRS3 07 A Global-scale AVO-based Pre-stack QC Workflow - An Ultra-dense Dataset in Tunisia Th SRS3 07 A Global-scale AVO-based Pre-stack QC Workflow - An Ultra-dense Dataset in Tunisia A. Rivet* (CGG), V. Souvannavong (CGG), C. Lacombe (CGG), T. Coleou (CGG) & D. Marin (CGG) SUMMARY Throughout

More information