Testing Continuous Distributions. Artur Czumaj. DIMAP (Centre for Discrete Maths and it Applications) & Department of Computer Science

Size: px
Start display at page:

Download "Testing Continuous Distributions. Artur Czumaj. DIMAP (Centre for Discrete Maths and it Applications) & Department of Computer Science"

Transcription

1 Testing Continuous Distributions Artur Czumaj DIMAP (Centre for Discrete Maths and it Applications) & Department of Computer Science University of Warwick Joint work with A. Adamaszek & C. Sohler

2 Testing probability distributions General question: Test a given property of a given probability distribution distribution is available by accessing only samples drawn from the distribution Examples: - is given probability uniform? - are two prob. distributions independent?

3 Testing probability distributions For more details/introduction: see R. Rubinfeld s talk on Wednesday Typical result: Given a probability distribution on n points, we can test if it s uniform after seeing ~ n random samples [Batu et al 01] Testing = distinguish between uniform distribution and distributions which are ²-far from uniform ²-far from uniform: ² far from uniform P x Ω Pr[x] 1 n ²

4 Testing probability distributions For more details/introduction: see R. Rubinfeld s talk on Wednesday Typical result: Given a probability distribution on n points, we can test if it s uniform after seeing ~ n random samples [Batu et al 01] What if distribution has infinite support? Continuous probability distributions?

5 Testing continuous probability distributions Typical result: Given a probability distribution on n points, we can test if it s uniform after seeing ~ n random samples ~ n random samples are necessary Given a continuous probability distribution on [0,1], can we test if it s uniform? Impossible Follows from the lower bound for discrete case with n

6 Testing continuous probability distributions More direct proof: Suppose tester A distinguishes in at most t steps between uniform distribution and ²-far from uniform D 1 uniform distribution D 2 is ½-far from uniform and is defined as follows: Partition [0,1] into t 3 interval of identical length Split each interval into two halves Randomly choose one half: the chosen half gets uniform distribution the other half has zero probability bilit In t steps, no interval will be chosen more than once in D 2 A cannot distinguish i between D 1 and D 2

7 Testing continuous probability distributions What can be tested? First question: test if the distribution is indeed continuous

8 Testing continuous probability distributions Test if a probability b distribution is discrete Prob. distribution D on is discrete on N points if there is a set X, X N, st. Pr D [X]=1 D is ²-far from discrete on N points if X, X N Pr D [X]<1-² ²

9 Testing if distribution is discrete on N points We repeatedly draw random points from D All what can we see: Count frequency of each point Count number of points drawn For some D (eg, uniform or close): we need ( N ) to see first multiple occurrence Gives a hope that t can be solved in sublinear-time

10 Testing if distribution is discrete on N points Raskhodnikova k et al 07 (Valiant 08): Distinct Elements Problem: D discrete with each element with prob. 1/N Estimate the support size (N 1-o(1) ) queries are needed to distinguish instances with N/100 and N/11 support size Key step: two distributions that have identical first log Θ(1) N moments their expected frequencies up to log Θ(1) N are identical

11 Testing if distribution is discrete on N points Raskhodnikova k et al 07 (Valiant 08): Distinct Elements Problem: D discrete with each element with prob. 1/N Estimate the support size (N 1-o(1) ) queries are needed to distinguish instances with N/100 and N/11 support size Corollary: Testing if a distribution is discrete on N points requires (N 1-o(1) ) samples

12 Testing if distribution is discrete on N points We repeatedly draw random points from D All what can we see: Count frequency of each point Count number of points drawn Can we get O(N) time?

13 Testing if distribution is discrete on N points Testing if a distribution is discrete on N points: Draw a sample S = (s 1,, s t ) with t = cn/² If S has more than N distinct elements then REJECT else ACCEPT If D is discrete on N points then we will accept D We only have to prove that if D is ²-far from discrete on N points, then we will reject with probability >2/3

14 Testing if distribution is discrete on N points Testing if a distribution is discrete on N points: Draw a sample S = (s 1,, s t ) with t = cn/² If S has more than N distinct elements then REJECT else ACCEPT Can we do better (if we only count distinct elements)? D: has 1 point with prob. 1-4² 2N points with prob. 2²/N D is ²-far f from discrete on N points We need (N/²) samples to see at least N points

