Fourteen years of Cactus Community

Size: px
Start display at page:

Download "Fourteen years of Cactus Community"

Transcription

1 Fourteen years of Cactus Community Frank Löffler Center for Computation and Technology Louisiana State University, Baton Rouge, LA September 6th 2012

2 Outline Motivation scenario from Astrophysics Cactus structure technically Cactus structure socially Future directions Frank Lo ffler Fourteen years of Cactus Community

3 Challenging Astrophysics Problems Black Holes and Neutron Stars Supernovae Cosmology Gravitational Wave Data Analysis Frank Lo ffler Fourteen years of Cactus Community

4 Gravitational Wave Physics

5 Solving Einstein s Equations Einstein equations: G µν = 8πT µν 12 fully 2nd order PDE evolution equations 4 coupled constraint equations 4 gauge conditions GR hydrodynamics, MHD, radiation transport Fully numerical 3D models needed

6

7

8

9 Computational Requirements Unigrid scales to hundreds of thousands of cores Productions runs use 10 levels of mesh refinement, nested grids of size 60x60x60 Current mesh refinement runs scale up to 10k cores Runtime from weeks to few months

10 Challenge Many scientific/engineering components Physics Mathematics CFD Many numerical algorithm components Finite difference, finite volume, spectral methods Structured or unstructured meshes, mesh refinements Multipatch and multimodel Many different computational components Parallelism (MPI, OpenMP,...) Parallel I/O (e.g. Checkpointing) Visualization Challenge Defining good abstractions to bring these together in a unified, scalable framework, enabling science

11

12 Cactus Framework Structure

13 Cactus Core: The Flesh ANSI-C and Perl, C++ Independent of all other components Unified error handling Build system Parameter parsing/steering Global variable management Rule-based scheduler Extensible APIs Parallel Operations Input/Output Reduction Interpolation Timers Functionality provided by (swappable) components

14 Cactus Components: Thorns C, C++, Fortran 77, Fortran 90 Typically not implementing grid setup and memory allocation input/output interpolation, reductions Encapsulating some functionality initial data boundary conditions evolution systems equations of state remote steering (e.g. https server)

15 Basis Module Overview Basis for scalable algorithm development Most used: finite differences on structured meshes Parallel driver components Simple Unigrid Carpet: Multipatch, Mesh-refinement Method of lines Interfaces to external Libraries/Tools Interface to elliptic solvers (e.g. PETSc, Lorene) Input/Output: HDF5 Visualization: VisIt, OpenDX, Vish Other: PAPI, Hypre, Saga, Flickr, Twitter

16 Convenience Tools GetComponents Simfactory Formaline

17 Cactus as growing project Cactus

18 Cactus as growing project Cactus

19 Cactus as growing project Cactus

20 Cactus as growing project Cactus

21 Cactus as growing project Cactus

22 Social structure Few Core Members: Gabrielle Allen, Steven R. Brandt, Frank Löffler, Erik Schnetter,... Developers: about 50 worldwide Many more users Cactus Community Open Source Yearly releases Mailing lists Issue tracker IRC support channel Tutorials Web, HPC allocations, Repositories,...

23 Guiding Principles Open, community-driven software development Separation of physics software and computational infrastructure Stable interfaces, allowing extensions Simplify usage where possible: Doing science >> Running a simulation Students need to know a lot about physics (meaningful initial conditions, numerical stability, accuracy/resolution, have patience, have curiosity, develop a gut feeling for what is right...) Cactus Toolkit cannot give that, however: Open codes that are easy to use allow to concentrate on these things!

24 Credits, Citations In academics: citations, citations, citations! In Cactus: Open and free source No requirement to cite anything However: requested to cite a few publications Which publications: Few for the Cactus framework Some components list a few as well List published on website and manage through publication database

25 Future From certain to more speculative: Multiblock techniques GPU support Requirement-based scheduling Discontinuous Galerkin instead of finite differences Support for unstructured grids Completely requirement-based programming (MPI ParalleX?)

26 Tools: GetComponents Task: Collect software from various repositories at different sites Example simulation assembly: Cactus Flesh and Toolkit (svn.cactuscode.org) Core Einstein Toolkit (svn.einsteintoolkit.org) Carpet AMR (carpetcode.org, hg) Tools, Parameter Files and Data (svn.einsteintoolkit.org) Group Modules (x.groupthorns.org) Individual Modules (x.mythorns.org) x: cvs, svn, darcs, git, hg, http

27 Tools: Simulation Factory Task: Provide support for common, repetitive steps: Access remote systems, synchronize source code trees Configure and build on different systems semi-automatically Provide maintained list of supercomputer configurations Manage simulations (follow best practices, avoid human errors)

28 Tools: Formaline Task: Ensure that simulations are and remain repeatable, remember exactly how they were performed Take snapshots of source code, system configuration; store it in executable and/or git repository Tag all output files

Erik Schnetter Rochester, August Friday, August 27, 2010

Erik Schnetter Rochester, August Friday, August 27, 2010 Erik Schnetter Rochester, August 2010 1 Goal: have state-of-the-art set of tools for NR available as open source Organised by Einstein Consortium, open to everyone See http://einsteintoolkit.org 2 Guiding

