CSL 730: Parallel Programming. Algorithms

Size: px
Start display at page:

Download "CSL 730: Parallel Programming. Algorithms"

Transcription

1 CSL 73: Parallel Programming Algorithms

2 First 1 problem Input: n-bit vector Output: minimum index of a 1-bit

3 First 1 problem Input: n-bit vector Output: minimum index of a 1-bit Algorithm: Divide into n blocks of n bits each For block i, B[i] = 1 if there is a 1 in the block Arbitrary CRCW, O(n) work, O(1) time Find the first j such that B[j] = 1 O(n) work, O(1) time Find first 1 in the j th block O(n) work, O(1) time

4 All Nearest Smaller Value For each element A[i] in a vector find the largest j<i, such that A[j] < A[i] 3

5 All Nearest Smaller Value For each element A[i] in a vector find the largest j<i, such that A[j] < A[i] Algorithm: Find left match: For each i For each j < i, B[i,j] = (A[j] < A[i]) O(n ) work For each B[i] find largest j<i with B[i,j] = 1 3

6 Prefix Minima For each element A[i] in a vector find the minimum of all A[j], j < i 4

7 Prefix Minima For each element A[i] in a vector find the minimum of all A[j], j < i m+ m+ m+ m+ m a 4

8 Prefix Minima For each element A[i] in a vector find the minimum of all A[j], j < i m+ m+ m+ m+ m b a 4

9 Prefix Minima For each element A[i] in a vector find the minimum of all A[j], j < i m+ m+ m+ m+ m b a 4

10 Prefix Minima For each element A[i] in a vector find the minimum of all A[j], j < i Algorithm: Find ANSV For each A[i] For each A[j], j<i PrefixMin[i] = A[j] where j is the largest index such that A[j] has no smaller value on its left m+ m+ m+ m+ m b a 4

11 Prefix Minima For each element A[i] in a vector find the minimum of all A[j], j < i Algorithm: Find ANSV For each A[i] For each A[j], j<i O(n ) work PrefixMin[i] = A[j] where j is the largest index such that A[j] has no smaller value on its left m+ m+ m+ m+ m b a 4

12 Prefix Minima 1.Partition into n blocks of n each.find prefix min for each block j recursively 3.Consider B = m 1.. m n where m j is the minima of block j Find prefix min of B in constant time 4.Minimum of A[1]..A[i], A[i] in block j is the minimum of m 1..m j-1 and A[i] s block prefix minima (computed in step ) 5

13 Prefix Minima 1.Partition into n blocks of n each.find prefix min for each block j recursively 3.Consider B = m 1.. m n where m j is the minima of block j Find prefix min of B in constant time 4.Minimum of A[1]..A[i], A[i] in block j is the minimum of m 1..m j-1 and A[i] s block prefix minima (computed in step ) O(n) work 5

14 Prefix Minima 1.Partition into n blocks of n each.find prefix min for each block j recursively 3.Consider B = m 1.. m n where m j is the minima of block j Find prefix min of B in constant time 4.Minimum of A[1]..A[i], A[i] in block j is the minimum of m 1..m j-1 and A[i] s block prefix minima (computed in step ) O(n) work O(n log log n) work, O(log log n) time 5

15 General Algorithmic Techniques 6

16 General Algorithmic Techniques Pipelining 6

17 General Algorithmic Techniques Pipelining Balanced binary tree 6

18 General Algorithmic Techniques Pipelining Balanced binary tree Divide and conquer 6

19 General Algorithmic Techniques Pipelining Balanced binary tree Divide and conquer Partitioning 6

20 General Algorithmic Techniques Pipelining Balanced binary tree Divide and conquer Partitioning Accelerated Cascading 6

21 General Algorithmic Techniques Pipelining Balanced binary tree Divide and conquer Partitioning Accelerated Cascading Pointer doubling 6

22 General Algorithmic Techniques Pipelining Balanced binary tree Divide and conquer Partitioning Accelerated Cascading Pointer doubling Symmetry breaking 6

23 PARALLEL ALGORITHM TECHNIQUES: PATH DOUBLING / POINTER JUMPING

24 Find Roots in a Forest

25 Find Roots in a Forest p(i): parent of node i

26 Find Roots in a Forest p(i): parent of node i 1 8 Do in parallel p(i) = p(p(i))

27 Find Roots in a Forest p(i): parent of node i Do in parallel p(i) = p(p(i)) Stop if p(i) = i

28 Find Roots in a Forest p(i): parent of node i Do in parallel p(i) = p(p(i)) Stop if p(i) = i Time: log(height) 9 7 9

29 Find Roots in a Forest p(i): parent of node i Do in parallel p(i) = p(p(i)) Stop if p(i) = i Time: log(height) Work: n log(height) 9 7 9

30 Find Roots in a Forest p(i): parent of node i Do in parallel p(i) = p(p(i)) Stop if p(i) = i Time: log(height) Work: n log(height) 9 4 7

31 Find Roots in a Forest p(i): parent of node i Do in parallel p(i) = p(p(i)) Stop if p(i) = i Time: log(height) Work: n log(height) 9 1

32 Pointer Jumping Progressively push computation to all elements at a given distance Doubling the distance at each step After k steps the computation has been performed for elements within a distance of k Applies to array, list, tree

33 List Ranking Compute the number of nodes before node i in a list

34 List Ranking Compute the number of nodes before node i in a list Parallel for all i do: if next[i]=null then d[i] else d[i] 1 Parallel for all i do: if next[i] null d[i] d[i] + d[next[i]] next[i] next[next[i]] un@l next[i] == null for all i d(i) = distance of i from the end of the list