15 Testing if distribution is discrete on N points Assume D is ²-far from discrete on N points Order points in so that Pr[X i ] = p i and p i p i+1 A = {X 1,, X N }, B = other points from the support p 1 +p 2 + +p N < 1-² α = # points from A drawn by the algorithm β = # points from B drawn by the algorithm We consider 3 cases (all bounds are with prob. > 0.99): 1) p N < ² /2N β > N all points in B have small prob. not too many repetitions 2) p N c N / ² β ²/2p N points in B have small prob. bound for #distinct points 3) p N ²/2N α N - ²/2p N either many distinct points from A or p N is very small (then β will be large)

16 Testing if distribution is discrete on N points Assume D is ²-far from discrete on N points Order points in so that Pr[X i ] = p i and p i p i+1 A = {X 1,, X N }, B = other points from the support α = # points from A drawn by the algorithm β = # points from B drawn by the algorithm Main ideas: Case 2) p N c N / ² β ²/2p N Worst case: all points in B have uniform and maximum distrib. = p N Z i = random variable: number of steps to get ith new point from B ²/2p N We have to prove that with prob. > 0.99: X Zi <t 1 Z 1, Z 2, - geometric distribution: E[Z i ]= (r i)p N, r =numberofpointsinb P ²/2pN i=1 1 E[Z i ] 2 p N Markov gives with prob. 0.99: P ²/2p N i=1 Z i <t i=1

17 Testing if distribution is discrete on N points We repeatedly draw random points from D All what can we see: Count frequency of each point Count number of points drawn By sampling O(N/²) points one can distinguish between distributions discrete on N points and those ²-far from discrete on N points The algorithm may fail with prob. < 1/3

18 Testing continuous probability distributions What can we test efficiently? Complexity for discrete distributions should be independent d on the support size Uniform distribution ib ti under some conditions Rubinfeld & Servedio 05: testing monotone distributions for uniformity

19 Testing uniform distributions (discrete) Rubinfeld & Servedio 05: Testing monotone distributions for uniformity D: distribution on n-dimensional cube; D:{0,1} n R x,y {0,1} n, x 7 y iff i: x i y i D is monotone if x 7 y Pr[x] Pr[y] Goal: test if a monotone distribution is uniform Rubinfeld & Servedio 05: Testing if a monotone distribution on n-dimensional binary cube is uniform: Can be done with O(n log(1/²)/² 2 ) samples Requires (n/log 2 n) samples

20 Testing continuous probability distributions Rubinfeld & Servedio 05: Testing monotone distributions for uniformity D: distribution on n-dimensional cube; D:{0,1} n R x,y {0,1} n, x 7 y iff i: x i y i D is monotone if x 7 y Pr[x] Pr[y] Goal: test if a monotone distribution is uniform D: distribution on n-dimensional cube; density function f:[0,1] n R x,y [0,1] n, x 7 y iff i: x i y i,y [, ], y i y i D is monotone if x 7 y f(x) f(y)

21 Testing continuous probability distributions Lower bounds holds for continuous cubes Upper bound:??? is it a function of the dimension or the support? Rubinfeld D: distribution & Servedio 05: on n-dimensional cube; Testing density if a monotone function distribution f:[0,1] n on Rn-dimensional binary cube x,y [0,1] n is uniform: x 7 iff i: x Can be done with, O(n log(1/²)/² y i y 2 ) samples i Requires D is (n/log monotone 2 n) samples if x 7 y f(x) f(y)

22 Testing monotone distributions for uniformity D is ²-far f from uniform if R 1 f(x) 1 dx ² 2 x Ω To test uniformity, we need to characterize monotone distributions that are ²-far from uniform On the high level: we follow approach of Rubinfeld & Servedio 05; details are quite different

23 Testing monotone distributions for uniformity D is ²-far f from uniform if R 1 f(x) 1 dx ² 2 x Ω Key Technical Lemma: Let g:[0,1] g[ n be a monotone function with x g(x) dx = 0 then Key Lemma follows from Key Technical Lemma with g(x) = f(x)-1 Key Lemma: If D is a monotone distribution on [0,1] n with density function f and which is ²-far from uniform then

24 Testing monotone distributions for uniformity Key Lemma: If D is a monotone distribution on [0,1] n with density function f and which is ²-far from uniform then s = cn/² 2 Repeat 20 times Draw a sample S=(x 1,,x s ) from [0,1] n If x i 1 s (n/2+²/4) then REJECT and exit ACCEPT

25 Testing monotone distributions for uniformity Theorem: The algorithm below tests if D is uniform. It s complexity is O(n/² 2 ). Slightly better bound than the one by RS 05 s = cn/² 2 Repeat 20 times Draw a sample S=(x 1,,x s ) from [0,1] n If x i 1 s (n/2+²/4) then REJECT and exit ACCEPT