More information

The Cactus Framework. Erik Schnetter September 2006

The Cactus Framework. Erik Schnetter September 2006 The Cactus Framework Erik Schnetter September 2006 Outline History The Cactus User Community Cactus Usage Patterns Bird s eye view Cactus is a freely available, portable, and manageable environment for

More information

What is Cactus? Cactus is a framework for developing portable, modular applications

What is Cactus? Cactus is a framework for developing portable, modular applications What is Cactus? Cactus is a framework for developing portable, modular applications What is Cactus? Cactus is a framework for developing portable, modular applications focusing, although not exclusively,

More information

Cactus Framework: Scaling and Lessons Learnt

Cactus Framework: Scaling and Lessons Learnt Cactus Framework: Scaling and Lessons Learnt Gabrielle Allen, Erik Schnetter, Jian Tao Center for Computation & Technology Departments of Computer Science & Physics Louisiana State University Also: Christian

More information

From Physics Model to Results: An Optimizing Framework for Cross-Architecture Code Generation

From Physics Model to Results: An Optimizing Framework for Cross-Architecture Code Generation From Physics Model to Results: An Optimizing Framework for Cross-Architecture Code Generation Erik Schnetter, Perimeter Institute with M. Blazewicz, I. Hinder, D. Koppelman, S. Brandt, M. Ciznicki, M.

More information

The Cactus Framework: Design, Applications and Future Directions. Cactus Code

The Cactus Framework: Design, Applications and Future Directions. Cactus Code The Cactus Framework: Design, Applications and Future Directions Gabrielle Allen gallen@cct.lsu.edu Center for Computation & Technology Departments of Computer Science & Physics Louisiana State University

More information

Integration of Trilinos Into The Cactus Code Framework

Integration of Trilinos Into The Cactus Code Framework Integration of Trilinos Into The Cactus Code Framework Josh Abadie Research programmer Center for Computation & Technology Louisiana State University Summary Motivation Objectives The Cactus Code Trilinos

More information

Grid Computing in Numerical Relativity and Astrophysics

Grid Computing in Numerical Relativity and Astrophysics Grid Computing in Numerical Relativity and Astrophysics Gabrielle Allen: gallen@cct.lsu.edu Depts Computer Science & Physics Center for Computation & Technology (CCT) Louisiana State University Challenge

More information

Datura The new HPC-Plant at Albert Einstein Institute

Datura The new HPC-Plant at Albert Einstein Institute Datura The new HPC-Plant at Albert Einstein Institute Nico Budewitz Max Planck Institue for Gravitational Physics, Germany Cluster Day, 2011 Outline 1 History HPC-Plants at AEI -2009 Peyote, Lagavulin,

More information

Parallelism. Wolfgang Kastaun. May 9, 2008

Parallelism. Wolfgang Kastaun. May 9, 2008 Parallelism Wolfgang Kastaun May 9, 2008 Outline Parallel computing Frameworks MPI and the batch system Running MPI code at TAT The CACTUS framework Overview Mesh refinement Writing Cactus modules Links

More information

Introduction to the Einstein Toolkit Details

Introduction to the Einstein Toolkit Details Introduction to the Einstein Toolkit Details Roland Haas TAPIR, Caltech July 26 th 2013 Einstein Toolkit main components Toolkit is based on three core components Cactus GetComponents provides the numerical

More information

Dynamic Deployment of a Component Framework with the Ubiqis System

Dynamic Deployment of a Component Framework with the Ubiqis System Dynamic Deployment of a Component Framework with the Ubiqis System Steven Brandt (1) Gabrielle Allen (1,2) Matthew Eastman (1) Matthew Kemp (1) Erik Schnetter (1,3) (1) Center for Computation & Technology,

More information

Introduction to the Cactus Framework

Introduction to the Cactus Framework Introduction to the Cactus Framework The Cactus team Oct 25 2011 1 Introduction Outline 2 The Cactus Computational Toolkit Overview Capabilities 3 Visualization 4 Cactus Structure Overview The Flesh The

More information

Cactus Tutorial. Introduction to Cactus. Yaakoub El Khamra. Cactus Developer, Frameworks Group CCT 27 March, 2007

Cactus Tutorial. Introduction to Cactus. Yaakoub El Khamra. Cactus Developer, Frameworks Group CCT 27 March, 2007 Cactus Tutorial Introduction to Cactus Yaakoub El Khamra Cactus Developer, Frameworks Group CCT 27 March, 2007 Agenda Introduction to Cactus What is Cactus Flesh and thorns Cactus Computational Toolkit

More information

High Performance and Grid Computing Applications with the Cactus Framework. HPCC Program Grand Challenges (1995)

High Performance and Grid Computing Applications with the Cactus Framework. HPCC Program Grand Challenges (1995) High Performance and Grid Computing Applications with the Cactus Framework Gabrielle Allen Department of Computer Science Center for Computation & Technology Louisiana State University HPCC Program Grand

More information

A Scalable Adaptive Mesh Refinement Framework For Parallel Astrophysics Applications

A Scalable Adaptive Mesh Refinement Framework For Parallel Astrophysics Applications A Scalable Adaptive Mesh Refinement Framework For Parallel Astrophysics Applications James Bordner, Michael L. Norman San Diego Supercomputer Center University of California, San Diego 15th SIAM Conference