35

36

37

38

39 O(n log n) work, O(log n) time 5 13

40 PARALLEL ALGORITHM TECHNIQUES: SYMMETRY BREAKING

41 Cycle Coloring c[i]!= c[j] if e[i] = j e[i] = The next vertex from i O(n) Sequen@al algorithm Parallel: Make local decision But all ver@ces look the same locally Break symmetry Put ver@ces in iden@fiable classes

42 3-Coloring Use vertex index to break symmetry But too many indices Algorithm: Initialize c[i] = i Iterate, reducing #colors each time parallel for all i do Let k = Least significant bit in which c[i] and c[e[i]] differ Set c[i] = k + bit k of c[i] 16

43 3-Coloring k = ; nd bit = => New color = * + = 4

44 3-Coloring k = ; nd bit = => New color = * + = k = ; th bit = 1=> New color = * + 1 = 1

45 3-Coloring k = ; nd bit = => New color = * + = k = ; th bit = 1=> New color = * + 1 = 1 Why does this produce a coloring?

46 3-Coloring #new colors = O(log (#old colors)) Time O(log*n) Work O(n log*n) But can t reduce the number of colors below 6 t bits for i => log t + 1 bits for iteration i+1, t > 3 One more steps each to remove three extra colors parallel for all i If(c[i] = extra-color) c[i] = {,1,} and NOT (c[[e[i]], c[predecessor[i]) 18

CSL 730: Parallel Programming

CSL 730: Parallel Programming CSL 73: Parallel Programming General Algorithmic Techniques Balance binary tree Partitioning Divid and conquer Fractional cascading Recursive doubling Symmetry breaking Pipelining 2 PARALLEL ALGORITHM

More information

CSL 860: Modern Parallel

CSL 860: Modern Parallel CSL 860: Modern Parallel Computation PARALLEL ALGORITHM TECHNIQUES: BALANCED BINARY TREE Reduction n operands => log n steps Total work = O(n) How do you map? Balance Binary tree technique Reduction n

More information

Real parallel computers

Real parallel computers CHAPTER 30 (in old edition) Parallel Algorithms The PRAM MODEL OF COMPUTATION Abbreviation for Parallel Random Access Machine Consists of p processors (PEs), P 0, P 1, P 2,, P p-1 connected to a shared

More information

CSE 613: Parallel Programming. Lecture 6 ( Basic Parallel Algorithmic Techniques )

CSE 613: Parallel Programming. Lecture 6 ( Basic Parallel Algorithmic Techniques ) CSE 613: Parallel Programming Lecture 6 ( Basic Parallel Algorithmic Techniques ) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2017 Some Basic Techniques 1. Divide-and-Conquer

More information

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Stamp / Signature of the Invigilator

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Stamp / Signature of the Invigilator INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Stamp / Signature of the Invigilator EXAMINATION ( End Semester ) SEMESTER ( Autumn ) Roll Number Section Name Subject Number C S 6 0 0 2 6 Subject Name Parallel

More information

CSE 638: Advanced Algorithms. Lectures 10 & 11 ( Parallel Connected Components )

CSE 638: Advanced Algorithms. Lectures 10 & 11 ( Parallel Connected Components ) CSE 6: Advanced Algorithms Lectures & ( Parallel Connected Components ) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 01 Symmetry Breaking: List Ranking break symmetry: t h

More information

CS256 Applied Theory of Computation

CS256 Applied Theory of Computation CS256 Applied Theory of Computation Parallel Computation IV John E Savage Overview PRAM Work-time framework for parallel algorithms Prefix computations Finding roots of trees in a forest Parallel merging

More information

Example of usage of Prefix Sum Compacting an Array. Example of usage of Prexix Sum Compacting an Array

Example of usage of Prefix Sum Compacting an Array. Example of usage of Prexix Sum Compacting an Array Example of usage of Prefix um A 0 0 0 e 1 0 0 0 0 0 B e 1 Example of usage of Prexix um A 0 0 0 e 1 0 0 0 0 0 B e 1 Initialize B with zeroes Any idea on the solution (first in sequential)? If A[i]!= 0

More information

Parallel Algorithms for (PRAM) Computers & Some Parallel Algorithms. Reference : Horowitz, Sahni and Rajasekaran, Computer Algorithms

Parallel Algorithms for (PRAM) Computers & Some Parallel Algorithms. Reference : Horowitz, Sahni and Rajasekaran, Computer Algorithms Parallel Algorithms for (PRAM) Computers & Some Parallel Algorithms Reference : Horowitz, Sahni and Rajasekaran, Computer Algorithms Part 2 1 3 Maximum Selection Problem : Given n numbers, x 1, x 2,, x

More information

The PRAM model. A. V. Gerbessiotis CIS 485/Spring 1999 Handout 2 Week 2

The PRAM model. A. V. Gerbessiotis CIS 485/Spring 1999 Handout 2 Week 2 The PRAM model A. V. Gerbessiotis CIS 485/Spring 1999 Handout 2 Week 2 Introduction The Parallel Random Access Machine (PRAM) is one of the simplest ways to model a parallel computer. A PRAM consists of

More information

Priority queues. Priority queues. Priority queue operations

Priority queues. Priority queues. Priority queue operations Priority queues March 30, 018 1 Priority queues The ADT priority queue stores arbitrary objects with priorities. An object with the highest priority gets served first. Objects with priorities are defined

More information

Algorithms & Data Structures 2

Algorithms & Data Structures 2 Algorithms & Data Structures 2 PRAM Algorithms WS2017 B. Anzengruber-Tanase (Institute for Pervasive Computing, JKU Linz) (Institute for Pervasive Computing, JKU Linz) RAM MODELL (AHO/HOPCROFT/ULLMANN

More information

Balanced Search Trees

Balanced Search Trees Balanced Search Trees Computer Science E-22 Harvard Extension School David G. Sullivan, Ph.D. Review: Balanced Trees A tree is balanced if, for each node, the node s subtrees have the same height or have

More information

Problem. Input: An array A = (A[1],..., A[n]) with length n. Output: a permutation A of A, that is sorted: A [i] A [j] for all. 1 i j n.