26 Testing monotone distributions for uniformity s = cn/² 2 Repeat 20 times Draw a sample S=(x 1,,x s ) from [0,1] n If x i 1 s (n/2+²/4) then REJECT and exit ACCEPT Lemma 1: If D is uniform then Pr[ i x i 1 s(n/2+²/4)] 0.01 Easy application of Chernoff bound Lemma 2: If D is ²-far f from uniform then Pr[ i x i 1 < s(n/2+²/4)] 12/13 By Key Lemma + Fi Feige lemma

27 Testing monotone distributions for uniformity s = cn/² 2 Repeat 20 times Draw a sample S=(x 1,,x s ) from [0,1] n If x i 1 s (n/2+²/4) then REJECT and exit ACCEPT Lemma 2: If D is ²-far from uniform then Pr[ i x i 1 < s(n/2+²/4)] 12/13 Proof: D is ²-far from uniform E[ i x i 1 ] s(n+²)/2 Feige s lemma: Y 1,, Y s independent rv r.v., Y i 0, E[Y i 1] Pr[ i Y i < s + 1/12] 1/13 Choose Y i = 2-2 x i 1 /(n+²) Then, Feige s lemma yields the desired claim

28 Testing monotone distributions for uniformity Key Lemma: If D is a monotone distribution on [0,1] n with density function f and which is ²-far from uniform then s = cn/² 2 Repeat 20 times Draw a sample S=(x 1,,x s ) from [0,1] n If x i 1 s (n/2+²/4) then REJECT and exit ACCEPT

29 Testing monotone distributions for uniformity Key Lemma: If D is a monotone distribution on [0,1] n with density function f and which is ²-far from uniform then Key Technical Lemma: Let g:[0,1] n be a monotone function with x g(x) dx = 0 then

30 Testing monotone distributions for uniformity Key Technical Lemma: Let g:[0,1] n be a monotone function with x g(x) dx = 0 then Why such a bound: Tight for g(x) = sgn(x 1 ½) Z 1 Z 1 µ n 1 kxkk 1 g(x) ( ) = (x x n ) = = x:x 1 > 1 2 x:x 1 > 1 2 Similarly, Z x:x 1 < 1 2 kxk 1 g(x) = 1 2 µ = n , and hence, Z kxk 1 g(x) = x Z x:x 1 > 1 2 Z kxk 1 g(x) x:x 1 < 1 2 kxk 1 g(x) = 1 4 = 1 Z 4 x g(x).

31 Testing monotone continuous distributions Rubinfeld & Servedio 05: Testing if a monotone distribution on n-dimensional binary cube is uniform: Can be done with O(n log(1/²)/² 2 ) samples Requires (n/log 2 n) samples Here: Testing if a monotone distribution on n-dimensional continuous cube is uniform : Can be done with O(n/² 2 ) samples Can be easily extended to {0,1,,k},, n cubes

32 Conclusions Testing continuous distributions is different from testing discrete distributions Continuous distributions are harder More examples when it s possible to test Usually some additional conditions are to be imposed Tight(er) bounds?

MULTI-DIMENSIONAL MONTE CARLO INTEGRATION

MULTI-DIMENSIONAL MONTE CARLO INTEGRATION CS580: Computer Graphics KAIST School of Computing Chapter 3 MULTI-DIMENSIONAL MONTE CARLO INTEGRATION 2 1 Monte Carlo Integration This describes a simple technique for the numerical evaluation of integrals

More information

Discrete Mathematics Course Review 3

Discrete Mathematics Course Review 3 21-228 Discrete Mathematics Course Review 3 This document contains a list of the important definitions and theorems that have been covered thus far in the course. It is not a complete listing of what has

More information

Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS

Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS Definition 1.1. Let X be a set and T a subset of the power set P(X) of X. Then T is a topology on X if and only if all of the following

More information

SAMPLING AND THE MOMENT TECHNIQUE. By Sveta Oksen

SAMPLING AND THE MOMENT TECHNIQUE. By Sveta Oksen SAMPLING AND THE MOMENT TECHNIQUE By Sveta Oksen Overview - Vertical decomposition - Construction - Running time analysis - The bounded moments theorem - General settings - The sampling model - The exponential

More information

Today s outline: pp

Today s outline: pp Chapter 3 sections We will SKIP a number of sections Random variables and discrete distributions Continuous distributions The cumulative distribution function Bivariate distributions Marginal distributions

More information

Randomized Algorithms 2017A - Lecture 10 Metric Embeddings into Random Trees

Randomized Algorithms 2017A - Lecture 10 Metric Embeddings into Random Trees Randomized Algorithms 2017A - Lecture 10 Metric Embeddings into Random Trees Lior Kamma 1 Introduction Embeddings and Distortion An embedding of a metric space (X, d X ) into a metric space (Y, d Y ) is

More information

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3.