More information

arxiv: v1 [physics.comp-ph] 24 Jul 2013

arxiv: v1 [physics.comp-ph] 24 Jul 2013 From Physics Model to Results: An Optimizing Framework for Cross-Architecture Code Generation arxiv:1307.6488v1 [physics.comp-ph] 24 Jul 2013 Marek Blazewicz 1,2,, Ian Hinder 3, David M. Koppelman 4,5,

More information

ACCELERATING CFD AND RESERVOIR SIMULATIONS WITH ALGEBRAIC MULTI GRID Chris Gottbrath, Nov 2016

ACCELERATING CFD AND RESERVOIR SIMULATIONS WITH ALGEBRAIC MULTI GRID Chris Gottbrath, Nov 2016 ACCELERATING CFD AND RESERVOIR SIMULATIONS WITH ALGEBRAIC MULTI GRID Chris Gottbrath, Nov 2016 Challenges What is Algebraic Multi-Grid (AMG)? AGENDA Why use AMG? When to use AMG? NVIDIA AmgX Results 2

More information

Component Specification in the Cactus Framework: The Cactus Configuration Language

Component Specification in the Cactus Framework: The Cactus Configuration Language Component Specification in the Cactus Framework: The Cactus Configuration Language Gabrielle Allen Center for Computation & Technology Department of Computer Science Louisiana State University Baton Rouge,

More information

Adaptive-Mesh-Refinement Hydrodynamic GPU Computation in Astrophysics

Adaptive-Mesh-Refinement Hydrodynamic GPU Computation in Astrophysics Adaptive-Mesh-Refinement Hydrodynamic GPU Computation in Astrophysics H. Y. Schive ( 薛熙于 ) Graduate Institute of Physics, National Taiwan University Leung Center for Cosmology and Particle Astrophysics

More information

CMSC 714 Lecture 6 MPI vs. OpenMP and OpenACC. Guest Lecturer: Sukhyun Song (original slides by Alan Sussman)

CMSC 714 Lecture 6 MPI vs. OpenMP and OpenACC. Guest Lecturer: Sukhyun Song (original slides by Alan Sussman) CMSC 714 Lecture 6 MPI vs. OpenMP and OpenACC Guest Lecturer: Sukhyun Song (original slides by Alan Sussman) Parallel Programming with Message Passing and Directives 2 MPI + OpenMP Some applications can

More information

AstroGrid-D. Advanced Prototype Implementation of Monitoring & Steering Methods. Documentation and Test Report 1. Deliverable D6.5

AstroGrid-D. Advanced Prototype Implementation of Monitoring & Steering Methods. Documentation and Test Report 1. Deliverable D6.5 AstroGrid-D Deliverable D6.5 Advanced Prototype Implementation of Monitoring & Steering Methods Documentation and Test Report 1 Deliverable D6.5 Authors Thomas Radke (AEI) Editors Thomas Radke (AEI) Date

More information

Adaptive Mesh Astrophysical Fluid Simulations on GPU. San Jose 10/2/2009 Peng Wang, NVIDIA

Adaptive Mesh Astrophysical Fluid Simulations on GPU. San Jose 10/2/2009 Peng Wang, NVIDIA Adaptive Mesh Astrophysical Fluid Simulations on GPU San Jose 10/2/2009 Peng Wang, NVIDIA Overview Astrophysical motivation & the Enzo code Finite volume method and adaptive mesh refinement (AMR) CUDA

More information

Cactus: Current Status and Future Plans

Cactus: Current Status and Future Plans Cactus: Current Status and Future Plans Tom Goodale goodale@aei-potsdam.mpg.de Penn State Numrel Lunch February 27 h 2003 What Is Cactus Cactus is a framework for developing portable, modular applications,

More information

Experiences with ENZO on the Intel R Many Integrated Core (Intel MIC) Architecture

Experiences with ENZO on the Intel R Many Integrated Core (Intel MIC) Architecture Experiences with ENZO on the Intel R Many Integrated Core (Intel MIC) Architecture 1 Introduction Robert Harkness National Institute for Computational Sciences Oak Ridge National Laboratory The National

More information

Parallel Algorithms: Adaptive Mesh Refinement (AMR) method and its implementation

Parallel Algorithms: Adaptive Mesh Refinement (AMR) method and its implementation Parallel Algorithms: Adaptive Mesh Refinement (AMR) method and its implementation Massimiliano Guarrasi m.guarrasi@cineca.it Super Computing Applications and Innovation Department AMR - Introduction Solving

More information

Requirements for a new EOS interface in the Einstein Toolkit

Requirements for a new EOS interface in the Einstein Toolkit Requirements for a new EOS interface in the Einstein Toolkit Erik Schnetter, 2009-11-03 CIGR Talk Series, Baton Rouge, LA Tuesday, November 3, 2009 CCT: Center for Computation & Technology Discussion Topic

More information

Enabling In Situ Viz and Data Analysis with Provenance in libmesh

Enabling In Situ Viz and Data Analysis with Provenance in libmesh Enabling In Situ Viz and Data Analysis with Provenance in libmesh Vítor Silva Jose J. Camata Marta Mattoso Alvaro L. G. A. Coutinho (Federal university Of Rio de Janeiro/Brazil) Patrick Valduriez (INRIA/France)

More information

The Cactus Framework and Toolkit: Design and Applications

The Cactus Framework and Toolkit: Design and Applications The Cactus Framework and Toolkit: Design and Applications Tom Goodale 1, Gabrielle Allen 1, Gerd Lanfermann 1, Joan Massó 2, Thomas Radke 1, Edward Seidel 1, and John Shalf 3 1 Max-Planck-Institut für