Problem. Input: An array A = (A[1],..., A[n]) with length n. Output: a permutation A of A, that is sorted: A [i] A [j] for all. 1 i j n. Problem 5. Sorting Simple Sorting, Quicksort, Mergesort Input: An array A = (A[1],..., A[n]) with length n. Output: a permutation A of A, that is sorted: A [i] A [j] for all 1 i j n. 98 99 Selection Sort

More information

Define the red- black tree properties Describe and implement rotations Implement red- black tree insertion

Define the red- black tree properties Describe and implement rotations Implement red- black tree insertion Red black trees Define the red- black tree properties Describe and implement rotations Implement red- black tree insertion We will skip red- black tree deletion October 2004 John Edgar 2 Items can be inserted

More information

CMSC351 - Fall 2014, Homework #2

CMSC351 - Fall 2014, Homework #2 CMSC351 - Fall 2014, Homework #2 Due: October 8th at the start of class Name: Section: Grades depend on neatness and clarity. Write your answers with enough detail about your approach and concepts used,

More information

CS2223: Algorithms Sorting Algorithms, Heap Sort, Linear-time sort, Median and Order Statistics

CS2223: Algorithms Sorting Algorithms, Heap Sort, Linear-time sort, Median and Order Statistics CS2223: Algorithms Sorting Algorithms, Heap Sort, Linear-time sort, Median and Order Statistics 1 Sorting 1.1 Problem Statement You are given a sequence of n numbers < a 1, a 2,..., a n >. You need to

More information

EE/CSCI 451 Spring 2018 Homework 8 Total Points: [10 points] Explain the following terms: EREW PRAM CRCW PRAM. Brent s Theorem.

EE/CSCI 451 Spring 2018 Homework 8 Total Points: [10 points] Explain the following terms: EREW PRAM CRCW PRAM. Brent s Theorem. EE/CSCI 451 Spring 2018 Homework 8 Total Points: 100 1 [10 points] Explain the following terms: EREW PRAM CRCW PRAM Brent s Theorem BSP model 1 2 [15 points] Assume two sorted sequences of size n can be

More information

Parallel Random Access Machine (PRAM)

Parallel Random Access Machine (PRAM) PRAM Algorithms Parallel Random Access Machine (PRAM) Collection of numbered processors Access shared memory Each processor could have local memory (registers) Each processor can access any shared memory

More information

Heap: A binary heap is a complete binary tree in which each, node other than root is smaller than its parent. Heap example: Fig 1. NPTEL IIT Guwahati

Heap: A binary heap is a complete binary tree in which each, node other than root is smaller than its parent. Heap example: Fig 1. NPTEL IIT Guwahati Heap sort is an efficient sorting algorithm with average and worst case time complexities are in O(n log n). Heap sort does not use any extra array, like merge sort. This method is based on a data structure

More information

Module 16: Data Flow Analysis in Presence of Procedure Calls Lecture 32: Iteration. The Lecture Contains: Iteration Space.

Module 16: Data Flow Analysis in Presence of Procedure Calls Lecture 32: Iteration. The Lecture Contains: Iteration Space. The Lecture Contains: Iteration Space Iteration Vector Normalized Iteration Vector Dependence Distance Direction Vector Loop Carried Dependence Relations Dependence Level Iteration Vector - Triangular

More information

7 Sorting Algorithms. 7.1 O n 2 sorting algorithms. 7.2 Shell sort. Reading: MAW 7.1 and 7.2. Insertion sort: Worst-case time: O n 2.

7 Sorting Algorithms. 7.1 O n 2 sorting algorithms. 7.2 Shell sort. Reading: MAW 7.1 and 7.2. Insertion sort: Worst-case time: O n 2. 7 Sorting Algorithms 7.1 O n 2 sorting algorithms Reading: MAW 7.1 and 7.2 Insertion sort: 1 4 3 2 1 3 4 2 Selection sort: 1 4 3 2 Bubble sort: 1 3 2 4 7.2 Shell sort Reading: MAW 7.4 Introduction: Shell

More information

1. (a) O(log n) algorithm for finding the logical AND of n bits with n processors

1. (a) O(log n) algorithm for finding the logical AND of n bits with n processors 1. (a) O(log n) algorithm for finding the logical AND of n bits with n processors on an EREW PRAM: See solution for the next problem. Omit the step where each processor sequentially computes the AND of

More information

Hypercubes. (Chapter Nine)

Hypercubes. (Chapter Nine) Hypercubes (Chapter Nine) Mesh Shortcomings: Due to its simplicity and regular structure, the mesh is attractive, both theoretically and practically. A problem with the mesh is that movement of data is

More information

Analyze the obvious algorithm, 5 points Here is the most obvious algorithm for this problem: (LastLargerElement[A[1..n]:

Analyze the obvious algorithm, 5 points Here is the most obvious algorithm for this problem: (LastLargerElement[A[1..n]: CSE 101 Homework 1 Background (Order and Recurrence Relations), correctness proofs, time analysis, and speeding up algorithms with restructuring, preprocessing and data structures. Due Thursday, April