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. 301. Definition. Let m be a positive integer, and let X be a set. An m-tuple of elements of X is a function x : {1,..., m} X. We sometimes use x i instead

More information

Lecture and notes by: Nate Chenette, Brent Myers, Hari Prasad November 8, Property Testing

Lecture and notes by: Nate Chenette, Brent Myers, Hari Prasad November 8, Property Testing Property Testing 1 Introduction Broadly, property testing is the study of the following class of problems: Given the ability to perform (local) queries concerning a particular object (e.g., a function,

More information

We show that the composite function h, h(x) = g(f(x)) is a reduction h: A m C.

We show that the composite function h, h(x) = g(f(x)) is a reduction h: A m C. 219 Lemma J For all languages A, B, C the following hold i. A m A, (reflexive) ii. if A m B and B m C, then A m C, (transitive) iii. if A m B and B is Turing-recognizable, then so is A, and iv. if A m

More information

Lecture 15. Error-free variable length schemes: Shannon-Fano code

Lecture 15. Error-free variable length schemes: Shannon-Fano code Lecture 15 Agenda for the lecture Bounds for L(X) Error-free variable length schemes: Shannon-Fano code 15.1 Optimal length nonsingular code While we do not know L(X), it is easy to specify a nonsingular

More information

Maximal Independent Set

Maximal Independent Set Chapter 4 Maximal Independent Set In this chapter we present a first highlight of this course, a fast maximal independent set (MIS) algorithm. The algorithm is the first randomized algorithm that we study

More information

6 Randomized rounding of semidefinite programs

6 Randomized rounding of semidefinite programs 6 Randomized rounding of semidefinite programs We now turn to a new tool which gives substantially improved performance guarantees for some problems We now show how nonlinear programming relaxations can

More information

Module 7. Independent sets, coverings. and matchings. Contents

Module 7. Independent sets, coverings. and matchings. Contents Module 7 Independent sets, coverings Contents and matchings 7.1 Introduction.......................... 152 7.2 Independent sets and coverings: basic equations..... 152 7.3 Matchings in bipartite graphs................

More information

Sublinear Algorithms Lectures 1 and 2. Sofya Raskhodnikova Penn State University

Sublinear Algorithms Lectures 1 and 2. Sofya Raskhodnikova Penn State University Sublinear Algorithms Lectures 1 and 2 Sofya Raskhodnikova Penn State University 1 Tentative Topics Introduction, examples and general techniques. Sublinear-time algorithms for graphs strings basic properties

More information

Introduction to Machine Learning Lecture 4. Mehryar Mohri Courant Institute and Google Research

Introduction to Machine Learning Lecture 4. Mehryar Mohri Courant Institute and Google Research Introduction to Machine Learning Lecture 4 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Nearest-Neighbor Algorithms Nearest Neighbor Algorithms Definition: fix k 1, given a labeled

More information

Testing Euclidean Minimum Spanning Trees in the Plane

Testing Euclidean Minimum Spanning Trees in the Plane Testing Euclidean Minimum Spanning Trees in the Plane Artur Czumaj Christian Sohler Department of Computer Science Heinz Nixdorf Institute University of Warwick Computer Science Department Coventry CV4

More information

Sublinear Time and Space Algorithms 2016B Lecture 7 Sublinear-Time Algorithms for Sparse Graphs

Sublinear Time and Space Algorithms 2016B Lecture 7 Sublinear-Time Algorithms for Sparse Graphs Sublinear Time and Space Algorithms 2016B Lecture 7 Sublinear-Time Algorithms for Sparse Graphs Robert Krauthgamer 1 Approximating Average Degree in a Graph Input: A graph represented (say) as the adjacency

More information

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions.