More information

Adaptive Mesh Refinement in Titanium

Adaptive Mesh Refinement in Titanium Adaptive Mesh Refinement in Titanium http://seesar.lbl.gov/anag Lawrence Berkeley National Laboratory April 7, 2005 19 th IPDPS, April 7, 2005 1 Overview Motivations: Build the infrastructure in Titanium

More information

Performance Profiling with Cactus Benchmarks

Performance Profiling with Cactus Benchmarks Performance Profiling with Cactus Benchmarks Sasanka Madiraju April 6th, 2006 System Science Master s Project Report Department of Computer Science Louisiana State University Acknowledgment This project

More information

RAMSES on the GPU: An OpenACC-Based Approach

RAMSES on the GPU: An OpenACC-Based Approach RAMSES on the GPU: An OpenACC-Based Approach Claudio Gheller (ETHZ-CSCS) Giacomo Rosilho de Souza (EPFL Lausanne) Romain Teyssier (University of Zurich) Markus Wetzstein (ETHZ-CSCS) PRACE-2IP project EU

More information

Improving the Eclipse Parallel Tools Platform in Support of Earth Sciences High Performance Computing

Improving the Eclipse Parallel Tools Platform in Support of Earth Sciences High Performance Computing Improving the Eclipse Parallel Tools Platform in Support of Earth Sciences High Performance Computing Jay Alameda National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign

More information

Enzo-P / Cello. Scalable Adaptive Mesh Refinement for Astrophysics and Cosmology. San Diego Supercomputer Center. Department of Physics and Astronomy

Enzo-P / Cello. Scalable Adaptive Mesh Refinement for Astrophysics and Cosmology. San Diego Supercomputer Center. Department of Physics and Astronomy Enzo-P / Cello Scalable Adaptive Mesh Refinement for Astrophysics and Cosmology James Bordner 1 Michael L. Norman 1 Brian O Shea 2 1 University of California, San Diego San Diego Supercomputer Center 2

More information

Development of an Integrated Modeling Framework for Simulations of Coastal Processes in Deltaic Environments Using High-Performance Computing

Development of an Integrated Modeling Framework for Simulations of Coastal Processes in Deltaic Environments Using High-Performance Computing Development of an Integrated Modeling Framework for Simulations of Coastal Processes in Deltaic Environments Using High-Performance Computing Q. Jim Chen Department of Civil and Environmental Engineering

More information

Improving the Eclipse Parallel Tools Platform to Create an Effective Workbench for High Performance Computing

Improving the Eclipse Parallel Tools Platform to Create an Effective Workbench for High Performance Computing Improving the Eclipse Parallel Tools Platform to Create an Effective Workbench for High Performance Computing Jay Alameda National Center for Supercomputing Applications 1 st CHANGES Workshop, Jülich 5

More information

Day 2 August 06, 2004 (Friday)

Day 2 August 06, 2004 (Friday) An Overview of Grid Computing Day 2 August 06, 2004 (Friday) By CDAC Experts Contact :vcvrao@cdacindia.com; betatest@cdacindia.com URL : http://www.cs.umn.edu/~vcvrao 1 Betatesting Group,NPSF, C-DAC,Pune

More information

Experiences with ENZO on the Intel Many Integrated Core Architecture

Experiences with ENZO on the Intel Many Integrated Core Architecture Experiences with ENZO on the Intel Many Integrated Core Architecture Dr. Robert Harkness National Institute for Computational Sciences April 10th, 2012 Overview ENZO applications at petascale ENZO and

More information

Performance and Optimization Abstractions for Large Scale Heterogeneous Systems in the Cactus/Chemora Framework

Performance and Optimization Abstractions for Large Scale Heterogeneous Systems in the Cactus/Chemora Framework Performance and Optimization Abstractions for Large Scale Heterogeneous Systems in the Cactus/Chemora Framework Erik Schne+er Perimeter Ins1tute for Theore1cal Physics XSCALE 2013, Boulder, CO, 2013-08-

More information

The Prickly Pear Archive: A Portable Hypermedia for Scholarly Publication

The Prickly Pear Archive: A Portable Hypermedia for Scholarly Publication The Prickly Pear Archive: A Portable Hypermedia for Scholarly Publication Dennis Castleberry, Steven Brandt, Frank Löeffler, and Hari Krishnan July 17, 2012 1 Problem Specification Traditional Paper System

More information

Damaris. In-Situ Data Analysis and Visualization for Large-Scale HPC Simulations. KerData Team. Inria Rennes,

Damaris. In-Situ Data Analysis and Visualization for Large-Scale HPC Simulations. KerData Team. Inria Rennes, Damaris In-Situ Data Analysis and Visualization for Large-Scale HPC Simulations KerData Team Inria Rennes, http://damaris.gforge.inria.fr Outline 1. From I/O to in-situ visualization 2. Damaris approach

More information

Development Environments for HPC: The View from NCSA

Development Environments for HPC: The View from NCSA Development Environments for HPC: The View from NCSA Jay Alameda National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign DEHPC 15 San Francisco, CA 18 October 2015 Acknowledgements