More information

Range Reporting. Range Reporting. Range Reporting Problem. Applications

Range Reporting. Range Reporting. Range Reporting Problem. Applications Philip Bille Problem problem. Preprocess at set of points P R 2 to support report(x1, y1, x2, y2): Return the set of points in R P, where R is rectangle given by (x1, y1) and (x2, y2). Applications Relational

More information

Parallel Sorting Algorithms

Parallel Sorting Algorithms CSC 391/691: GPU Programming Fall 015 Parallel Sorting Algorithms Copyright 015 Samuel S. Cho Sorting Algorithms Review Bubble Sort: O(n ) Insertion Sort: O(n ) Quick Sort: O(n log n) Heap Sort: O(n log

More information

Technical University of Denmark

Technical University of Denmark Technical University of Denmark Written examination, May 7, 27. Course name: Algorithms and Data Structures Course number: 2326 Aids: Written aids. It is not permitted to bring a calculator. Duration:

More information

Readings. Priority Queue ADT. FindMin Problem. Priority Queues & Binary Heaps. List implementation of a Priority Queue

Readings. Priority Queue ADT. FindMin Problem. Priority Queues & Binary Heaps. List implementation of a Priority Queue Readings Priority Queues & Binary Heaps Chapter Section.-. CSE Data Structures Winter 00 Binary Heaps FindMin Problem Quickly find the smallest (or highest priority) item in a set Applications: Operating

More information

Algorithms and Applications

Algorithms and Applications Algorithms and Applications 1 Areas done in textbook: Sorting Algorithms Numerical Algorithms Image Processing Searching and Optimization 2 Chapter 10 Sorting Algorithms - rearranging a list of numbers

More information

The PRAM Model. Alexandre David

The PRAM Model. Alexandre David The PRAM Model Alexandre David 1.2.05 1 Outline Introduction to Parallel Algorithms (Sven Skyum) PRAM model Optimality Examples 11-02-2008 Alexandre David, MVP'08 2 2 Standard RAM Model Standard Random

More information

Solved by: Syed Zain Ali Bukhari (BSCS)

Solved by: Syed Zain Ali Bukhari (BSCS) Solved by: Syed Zain Ali Bukhari (BSCS) 1. If there are N internal nodes in a binary tree then what will be the no. of external nodes in this binary tree? N -1 N N +1 (Page 303) N +2 2.If there are N elements

More information

CS 171: Introduction to Computer Science II. Binary Search Trees

CS 171: Introduction to Computer Science II. Binary Search Trees CS 171: Introduction to Computer Science II Binary Search Trees Binary Search Trees Symbol table applications BST definitions and terminologies Search and insert Traversal Ordered operations Delete Symbol

More information

CSE 4500 (228) Fall 2010 Selected Notes Set 2

CSE 4500 (228) Fall 2010 Selected Notes Set 2 CSE 4500 (228) Fall 2010 Selected Notes Set 2 Alexander A. Shvartsman Computer Science and Engineering University of Connecticut Copyright c 2002-2010 by Alexander A. Shvartsman. All rights reserved. 2

More information

A6-R3: DATA STRUCTURE THROUGH C LANGUAGE

A6-R3: DATA STRUCTURE THROUGH C LANGUAGE A6-R3: DATA STRUCTURE THROUGH C LANGUAGE NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. 2. PART ONE is to be answered in the TEAR-OFF

More information

Union-Find: A Data Structure for Disjoint Set Operations

Union-Find: A Data Structure for Disjoint Set Operations Union-Find: A Data Structure for Disjoint Set Operations 1 Equivalence Relations A equivalence relation R is defined on a set S, if for every pair of elements (a,b) in S, a R b is either false or true

More information

Search Trees. Data and File Structures Laboratory. DFS Lab (ISI) Search Trees 1 / 17

Search Trees. Data and File Structures Laboratory.  DFS Lab (ISI) Search Trees 1 / 17 Search Trees Data and File Structures Laboratory http://www.isical.ac.in/~dfslab/2017/index.html DFS Lab (ISI) Search Trees 1 / 17 Binary search trees. Definition. Binary tree in which following property

More information

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 Asymptotics, Recurrence and Basic Algorithms 1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 1. O(logn) 2. O(n) 3. O(nlogn) 4. O(n 2 ) 5. O(2 n ) 2. [1 pt] What is the solution

More information

CS 310 Advanced Data Structures and Algorithms

CS 310 Advanced Data Structures and Algorithms CS 310 Advanced Data Structures and Algorithms Sorting June 13, 2017 Tong Wang UMass Boston CS 310 June 13, 2017 1 / 42 Sorting One of the most fundamental problems in CS Input: a series of elements with

More information

CMSC 341 Lecture 15 Leftist Heaps

CMSC 341 Lecture 15 Leftist Heaps Based on slides from previous iterations of this course CMSC 341 Lecture 15 Leftist Heaps Prof. John Park Review of Heaps Min Binary Heap A min binary heap is a Complete binary tree Neither child is smaller

More information

A Comparison of Data Structures for Dijkstra's Single Source Shortest Path Algorithm. Shane Saunders

A Comparison of Data Structures for Dijkstra's Single Source Shortest Path Algorithm. Shane Saunders A Comparison of Data Structures for Dijkstra's Single Source Shortest Path Algorithm Shane Saunders November 5, 1999 Abstract Dijkstra's algorithm computes the shortest paths between a starting vertex

More information

CS 598: Communication Cost Analysis of Algorithms Lecture 15: Communication-optimal sorting and tree-based algorithms

CS 598: Communication Cost Analysis of Algorithms Lecture 15: Communication-optimal sorting and tree-based algorithms CS 598: Communication Cost Analysis of Algorithms Lecture 15: Communication-optimal sorting and tree-based algorithms Edgar Solomonik University of Illinois at Urbana-Champaign October 12, 2016 Defining

More information

Loop Transformations! Part II!