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions. THREE LECTURES ON BASIC TOPOLOGY PHILIP FOTH 1. Basic notions. Let X be a set. To make a topological space out of X, one must specify a collection T of subsets of X, which are said to be open subsets of

More information

Testing the Cluster Structure of Graphs Christian Sohler

Testing the Cluster Structure of Graphs Christian Sohler Testing the Cluster Structure of Graphs Christian Sohler Very Large Networks Examples Social networks The World Wide Web Cocitation graphs Coauthorship graphs Data size GigaByte upto TeraByte (only the

More information

COMPUTABILITY THEORY AND RECURSIVELY ENUMERABLE SETS

COMPUTABILITY THEORY AND RECURSIVELY ENUMERABLE SETS COMPUTABILITY THEORY AND RECURSIVELY ENUMERABLE SETS JOSHUA LENERS Abstract. An algorithm is function from ω to ω defined by a finite set of instructions to transform a given input x to the desired output

More information

Data Streaming Algorithms for Geometric Problems

Data Streaming Algorithms for Geometric Problems Data Streaming Algorithms for Geometric roblems R.Sharathkumar Duke University 1 Introduction A data stream is an ordered sequence of points that can be read only once or a small number of times. Formally,

More information

Page 129 Exercise 5: Suppose that the joint p.d.f. of two random variables X and Y is as follows: { c(x. 0 otherwise. ( 1 = c. = c

Page 129 Exercise 5: Suppose that the joint p.d.f. of two random variables X and Y is as follows: { c(x. 0 otherwise. ( 1 = c. = c Stat Solutions for Homework Set Page 9 Exercise : Suppose that the joint p.d.f. of two random variables X and Y is as follows: { cx fx, y + y for y x, < x < otherwise. Determine a the value of the constant

More information

Testing random variables for independence and identity

Testing random variables for independence and identity Testing rom variables for independence identity Tuğkan Batu Eldar Fischer Lance Fortnow Ravi Kumar Ronitt Rubinfeld Patrick White Abstract Given access to independent samples of a distribution over, we

More information

Fast Approximate PCPs for Multidimensional Bin-Packing Problems

Fast Approximate PCPs for Multidimensional Bin-Packing Problems Fast Approximate PCPs for Multidimensional Bin-Packing Problems Tuğkan Batu, Ronitt Rubinfeld, and Patrick White Department of Computer Science, Cornell University, Ithaca, NY 14850 batu,ronitt,white @cs.cornell.edu

More information

Theoretical Computer Science. Testing Eulerianity and connectivity in directed sparse graphs

Theoretical Computer Science. Testing Eulerianity and connectivity in directed sparse graphs Theoretical Computer Science 412 (2011) 6390 640 Contents lists available at SciVerse ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Testing Eulerianity and connectivity

More information

THE GROWTH OF LIMITS OF VERTEX REPLACEMENT RULES

THE GROWTH OF LIMITS OF VERTEX REPLACEMENT RULES THE GROWTH OF LIMITS OF VERTEX REPLACEMENT RULES JOSEPH PREVITE, MICHELLE PREVITE, AND MARY VANDERSCHOOT Abstract. In this paper, we give conditions to distinguish whether a vertex replacement rule given

More information

6. Advanced Topics in Computability

6. Advanced Topics in Computability 227 6. Advanced Topics in Computability The Church-Turing thesis gives a universally acceptable definition of algorithm Another fundamental concept in computer science is information No equally comprehensive

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

Finding k-paths in Cycle Free Graphs

Finding k-paths in Cycle Free Graphs Finding k-paths in Cycle Free Graphs Aviv Reznik Under the Supervision of Professor Oded Goldreich Department of Computer Science and Applied Mathematics Weizmann Institute of Science Submitted for the

More information

Comparing the strength of query types in property testing: The case of testing k-colorability

Comparing the strength of query types in property testing: The case of testing k-colorability Comparing the strength of query types in property testing: The case of testing k-colorability Ido Ben-Eliezer Tali Kaufman Michael Krivelevich Dana Ron Abstract We study the power of four query models

More information

Generell Topologi. Richard Williamson. May 6, 2013

Generell Topologi. Richard Williamson. May 6, 2013 Generell Topologi Richard Williamson May 6, 2013 1 8 Thursday 7th February 8.1 Using connectedness to distinguish between topological spaces I Proposition 8.1. Let (, O ) and (Y, O Y ) be topological spaces.

More information

Recursive Estimation

Recursive Estimation Recursive Estimation Raffaello D Andrea Spring 28 Problem Set : Probability Review Last updated: March 6, 28 Notes: Notation: Unless otherwise noted, x, y, and z denote random variables, p x denotes the

More information

1 Matchings in Graphs

1 Matchings in Graphs Matchings in Graphs J J 2 J 3 J 4 J 5 J J J 6 8 7 C C 2 C 3 C 4 C 5 C C 7 C 8 6 J J 2 J 3 J 4 J 5 J J J 6 8 7 C C 2 C 3 C 4 C 5 C C 7 C 8 6 Definition Two edges are called independent if they are not adjacent

More information

6c Lecture 3 & 4: April 8 & 10, 2014

6c Lecture 3 & 4: April 8 & 10, 2014 6c Lecture 3 & 4: April 8 & 10, 2014 3.1 Graphs and trees We begin by recalling some basic definitions from graph theory. Definition 3.1. A (undirected, simple) graph consists of a set of vertices V and

More information

EDAA40 At home exercises 1

EDAA40 At home exercises 1 EDAA40 At home exercises 1 1. Given, with as always the natural numbers starting at 1, let us define the following sets (with iff ): Give the number of elements in these sets as follows: 1. 23 2. 6 3.