More information

Framework Middleware Bridging Large-apps and Hardware

Framework Middleware Bridging Large-apps and Hardware Framework Middleware Bridging Large-apps and Hardware Zeyao Mo Institute of Applied Physics and Computational Mathematics CAEP Software Center for Numerical Simulation CoDesign 2014, Guangzhou CoDesign:Bottleneck

More information

computational Fluid Dynamics - Prof. V. Esfahanian

computational Fluid Dynamics - Prof. V. Esfahanian Three boards categories: Experimental Theoretical Computational Crucial to know all three: Each has their advantages and disadvantages. Require validation and verification. School of Mechanical Engineering

More information

Developing the TELEMAC system for HECToR (phase 2b & beyond) Zhi Shang

Developing the TELEMAC system for HECToR (phase 2b & beyond) Zhi Shang Developing the TELEMAC system for HECToR (phase 2b & beyond) Zhi Shang Outline of the Talk Introduction to the TELEMAC System and to TELEMAC-2D Code Developments Data Reordering Strategy Results Conclusions

More information

Implementation of an integrated efficient parallel multiblock Flow solver

Implementation of an integrated efficient parallel multiblock Flow solver Implementation of an integrated efficient parallel multiblock Flow solver Thomas Bönisch, Panagiotis Adamidis and Roland Rühle adamidis@hlrs.de Outline Introduction to URANUS Why using Multiblock meshes

More information

Introducing Overdecomposition to Existing Applications: PlasComCM and AMPI

Introducing Overdecomposition to Existing Applications: PlasComCM and AMPI Introducing Overdecomposition to Existing Applications: PlasComCM and AMPI Sam White Parallel Programming Lab UIUC 1 Introduction How to enable Overdecomposition, Asynchrony, and Migratability in existing

More information

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 First-Order Hyperbolic System Method If you have a CFD book for hyperbolic problems, you have a CFD book for all problems.

More information

This is an author-deposited version published in: Eprints ID: 4362

This is an author-deposited version published in:   Eprints ID: 4362 This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 4362 To cite this document: CHIKHAOUI Oussama, GRESSIER Jérémie, GRONDIN Gilles. Assessment of the Spectral

More information

High-Performance Scientific Computing

High-Performance Scientific Computing High-Performance Scientific Computing Instructor: Randy LeVeque TA: Grady Lemoine Applied Mathematics 483/583, Spring 2011 http://www.amath.washington.edu/~rjl/am583 World s fastest computers http://top500.org

More information

Integrating Web 2.0 Technologies with Scientific Simulation Codes for Real-Time Collaboration

Integrating Web 2.0 Technologies with Scientific Simulation Codes for Real-Time Collaboration Integrating Web 2.0 Technologies with Scientific Simulation Codes for Real-Time Collaboration Gabrielle Allen 1,2, Frank Löffler 1, Thomas Radke 3, Erik Schnetter 1,4, Edward Seidel 4,5 1 Center for Computation

More information

A Multiscale Non-hydrostatic Atmospheric Model for Regional and Global Applications

A Multiscale Non-hydrostatic Atmospheric Model for Regional and Global Applications A Multiscale Non-hydrostatic Atmospheric Model for Regional and Global Applications James D. Doyle 1, Frank Giraldo 2, Saša Gaberšek 1 1 Naval Research Laboratory, Monterey, CA, USA 2 Naval Postgraduate

More information

Using the Eclipse Parallel Tools Platform in Support of Earth Sciences High Performance Computing

Using the Eclipse Parallel Tools Platform in Support of Earth Sciences High Performance Computing Using the Eclipse Parallel Tools Platform in Support of Earth Sciences High Performance Computing Jay Alameda National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign

More information

VisIt Libsim. An in-situ visualisation library

VisIt Libsim. An in-situ visualisation library VisIt Libsim. An in-situ visualisation library December 2017 Jean M. Favre, CSCS Outline Motivations In-situ visualization In-situ processing strategies VisIt s libsim library Enable visualization in a

More information

PETSc Satish Balay, Kris Buschelman, Bill Gropp, Dinesh Kaushik, Lois McInnes, Barry Smith

PETSc   Satish Balay, Kris Buschelman, Bill Gropp, Dinesh Kaushik, Lois McInnes, Barry Smith PETSc http://www.mcs.anl.gov/petsc Satish Balay, Kris Buschelman, Bill Gropp, Dinesh Kaushik, Lois McInnes, Barry Smith PDE Application Codes PETSc PDE Application Codes! ODE Integrators! Nonlinear Solvers,!

More information

Computational Astrophysics 5 Higher-order and AMR schemes

Computational Astrophysics 5 Higher-order and AMR schemes Computational Astrophysics 5 Higher-order and AMR schemes Oscar Agertz Outline - The Godunov Method - Second-order scheme with MUSCL - Slope limiters and TVD schemes - Characteristics tracing and 2D slopes.