Loop Transformations! Part II! Lecture 9! Loop Transformations! Part II! John Cavazos! Dept of Computer & Information Sciences! University of Delaware! www.cis.udel.edu/~cavazos/cisc879! Loop Unswitching Hoist invariant control-flow

More information

Parallel Models. Hypercube Butterfly Fully Connected Other Networks Shared Memory v.s. Distributed Memory SIMD v.s. MIMD

Parallel Models. Hypercube Butterfly Fully Connected Other Networks Shared Memory v.s. Distributed Memory SIMD v.s. MIMD Parallel Algorithms Parallel Models Hypercube Butterfly Fully Connected Other Networks Shared Memory v.s. Distributed Memory SIMD v.s. MIMD The PRAM Model Parallel Random Access Machine All processors

More information

Introduction to Computers and Programming. Today

Introduction to Computers and Programming. Today Introduction to Computers and Programming Prof. I. K. Lundqvist Lecture 10 April 8 2004 Today How to determine Big-O Compare data structures and algorithms Sorting algorithms 2 How to determine Big-O Partition

More information

Complexity and Advanced Algorithms Monsoon Parallel Algorithms Lecture 4

Complexity and Advanced Algorithms Monsoon Parallel Algorithms Lecture 4 Complexity and Advanced Algorithms Monsoon 2011 Parallel Algorithms Lecture 4 Advanced Optimal Solutions 1 8 5 11 2 6 10 4 3 7 12 9 General technique suggests that we solve a smaller problem and extend

More information

CMSC 341 Lecture 15 Leftist Heaps

CMSC 341 Lecture 15 Leftist Heaps Based on slides from previous iterations of this course CMSC 341 Lecture 15 Leftist Heaps Prof. John Park Review of Heaps Min Binary Heap A min binary heap is a Complete binary tree Neither child is smaller

More information

List Ranking. Chapter 4

List Ranking. Chapter 4 List Ranking Chapter 4 Problem on linked lists 2-level memory model List Ranking problem Given a (mono directional) linked list L of n items, compute the distance of each item from the tail of L. Id Succ

More information

Union-Find: A Data Structure for Disjoint Set Operations

Union-Find: A Data Structure for Disjoint Set Operations Union-Find: A Data Structure for Disjoint Set Operations 1 The Union-Find Data Structure Purpose: Great for disjoint sets Operations: Union ( S 1, S 2 ) Find ( x ) Performs a union of two disjoint sets

More information

Lecture 18. Today, we will discuss developing algorithms for a basic model for parallel computing the Parallel Random Access Machine (PRAM) model.

Lecture 18. Today, we will discuss developing algorithms for a basic model for parallel computing the Parallel Random Access Machine (PRAM) model. U.C. Berkeley CS273: Parallel and Distributed Theory Lecture 18 Professor Satish Rao Lecturer: Satish Rao Last revised Scribe so far: Satish Rao (following revious lecture notes quite closely. Lecture

More information

List Ranking. Chapter 4

List Ranking. Chapter 4 List Ranking Chapter 4 Problem on linked lists 2-level memory model List Ranking problem Given a (mono directional) linked list L of n items, compute the distance of each item from the tail of L. Id Succ

More information

Deliverables. Quick Sort. Randomized Quick Sort. Median Order statistics. Heap Sort. External Merge Sort

Deliverables. Quick Sort. Randomized Quick Sort. Median Order statistics. Heap Sort. External Merge Sort More Sorting Deliverables Quick Sort Randomized Quick Sort Median Order statistics Heap Sort External Merge Sort Copyright @ gdeepak.com 2 Quick Sort Divide and conquer algorithm which relies on a partition

More information

Binary Heaps. CSE 373 Data Structures Lecture 11

Binary Heaps. CSE 373 Data Structures Lecture 11 Binary Heaps CSE Data Structures Lecture Readings and References Reading Sections.1-. //0 Binary Heaps - Lecture A New Problem Application: Find the smallest ( or highest priority) item quickly Operating

More information

Design and Analysis of Algorithms - - Assessment

Design and Analysis of Algorithms - - Assessment X Courses» Design and Analysis of Algorithms Week 1 Quiz 1) In the code fragment below, start and end are integer values and prime(x) is a function that returns true if x is a prime number and false otherwise.

More information

Paradigms for Parallel Algorithms

Paradigms for Parallel Algorithms S Parallel Algorithms Paradigms for Parallel Algorithms Reference : C. Xavier and S. S. Iyengar, Introduction to Parallel Algorithms Binary Tree Paradigm A binary tree with n nodes is of height log n Can

More information

7. Sorting I. 7.1 Simple Sorting. Problem. Algorithm: IsSorted(A) 1 i j n. Simple Sorting

7. Sorting I. 7.1 Simple Sorting. Problem. Algorithm: IsSorted(A) 1 i j n. Simple Sorting Simple Sorting 7. Sorting I 7.1 Simple Sorting Selection Sort, Insertion Sort, Bubblesort [Ottman/Widmayer, Kap. 2.1, Cormen et al, Kap. 2.1, 2.2, Exercise 2.2-2, Problem 2-2 19 197 Problem Algorithm:

More information

Arrays, Vectors Searching, Sorting

Arrays, Vectors Searching, Sorting Arrays, Vectors Searching, Sorting Arrays char s[200]; //array of 200 characters different type than class string can be accessed as s[0], s[1],..., s[199] s[0]= H ; s[1]= e ; s[2]= l ; s[3]= l ; s[4]=