More information

Comparing the strength of query types in property testing: The case of testing k-colorability

Comparing the strength of query types in property testing: The case of testing k-colorability Comparing the strength of query types in property testing: The case of testing k-colorability Ido Ben-Eliezer Tali Kaufman Michael Krivelevich Dana Ron October 1, 2007 Abstract We study the power of four

More information

Lecture 16: Gaps for Max-Cut

Lecture 16: Gaps for Max-Cut Advanced Approximation Algorithms (CMU 8-854B, Spring 008) Lecture 6: Gaps for Max-Cut Mar 6, 008 Lecturer: Ryan O Donnell Scribe: Ravishankar Krishnaswamy Outline In this lecture, we will discuss algorithmic

More information

Lecture 5: Data Streaming Algorithms

Lecture 5: Data Streaming Algorithms Great Ideas in Theoretical Computer Science Summer 2013 Lecture 5: Data Streaming Algorithms Lecturer: Kurt Mehlhorn & He Sun In the data stream scenario, the input arrive rapidly in an arbitrary order,

More information

Hashing. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Hashing. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Department of Computer Science and Engineering Chinese University of Hong Kong In this lecture, we will revisit the dictionary search problem, where we want to locate an integer v in a set of size n or

More information

B. Examples Set up the integral(s) needed to find the area of the region bounded by

B. Examples Set up the integral(s) needed to find the area of the region bounded by Math 176 Calculus Sec. 6.1: Area Between Curves I. Area between the Curve and the x Axis A. Let f(x) 0 be continuous on [a,b]. The area of the region between the graph of f and the x-axis is A = f ( x)

More information

Maximal Independent Set

Maximal Independent Set Chapter 0 Maximal Independent Set In this chapter we present a highlight of this course, a fast maximal independent set (MIS) algorithm. The algorithm is the first randomized algorithm that we study in

More information

Lecture 8: Jointly distributed random variables

Lecture 8: Jointly distributed random variables Lecture : Jointly distributed random variables Random Vectors and Joint Probability Distributions Definition: Random Vector. An n-dimensional random vector, denoted as Z = (Z, Z,, Z n ), is a function

More information

2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to

2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to 2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to be connected if it is not disconnected. A subset of

More information

February 2017 (1/20) 2 Piecewise Polynomial Interpolation 2.2 (Natural) Cubic Splines. MA378/531 Numerical Analysis II ( NA2 )

February 2017 (1/20) 2 Piecewise Polynomial Interpolation 2.2 (Natural) Cubic Splines. MA378/531 Numerical Analysis II ( NA2 ) f f f f f (/2).9.8.7.6.5.4.3.2. S Knots.7.6.5.4.3.2. 5 5.2.8.6.4.2 S Knots.2 5 5.9.8.7.6.5.4.3.2..9.8.7.6.5.4.3.2. S Knots 5 5 S Knots 5 5 5 5.35.3.25.2.5..5 5 5.6.5.4.3.2. 5 5 4 x 3 3.5 3 2.5 2.5.5 5

More information

Bandwidth Approximation of Many-Caterpillars

Bandwidth Approximation of Many-Caterpillars Bandwidth Approximation of Many-Caterpillars Yuval Filmus September 1, 2009 Abstract Bandwidth is one of the canonical NPcomplete problems. It is NP-hard to approximate within any constant factor even

More information

PCP and Hardness of Approximation

PCP and Hardness of Approximation PCP and Hardness of Approximation January 30, 2009 Our goal herein is to define and prove basic concepts regarding hardness of approximation. We will state but obviously not prove a PCP theorem as a starting

More information

Combinatorial Problems on Strings with Applications to Protein Folding

Combinatorial Problems on Strings with Applications to Protein Folding Combinatorial Problems on Strings with Applications to Protein Folding Alantha Newman 1 and Matthias Ruhl 2 1 MIT Laboratory for Computer Science Cambridge, MA 02139 alantha@theory.lcs.mit.edu 2 IBM Almaden

More information

LATIN SQUARES AND TRANSVERSAL DESIGNS

LATIN SQUARES AND TRANSVERSAL DESIGNS LATIN SQUARES AND TRANSVERSAL DESIGNS *Shirin Babaei Department of Mathematics, University of Zanjan, Zanjan, Iran *Author for Correspondence ABSTRACT We employ a new construction to show that if and if

More information

Comp Online Algorithms

Comp Online Algorithms Comp 7720 - Online Algorithms Notes 4: Bin Packing Shahin Kamalli University of Manitoba - Fall 208 December, 208 Introduction Bin packing is one of the fundamental problems in theory of computer science.