More information

Multi-GPU Scaling of Direct Sparse Linear System Solver for Finite-Difference Frequency-Domain Photonic Simulation

Multi-GPU Scaling of Direct Sparse Linear System Solver for Finite-Difference Frequency-Domain Photonic Simulation Multi-GPU Scaling of Direct Sparse Linear System Solver for Finite-Difference Frequency-Domain Photonic Simulation 1 Cheng-Han Du* I-Hsin Chung** Weichung Wang* * I n s t i t u t e o f A p p l i e d M

More information

High Performance Computing

High Performance Computing High Performance Computing ADVANCED SCIENTIFIC COMPUTING Dr. Ing. Morris Riedel Adjunct Associated Professor School of Engineering and Natural Sciences, University of Iceland Research Group Leader, Juelich

More information

Large-scale Gas Turbine Simulations on GPU clusters

Large-scale Gas Turbine Simulations on GPU clusters Large-scale Gas Turbine Simulations on GPU clusters Tobias Brandvik and Graham Pullan Whittle Laboratory University of Cambridge A large-scale simulation Overview PART I: Turbomachinery PART II: Stencil-based

More information

ORAP Forum October 10, 2013

ORAP Forum October 10, 2013 Towards Petaflop simulations of core collapse supernovae ORAP Forum October 10, 2013 Andreas Marek 1 together with Markus Rampp 1, Florian Hanke 2, and Thomas Janka 2 1 Rechenzentrum der Max-Planck-Gesellschaft

More information

What is Multigrid? They have been extended to solve a wide variety of other problems, linear and nonlinear.

What is Multigrid? They have been extended to solve a wide variety of other problems, linear and nonlinear. AMSC 600/CMSC 760 Fall 2007 Solution of Sparse Linear Systems Multigrid, Part 1 Dianne P. O Leary c 2006, 2007 What is Multigrid? Originally, multigrid algorithms were proposed as an iterative method to

More information

AACE: Applications. Director, Application Acceleration Center of Excellence National Institute for Computational Sciences glenn-

AACE: Applications. Director, Application Acceleration Center of Excellence National Institute for Computational Sciences glenn- AACE: Applications R. Glenn Brook Director, Application Acceleration Center of Excellence National Institute for Computational Sciences glenn- brook@tennessee.edu Ryan C. Hulguin Computational Science

More information

GPUs and Einstein s Equations

GPUs and Einstein s Equations GPUs and Einstein s Equations Tim Dewey Advisor: Dr. Manuel Tiglio AMSC Scientific Computing University of Maryland May 5, 2011 Outline 1 Project Summary 2 Evolving Einstein s Equations 3 Implementation

More information

PREPARING AN AMR LIBRARY FOR SUMMIT. Max Katz March 29, 2018

PREPARING AN AMR LIBRARY FOR SUMMIT. Max Katz March 29, 2018 PREPARING AN AMR LIBRARY FOR SUMMIT Max Katz March 29, 2018 CORAL: SIERRA AND SUMMIT NVIDIA Volta fueling supercomputers IBM Power 9 + NVIDIA Volta V100 Sierra (LLNL): 4 GPUs/node, ~4300 nodes Summit (ORNL):

More information

General Plasma Physics

General Plasma Physics Present and Future Computational Requirements General Plasma Physics Center for Integrated Computation and Analysis of Reconnection and Turbulence () Kai Germaschewski, Homa Karimabadi Amitava Bhattacharjee,

More information

IOS: A Middleware for Decentralized Distributed Computing

IOS: A Middleware for Decentralized Distributed Computing IOS: A Middleware for Decentralized Distributed Computing Boleslaw Szymanski Kaoutar El Maghraoui, Carlos Varela Department of Computer Science Rensselaer Polytechnic Institute http://www.cs.rpi.edu/wwc

More information

Scientific Computing at Million-way Parallelism - Blue Gene/Q Early Science Program

Scientific Computing at Million-way Parallelism - Blue Gene/Q Early Science Program Scientific Computing at Million-way Parallelism - Blue Gene/Q Early Science Program Implementing Hybrid Parallelism in FLASH Christopher Daley 1 2 Vitali Morozov 1 Dongwook Lee 2 Anshu Dubey 1 2 Jonathon

More information

Code Auto-Tuning with the Periscope Tuning Framework

Code Auto-Tuning with the Periscope Tuning Framework Code Auto-Tuning with the Periscope Tuning Framework Renato Miceli, SENAI CIMATEC renato.miceli@fieb.org.br Isaías A. Comprés, TUM compresu@in.tum.de Project Participants Michael Gerndt, TUM Coordinator

More information

Harp-DAAL for High Performance Big Data Computing

Harp-DAAL for High Performance Big Data Computing Harp-DAAL for High Performance Big Data Computing Large-scale data analytics is revolutionizing many business and scientific domains. Easy-touse scalable parallel techniques are necessary to process big

More information

ADAPTIVE FINITE ELEMENT

ADAPTIVE FINITE ELEMENT Finite Element Methods In Linear Structural Mechanics Univ. Prof. Dr. Techn. G. MESCHKE SHORT PRESENTATION IN ADAPTIVE FINITE ELEMENT Abdullah ALSAHLY By Shorash MIRO Computational Engineering Ruhr Universität

More information

Uncertainty Analysis: Parameter Estimation. Jackie P. Hallberg Coastal and Hydraulics Laboratory Engineer Research and Development Center

Uncertainty Analysis: Parameter Estimation. Jackie P. Hallberg Coastal and Hydraulics Laboratory Engineer Research and Development Center Uncertainty Analysis: Parameter Estimation Jackie P. Hallberg Coastal and Hydraulics Laboratory Engineer Research and Development Center Outline ADH Optimization Techniques Parameter space Observation