More information

Sorting and Selection

Sorting and Selection Sorting and Selection Introduction Divide and Conquer Merge-Sort Quick-Sort Radix-Sort Bucket-Sort 10-1 Introduction Assuming we have a sequence S storing a list of keyelement entries. The key of the element

More information

CSE 613: Parallel Programming. Lecture 11 ( Graph Algorithms: Connected Components )

CSE 613: Parallel Programming. Lecture 11 ( Graph Algorithms: Connected Components ) CSE 61: Parallel Programming Lecture ( Graph Algorithms: Connected Components ) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 01 Graph Connectivity 1 1 1 6 5 Connected Components:

More information

Chapter 6 Heaps. Introduction. Heap Model. Heap Implementation

Chapter 6 Heaps. Introduction. Heap Model. Heap Implementation Introduction Chapter 6 Heaps some systems applications require that items be processed in specialized ways printing may not be best to place on a queue some jobs may be more small 1-page jobs should be

More information

CSE 241 Class 17. Jeremy Buhler. October 28, Ordered collections supported both, plus total ordering operations (pred and succ)

CSE 241 Class 17. Jeremy Buhler. October 28, Ordered collections supported both, plus total ordering operations (pred and succ) CSE 241 Class 17 Jeremy Buhler October 28, 2015 And now for something completely different! 1 A New Abstract Data Type So far, we ve described ordered and unordered collections. Unordered collections didn

More information

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 Asymptotics, Recurrence and Basic Algorithms 1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 2. O(n) 2. [1 pt] What is the solution to the recurrence T(n) = T(n/2) + n, T(1)

More information

Complexity and Advanced Algorithms Monsoon Parallel Algorithms Lecture 2

Complexity and Advanced Algorithms Monsoon Parallel Algorithms Lecture 2 Complexity and Advanced Algorithms Monsoon 2011 Parallel Algorithms Lecture 2 Trivia ISRO has a new supercomputer rated at 220 Tflops Can be extended to Pflops. Consumes only 150 KW of power. LINPACK is

More information

CHENNAI MATHEMATICAL INSTITUTE M.Sc. / Ph.D. Programme in Computer Science

CHENNAI MATHEMATICAL INSTITUTE M.Sc. / Ph.D. Programme in Computer Science CHENNAI MATHEMATICAL INSTITUTE M.Sc. / Ph.D. Programme in Computer Science Entrance Examination, 5 May 23 This question paper has 4 printed sides. Part A has questions of 3 marks each. Part B has 7 questions

More information

Fibonacci Heaps Priority Queues. John Ross Wallrabenstein

Fibonacci Heaps Priority Queues. John Ross Wallrabenstein Fibonacci Heaps Priority Queues John Ross Wallrabenstein Updates Project 4 Grades Released Project 5 Questions? Review *This usually refers to the size of the structure Review What is a static data structure?

More information

Week 10. Sorting. 1 Binary heaps. 2 Heapification. 3 Building a heap 4 HEAP-SORT. 5 Priority queues 6 QUICK-SORT. 7 Analysing QUICK-SORT.

Week 10. Sorting. 1 Binary heaps. 2 Heapification. 3 Building a heap 4 HEAP-SORT. 5 Priority queues 6 QUICK-SORT. 7 Analysing QUICK-SORT. Week 10 1 2 3 4 5 6 Sorting 7 8 General remarks We return to sorting, considering and. Reading from CLRS for week 7 1 Chapter 6, Sections 6.1-6.5. 2 Chapter 7, Sections 7.1, 7.2. Discover the properties

More information

(Sequen)al) Sor)ng. Bubble Sort, Inser)on Sort. Merge Sort, Heap Sort, QuickSort. Op)mal Parallel Time complexity. O ( n 2 )

(Sequen)al) Sor)ng. Bubble Sort, Inser)on Sort. Merge Sort, Heap Sort, QuickSort. Op)mal Parallel Time complexity. O ( n 2 ) Parallel Sor)ng A jungle (Sequen)al) Sor)ng Bubble Sort, Inser)on Sort O ( n 2 ) Merge Sort, Heap Sort, QuickSort O ( n log n ) QuickSort best on average Op)mal Parallel Time complexity O ( n log n ) /

More information

Algorithms, Spring 2014, CSE, OSU Lecture 2: Sorting

Algorithms, Spring 2014, CSE, OSU Lecture 2: Sorting 6331 - Algorithms, Spring 2014, CSE, OSU Lecture 2: Sorting Instructor: Anastasios Sidiropoulos January 10, 2014 Sorting Given an array of integers A[1... n], rearrange its elements so that A[1] A[2]...

More information

Comparison Sorts. Chapter 9.4, 12.1, 12.2

Comparison Sorts. Chapter 9.4, 12.1, 12.2 Comparison Sorts Chapter 9.4, 12.1, 12.2 Sorting We have seen the advantage of sorted data representations for a number of applications Sparse vectors Maps Dictionaries Here we consider the problem of

More information

COMP Parallel Computing. PRAM (2) PRAM algorithm design techniques

COMP Parallel Computing. PRAM (2) PRAM algorithm design techniques COMP 633 - Parallel Computing Lecture 3 Aug 29, 2017 PRAM algorithm design techniques Reading for next class (Thu Aug 31): PRAM handout secns 3.6, 4.1, skim section 5. Written assignment 1 is posted, due

More information

QuickSort and Others. Data Structures and Algorithms Andrei Bulatov

QuickSort and Others. Data Structures and Algorithms Andrei Bulatov QuickSort and Others Data Structures and Algorithms Andrei Bulatov Algorithms Quicksort 5-2 Heap Property A heap is a nearly complete binary tree, satisfying an extra condition Let Parent(i) denote the