More information

Connected Components of Underlying Graphs of Halving Lines

Connected Components of Underlying Graphs of Halving Lines arxiv:1304.5658v1 [math.co] 20 Apr 2013 Connected Components of Underlying Graphs of Halving Lines Tanya Khovanova MIT November 5, 2018 Abstract Dai Yang MIT In this paper we discuss the connected components

More information

Optimal Parallel Randomized Renaming

Optimal Parallel Randomized Renaming Optimal Parallel Randomized Renaming Martin Farach S. Muthukrishnan September 11, 1995 Abstract We consider the Renaming Problem, a basic processing step in string algorithms, for which we give a simultaneously

More information

* (4.1) A more exact setting will be specified later. The side lengthsj are determined such that

* (4.1) A more exact setting will be specified later. The side lengthsj are determined such that D D Chapter 4 xtensions of the CUB MTOD e present several generalizations of the CUB MTOD In section 41 we analyze the query algorithm GOINGCUB The difference to the CUB MTOD occurs in the case when the

More information

Clustering. (Part 2)

Clustering. (Part 2) Clustering (Part 2) 1 k-means clustering 2 General Observations on k-means clustering In essence, k-means clustering aims at minimizing cluster variance. It is typically used in Euclidean spaces and works

More information

ROUGH MEMBERSHIP FUNCTIONS: A TOOL FOR REASONING WITH UNCERTAINTY

ROUGH MEMBERSHIP FUNCTIONS: A TOOL FOR REASONING WITH UNCERTAINTY ALGEBRAIC METHODS IN LOGIC AND IN COMPUTER SCIENCE BANACH CENTER PUBLICATIONS, VOLUME 28 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1993 ROUGH MEMBERSHIP FUNCTIONS: A TOOL FOR REASONING

More information

MATH 54 - LECTURE 4 DAN CRYTSER

MATH 54 - LECTURE 4 DAN CRYTSER MATH 54 - LECTURE 4 DAN CRYTSER Introduction In this lecture we review properties and examples of bases and subbases. Then we consider ordered sets and the natural order topology that one can lay on an

More information

In what follows, we will focus on Voronoi diagrams in Euclidean space. Later, we will generalize to other distance spaces.

In what follows, we will focus on Voronoi diagrams in Euclidean space. Later, we will generalize to other distance spaces. Voronoi Diagrams 4 A city builds a set of post offices, and now needs to determine which houses will be served by which office. It would be wasteful for a postman to go out of their way to make a delivery

More information

Counting the Number of Eulerian Orientations

Counting the Number of Eulerian Orientations Counting the Number of Eulerian Orientations Zhenghui Wang March 16, 011 1 Introduction Consider an undirected Eulerian graph, a graph in which each vertex has even degree. An Eulerian orientation of the

More information

Elementary Recursive Function Theory

Elementary Recursive Function Theory Chapter 6 Elementary Recursive Function Theory 6.1 Acceptable Indexings In a previous Section, we have exhibited a specific indexing of the partial recursive functions by encoding the RAM programs. Using

More information

Interleaving Schemes on Circulant Graphs with Two Offsets

Interleaving Schemes on Circulant Graphs with Two Offsets Interleaving Schemes on Circulant raphs with Two Offsets Aleksandrs Slivkins Department of Computer Science Cornell University Ithaca, NY 14853 slivkins@cs.cornell.edu Jehoshua Bruck Department of Electrical

More information

A Distribution-Sensitive Dictionary with Low Space Overhead

A Distribution-Sensitive Dictionary with Low Space Overhead A Distribution-Sensitive Dictionary with Low Space Overhead Prosenjit Bose, John Howat, and Pat Morin School of Computer Science, Carleton University 1125 Colonel By Dr., Ottawa, Ontario, CANADA, K1S 5B6