More information

A dynamic load-balancing strategy for large scale CFD-applications

A dynamic load-balancing strategy for large scale CFD-applications A dynamic load-balancing strategy for large scale CFD-applications Philipp Offenhäuser 10.10.2017 1/20 :: A dynamic load-balancing strategy for large scale CFD-applications :: 10.10.2017 :: Outline Motivation

More information

CSC 2700: Scientific Computing

CSC 2700: Scientific Computing CSC 2700: Scientific Computing Record and share your work: revision control systems Dr Frank Löffler Center for Computation and Technology Louisiana State University, Baton Rouge, LA Feb 13 2014 Overview

More information

Optimization of PIERNIK for the Multiscale Simulations of High-Redshift Disk Galaxies

Optimization of PIERNIK for the Multiscale Simulations of High-Redshift Disk Galaxies Available online at www.prace-ri.eu Partnership for Advanced Computing in Europe Optimization of PIERNIK for the Multiscale Simulations of High-Redshift Disk Galaxies Kacper Kowalik a, Artur Gawryszczak

More information

Multigrid Solvers in CFD. David Emerson. Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK

Multigrid Solvers in CFD. David Emerson. Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK Multigrid Solvers in CFD David Emerson Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK david.emerson@stfc.ac.uk 1 Outline Multigrid: general comments Incompressible

More information

Partial Differential Equations

Partial Differential Equations Simulation in Computer Graphics Partial Differential Equations Matthias Teschner Computer Science Department University of Freiburg Motivation various dynamic effects and physical processes are described

More information

A Software Developing Environment for Earth System Modeling. Depei Qian Beihang University CScADS Workshop, Snowbird, Utah June 27, 2012

A Software Developing Environment for Earth System Modeling. Depei Qian Beihang University CScADS Workshop, Snowbird, Utah June 27, 2012 A Software Developing Environment for Earth System Modeling Depei Qian Beihang University CScADS Workshop, Snowbird, Utah June 27, 2012 1 Outline Motivation Purpose and Significance Research Contents Technology

More information

Enzo-P / Cello. Formation of the First Galaxies. San Diego Supercomputer Center. Department of Physics and Astronomy

Enzo-P / Cello. Formation of the First Galaxies. San Diego Supercomputer Center. Department of Physics and Astronomy Enzo-P / Cello Formation of the First Galaxies James Bordner 1 Michael L. Norman 1 Brian O Shea 2 1 University of California, San Diego San Diego Supercomputer Center 2 Michigan State University Department

More information

Radial Basis Function-Generated Finite Differences (RBF-FD): New Opportunities for Applications in Scientific Computing

Radial Basis Function-Generated Finite Differences (RBF-FD): New Opportunities for Applications in Scientific Computing Radial Basis Function-Generated Finite Differences (RBF-FD): New Opportunities for Applications in Scientific Computing Natasha Flyer National Center for Atmospheric Research Boulder, CO Meshes vs. Mesh-free

More information

Introduction to 3D Scientific Visualization. Training in Visualization for PRACE Summer of HPC 2013 Leon Kos, University of Ljubljana, Slovenia

Introduction to 3D Scientific Visualization. Training in Visualization for PRACE Summer of HPC 2013 Leon Kos, University of Ljubljana, Slovenia Introduction to 3D Scientific Visualization Training in Visualization for PRACE Summer of HPC 2013 Leon Kos, University of Ljubljana, Slovenia Motto Few correctly put words is worth hundreds of images.

More information

Visualization and Data Analysis using VisIt - In Situ Visualization -

Visualization and Data Analysis using VisIt - In Situ Visualization - Mitglied der Helmholtz-Gemeinschaft Visualization and Data Analysis using VisIt - In Situ Visualization - Jens Henrik Göbbert 1, Herwig Zilken 1 1 Jülich Supercomputing Centre, Forschungszentrum Jülich

More information

Lagrangian methods and Smoothed Particle Hydrodynamics (SPH) Computation in Astrophysics Seminar (Spring 2006) L. J. Dursi

Lagrangian methods and Smoothed Particle Hydrodynamics (SPH) Computation in Astrophysics Seminar (Spring 2006) L. J. Dursi Lagrangian methods and Smoothed Particle Hydrodynamics (SPH) Eulerian Grid Methods The methods covered so far in this course use an Eulerian grid: Prescribed coordinates In `lab frame' Fluid elements flow

More information

Dynamic Selection of Auto-tuned Kernels to the Numerical Libraries in the DOE ACTS Collection

Dynamic Selection of Auto-tuned Kernels to the Numerical Libraries in the DOE ACTS Collection Numerical Libraries in the DOE ACTS Collection The DOE ACTS Collection SIAM Parallel Processing for Scientific Computing, Savannah, Georgia Feb 15, 2012 Tony Drummond Computational Research Division Lawrence

More information

Introduction to Multigrid and its Parallelization

Introduction to Multigrid and its Parallelization Introduction to Multigrid and its Parallelization! Thomas D. Economon Lecture 14a May 28, 2014 Announcements 2 HW 1 & 2 have been returned. Any questions? Final projects are due June 11, 5 pm. If you are

More information

Interdisciplinary practical course on parallel finite element method using HiFlow 3

Interdisciplinary practical course on parallel finite element method using HiFlow 3 Interdisciplinary practical course on parallel finite element method using HiFlow 3 E. Treiber, S. Gawlok, M. Hoffmann, V. Heuveline, W. Karl EuroEDUPAR, 2015/08/24 KARLSRUHE INSTITUTE OF TECHNOLOGY -

More information

Grid Programming Models: Current Tools, Issues and Directions. Computer Systems Research Department The Aerospace Corporation, P.O.