More information

Review implementation of Stable Matching Survey of common running times. Turn in completed problem sets. Jan 18, 2019 Sprenkle - CSCI211

Review implementation of Stable Matching Survey of common running times. Turn in completed problem sets. Jan 18, 2019 Sprenkle - CSCI211 Objectives Review implementation of Stable Matching Survey of common running times Turn in completed problem sets Jan 18, 2019 Sprenkle - CSCI211 1 Review: Asymptotic Analysis of Gale-Shapley Alg Not explicitly

More information

CS102 Binary Search Trees

CS102 Binary Search Trees CS102 Binary Search Trees Prof Tejada 1 To speed up insertion, removal and search, modify the idea of a Binary Tree to create a Binary Search Tree (BST) Binary Search Trees Binary Search Trees have one

More information

Operations on Heap Tree The major operations required to be performed on a heap tree are Insertion, Deletion, and Merging.

Operations on Heap Tree The major operations required to be performed on a heap tree are Insertion, Deletion, and Merging. Priority Queue, Heap and Heap Sort In this time, we will study Priority queue, heap and heap sort. Heap is a data structure, which permits one to insert elements into a set and also to find the largest

More information

Special Topics on Algorithms Fall 2017 Dynamic Programming. Vangelis Markakis, Ioannis Milis and George Zois

Special Topics on Algorithms Fall 2017 Dynamic Programming. Vangelis Markakis, Ioannis Milis and George Zois Special Topics on Algorithms Fall 2017 Dynamic Programming Vangelis Markakis, Ioannis Milis and George Zois Basic Algorithmic Techniques Content Dynamic Programming Introduc

More information

Lecture 12 TREES II CS2110 Spring 2018

Lecture 12 TREES II CS2110 Spring 2018 TREES II Lecture CS0 Spring 08 Announcements Prelim is Tonight, bring your student ID 5:30PM EXAM OLH55: netids starting aa to dh OLH55: netids starting di to ji PHL0: netids starting jj to ks (Plus students

More information

Sorted Arrays. Operation Access Search Selection Predecessor Successor Output (print) Insert Delete Extract-Min

Sorted Arrays. Operation Access Search Selection Predecessor Successor Output (print) Insert Delete Extract-Min Binary Search Trees FRIDAY ALGORITHMS Sorted Arrays Operation Access Search Selection Predecessor Successor Output (print) Insert Delete Extract-Min 6 10 11 17 2 0 6 Running Time O(1) O(lg n) O(1) O(1)

More information

Week 10. Sorting. 1 Binary heaps. 2 Heapification. 3 Building a heap 4 HEAP-SORT. 5 Priority queues 6 QUICK-SORT. 7 Analysing QUICK-SORT.

Week 10. Sorting. 1 Binary heaps. 2 Heapification. 3 Building a heap 4 HEAP-SORT. 5 Priority queues 6 QUICK-SORT. 7 Analysing QUICK-SORT. Week 10 1 Binary s 2 3 4 5 6 Sorting Binary s 7 8 General remarks Binary s We return to sorting, considering and. Reading from CLRS for week 7 1 Chapter 6, Sections 6.1-6.5. 2 Chapter 7, Sections 7.1,

More information

More PRAM Algorithms. Techniques Covered

More PRAM Algorithms. Techniques Covered More PRAM Algorithms Arvind Krishnamurthy Fall 24 Analysis technique: Brent s scheduling lemma Techniques Covered Parallel algorithm is simply characterized by W(n) and S(n) Parallel techniques: Scans

More information

(D) There is a constant value n 0 1 such that B is faster than A for every input of size. n n 0.

(D) There is a constant value n 0 1 such that B is faster than A for every input of size. n n 0. Part : Multiple Choice Enter your answers on the Scantron sheet. We will not mark answers that have been entered on this sheet. Each multiple choice question is worth. marks. Note. when you are asked to

More information

Analysis of Algorithms. Unit 4 - Analysis of well known Algorithms

Analysis of Algorithms. Unit 4 - Analysis of well known Algorithms Analysis of Algorithms Unit 4 - Analysis of well known Algorithms 1 Analysis of well known Algorithms Brute Force Algorithms Greedy Algorithms Divide and Conquer Algorithms Decrease and Conquer Algorithms

More information

Visualizing Data Structures. Dan Petrisko

Visualizing Data Structures. Dan Petrisko Visualizing Data Structures Dan Petrisko What is an Algorithm? A method of completing a function by proceeding from some initial state and input, proceeding through a finite number of well defined steps,

More information

Heap Model. specialized queue required heap (priority queue) provides at least

Heap Model. specialized queue required heap (priority queue) provides at least Chapter 6 Heaps 2 Introduction some systems applications require that items be processed in specialized ways printing may not be best to place on a queue some jobs may be more small 1-page jobs should

More information

Selection, Bubble, Insertion, Merge, Heap, Quick Bucket, Radix

Selection, Bubble, Insertion, Merge, Heap, Quick Bucket, Radix Spring 2010 Review Topics Big O Notation Heaps Sorting Selection, Bubble, Insertion, Merge, Heap, Quick Bucket, Radix Hashtables Tree Balancing: AVL trees and DSW algorithm Graphs: Basic terminology and

More information

PART IV. Given 2 sorted arrays, What is the time complexity of merging them together?