Grid Programming Models: Current Tools, Issues and Directions. Computer Systems Research Department The Aerospace Corporation, P.O. Grid Programming Models: Current Tools, Issues and Directions Craig Lee Computer Systems Research Department The Aerospace Corporation, P.O. Box 92957 El Segundo, CA USA lee@aero.org Domenico Talia DEIS

More information

1 st International Serpent User Group Meeting in Dresden, Germany, September 15 16, 2011

1 st International Serpent User Group Meeting in Dresden, Germany, September 15 16, 2011 1 st International Serpent User Group Meeting in Dresden, Germany, September 15 16, 2011 Discussion notes The first international Serpent user group meeting was held at the Helmholtz Zentrum Dresden Rossendorf

More information

Advective and conservative semi-lagrangian schemes on uniform and non-uniform grids

Advective and conservative semi-lagrangian schemes on uniform and non-uniform grids Advective and conservative semi-lagrangian schemes on uniform and non-uniform grids M. Mehrenberger Université de Strasbourg and Max-Planck Institut für Plasmaphysik 5 September 2013 M. Mehrenberger (UDS

More information

Design Approach for a Generic and Scalable Framework for Parallel FMU Simulations

Design Approach for a Generic and Scalable Framework for Parallel FMU Simulations Center for Information Services and High Performance Computing TU Dresden Design Approach for a Generic and Scalable Framework for Parallel FMU Simulations Martin Flehmig, Marc Hartung, Marcus Walther

More information

Ocean Modeling. Infrastructure (COMI) at LSU

Ocean Modeling. Infrastructure (COMI) at LSU Development of Coastal Ocean Modeling Infrastructure (COMI) at LSU Q. Jim Chen Department of Civil and Environmental Engineering & Center for Computation and Technology Louisiana State University Acknowledgements

More information

Development of an Integrated Modeling Framework for Simulations of Coastal Processes in Deltaic Environments Using High-Performance Computing

Development of an Integrated Modeling Framework for Simulations of Coastal Processes in Deltaic Environments Using High-Performance Computing Development of an Integrated Modeling Framework for Simulations of Coastal Processes in Deltaic Environments Using High-Performance Computing Q. Jim Chen Department of Civil and Environmental Engineering

More information

HPC Application Porting to CUDA at BSC

HPC Application Porting to CUDA at BSC www.bsc.es HPC Application Porting to CUDA at BSC Pau Farré, Marc Jordà GTC 2016 - San Jose Agenda WARIS-Transport Atmospheric volcanic ash transport simulation Computer Applications department PELE Protein-drug

More information

Evaluating New Communication Models in the Nek5000 Code for Exascale

Evaluating New Communication Models in the Nek5000 Code for Exascale Evaluating New Communication Models in the Nek5000 Code for Exascale Ilya Ivanov (KTH), Rui Machado (Fraunhofer), Mirko Rahn (Fraunhofer), Dana Akhmetova (KTH), Erwin Laure (KTH), Jing Gong (KTH), Philipp

More information

A Scalable GPU-Based Compressible Fluid Flow Solver for Unstructured Grids

A Scalable GPU-Based Compressible Fluid Flow Solver for Unstructured Grids A Scalable GPU-Based Compressible Fluid Flow Solver for Unstructured Grids Patrice Castonguay and Antony Jameson Aerospace Computing Lab, Stanford University GTC Asia, Beijing, China December 15 th, 2011

More information

Computational Steering

Computational Steering Computational Steering Nate Woody 10/23/2008 www.cac.cornell.edu 1 What is computational steering? Generally, computational steering can be thought of as a method (or set of methods) for providing interactivity

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

Advanced High Performance Computing CSCI 580

Advanced High Performance Computing CSCI 580 Advanced High Performance Computing CSCI 580 2:00 pm - 3:15 pm Tue & Thu Marquez Hall 322 Timothy H. Kaiser, Ph.D. tkaiser@mines.edu CTLM 241A http://inside.mines.edu/~tkaiser/csci580fall13/ 1 Two Similar

More information

Unstructured Grid Numbering Schemes for GPU Coalescing Requirements

Unstructured Grid Numbering Schemes for GPU Coalescing Requirements Unstructured Grid Numbering Schemes for GPU Coalescing Requirements Andrew Corrigan 1 and Johann Dahm 2 Laboratories for Computational Physics and Fluid Dynamics Naval Research Laboratory 1 Department

More information

First Steps of YALES2 Code Towards GPU Acceleration on Standard and Prototype Cluster

First Steps of YALES2 Code Towards GPU Acceleration on Standard and Prototype Cluster First Steps of YALES2 Code Towards GPU Acceleration on Standard and Prototype Cluster YALES2: Semi-industrial code for turbulent combustion and flows Jean-Matthieu Etancelin, ROMEO, NVIDIA GPU Application

More information

How TMG Uses Elements and Nodes

How TMG Uses Elements and Nodes Simulation: TMG Thermal Analysis User's Guide How TMG Uses Elements and Nodes Defining Boundary Conditions on Elements You create a TMG thermal model in exactly the same way that you create any finite

More information