PART IV. Given 2 sorted arrays, What is the time complexity of merging them together? General Questions: PART IV Given 2 sorted arrays, What is the time complexity of merging them together? Array 1: Array 2: Sorted Array: Pointer to 1 st element of the 2 sorted arrays Pointer to the 1 st

More information

Parallel Models RAM. Parallel RAM aka PRAM. Variants of CRCW PRAM. Advanced Algorithms

Parallel Models RAM. Parallel RAM aka PRAM. Variants of CRCW PRAM. Advanced Algorithms Parallel Models Advanced Algorithms Piyush Kumar (Lecture 10: Parallel Algorithms) An abstract description of a real world parallel machine. Attempts to capture essential features (and suppress details?)

More information

Binary Tree. Preview. Binary Tree. Binary Tree. Binary Search Tree 10/2/2017. Binary Tree

Binary Tree. Preview. Binary Tree. Binary Tree. Binary Search Tree 10/2/2017. Binary Tree 0/2/ Preview Binary Tree Tree Binary Tree Property functions In-order walk Pre-order walk Post-order walk Search Tree Insert an element to the Tree Delete an element form the Tree A binary tree is a tree

More information

CS 361 Data Structures & Algs Lecture 9. Prof. Tom Hayes University of New Mexico

CS 361 Data Structures & Algs Lecture 9. Prof. Tom Hayes University of New Mexico CS 361 Data Structures & Algs Lecture 9 Prof. Tom Hayes University of New Mexico 09-21-2010 1 Today Orderings Searching Sorting Priority Queues & Heaps 2 Order Relation We say a binary relation R is an

More information

Divide and Conquer Sorting Algorithms and Noncomparison-based

Divide and Conquer Sorting Algorithms and Noncomparison-based Divide and Conquer Sorting Algorithms and Noncomparison-based Sorting Algorithms COMP1927 16x1 Sedgewick Chapters 7 and 8 Sedgewick Chapter 6.10, Chapter 10 DIVIDE AND CONQUER SORTING ALGORITHMS Step 1

More information

Systolic arrays Parallel SIMD machines. 10k++ processors. Vector/Pipeline units. Front End. Normal von Neuman Runs the application program

Systolic arrays Parallel SIMD machines. 10k++ processors. Vector/Pipeline units. Front End. Normal von Neuman Runs the application program SIMD Single Instruction Multiple Data Lecture 12: SIMD-machines & data parallelism, dependency analysis for automatic vectorizing and parallelizing of serial program Part 1 Parallelism through simultaneous

More information

Sorting (I) Hwansoo Han

Sorting (I) Hwansoo Han Sorting (I) Hwansoo Han Sorting Algorithms Sorting for a short list Simple sort algorithms: O(n ) time Bubble sort, insertion sort, selection sort Popular sorting algorithm Quicksort: O(nlogn) time on

More information

CSci 231 Homework 7. Red Black Trees. CLRS Chapter 13 and 14

CSci 231 Homework 7. Red Black Trees. CLRS Chapter 13 and 14 CSci 31 Homework 7 Red Black Trees CLRS Chapter 13 and 14 Choose 4 problems from the list below. 1. (CLRS 13.1-6) What is the largest possible number of internal nodes in a red-black tree with black-height

More information

Searching, Sorting. part 1

Searching, Sorting. part 1 Searching, Sorting part 1 Week 3 Objectives Searching: binary search Comparison-based search: running time bound Sorting: bubble, selection, insertion, merge Sorting: Heapsort Comparison-based sorting

More information

Brute Force: Selection Sort

Brute Force: Selection Sort Brute Force: Intro Brute force means straightforward approach Usually based directly on problem s specs Force refers to computational power Usually not as efficient as elegant solutions Advantages: Applicable

More information

Lecture #2. 1 Overview. 2 Worst-Case Analysis vs. Average Case Analysis. 3 Divide-and-Conquer Design Paradigm. 4 Quicksort. 4.

Lecture #2. 1 Overview. 2 Worst-Case Analysis vs. Average Case Analysis. 3 Divide-and-Conquer Design Paradigm. 4 Quicksort. 4. COMPSCI 330: Design and Analysis of Algorithms 8/28/2014 Lecturer: Debmalya Panigrahi Lecture #2 Scribe: Yilun Zhou 1 Overview This lecture presents two sorting algorithms, quicksort and mergesort, that

More information

CSCI2100B Data Structures Trees

CSCI2100B Data Structures Trees CSCI2100B Data Structures Trees Irwin King king@cse.cuhk.edu.hk http://www.cse.cuhk.edu.hk/~king Department of Computer Science & Engineering The Chinese University of Hong Kong Introduction General Tree

More information

A set of nodes (or vertices) with a single starting point

A set of nodes (or vertices) with a single starting point Binary Search Trees Understand tree terminology Understand and implement tree traversals Define the binary search tree property Implement binary search trees Implement the TreeSort algorithm 2 A set of

More information

Heaps Outline and Required Reading: Heaps ( 7.3) COSC 2011, Fall 2003, Section A Instructor: N. Vlajic

Heaps Outline and Required Reading: Heaps ( 7.3) COSC 2011, Fall 2003, Section A Instructor: N. Vlajic 1 Heaps Outline and Required Reading: Heaps (.3) COSC 2011, Fall 2003, Section A Instructor: N. Vlajic Heap ADT 2 Heap binary tree (T) that stores a collection of keys at its internal nodes and satisfies

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Last time Network topologies Intro to MPI Matrix-matrix multiplication Today MPI I/O Randomized Algorithms Parallel k-select Graph coloring Assignment 2 Parallel I/O Goal of Parallel

More information

Finding the axis of symmetry, vertex, and roots of a parabola

Finding the axis of symmetry, vertex, and roots of a parabola Finding the axis of symmetry, vertex, and roots of a parabola 1) Find the Axis of Symmetry of y = x 2-4x + 3 (The AOS is the vertical line that splits the parabola in 2 equal parts) Axis of Symmetry Axis

More information