More information

1 (15 points) LexicoSort

1 (15 points) LexicoSort CS161 Homework 2 Due: 22 April 2016, 12 noon Submit on Gradescope Handed out: 15 April 2016 Instructions: Please answer the following questions to the best of your ability. If you are asked to show your

More information

Testing Eulerianity and Connectivity in Directed Sparse Graphs

Testing Eulerianity and Connectivity in Directed Sparse Graphs Testing Eulerianity and Connectivity in Directed Sparse Graphs Yaron Orenstein School of EE Tel-Aviv University Ramat Aviv, Israel yaronore@post.tau.ac.il Dana Ron School of EE Tel-Aviv University Ramat

More information

Section 13. Basis for a Topology

Section 13. Basis for a Topology 13. Basis for a Topology 1 Section 13. Basis for a Topology Note. In this section, we consider a basis for a topology on a set which is, in a sense, analogous to the basis for a vector space. Whereas a

More information

Sorting. There exist sorting algorithms which have shown to be more efficient in practice.

Sorting. There exist sorting algorithms which have shown to be more efficient in practice. Sorting Next to storing and retrieving data, sorting of data is one of the more common algorithmic tasks, with many different ways to perform it. Whenever we perform a web search and/or view statistics

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 22.1 Introduction We spent the last two lectures proving that for certain problems, we can

More information

simply ordered sets. We ll state only the result here, since the proof is given in Munkres.

simply ordered sets. We ll state only the result here, since the proof is given in Munkres. p. 1 Math 490 Notes 20 More About Compactness Recall that in Munkres it is proved that a simply (totally) ordered set X with the order topology is connected iff it satisfies: (1) Every subset bounded above

More information

Lecture 2 - Introduction to Polytopes

Lecture 2 - Introduction to Polytopes Lecture 2 - Introduction to Polytopes Optimization and Approximation - ENS M1 Nicolas Bousquet 1 Reminder of Linear Algebra definitions Let x 1,..., x m be points in R n and λ 1,..., λ m be real numbers.

More information

Abstract. A graph G is perfect if for every induced subgraph H of G, the chromatic number of H is equal to the size of the largest clique of H.

Abstract. A graph G is perfect if for every induced subgraph H of G, the chromatic number of H is equal to the size of the largest clique of H. Abstract We discuss a class of graphs called perfect graphs. After defining them and getting intuition with a few simple examples (and one less simple example), we present a proof of the Weak Perfect Graph

More information

On Rainbow Cycles in Edge Colored Complete Graphs. S. Akbari, O. Etesami, H. Mahini, M. Mahmoody. Abstract

On Rainbow Cycles in Edge Colored Complete Graphs. S. Akbari, O. Etesami, H. Mahini, M. Mahmoody. Abstract On Rainbow Cycles in Edge Colored Complete Graphs S. Akbari, O. Etesami, H. Mahini, M. Mahmoody Abstract In this paper we consider optimal edge colored complete graphs. We show that in any optimal edge

More information

Lecture 5: Duality Theory

Lecture 5: Duality Theory Lecture 5: Duality Theory Rajat Mittal IIT Kanpur The objective of this lecture note will be to learn duality theory of linear programming. We are planning to answer following questions. What are hyperplane

More information

STRAIGHT LINE ORTHOGONAL DRAWINGS OF COMPLETE TERNERY TREES SPUR FINAL PAPER, SUMMER July 29, 2015

STRAIGHT LINE ORTHOGONAL DRAWINGS OF COMPLETE TERNERY TREES SPUR FINAL PAPER, SUMMER July 29, 2015 STRIGHT LINE ORTHOGONL DRWINGS OF COMPLETE TERNERY TREES SPUR FINL PPER, SUMMER 2015 SR LI MENTOR: SYLVIN CRPENTIER PROJECT SUGGESTED Y LRRY GUTH July 29, 2015 bstract. In this paper we study embeddings

More information

A metric space is a set S with a given distance (or metric) function d(x, y) which satisfies the conditions

A metric space is a set S with a given distance (or metric) function d(x, y) which satisfies the conditions 1 Distance Reading [SB], Ch. 29.4, p. 811-816 A metric space is a set S with a given distance (or metric) function d(x, y) which satisfies the conditions (a) Positive definiteness d(x, y) 0, d(x, y) =

More information

Tolerant Algorithms. 1 University of Bonn 2 TU Dortmund 3 IBM Research-Almaden

Tolerant Algorithms. 1 University of Bonn 2 TU Dortmund 3 IBM Research-Almaden Tolerant Algorithms Rolf Klein 1, Rainer Penninger 1, Christian Sohler 2, and David P. Woodruff 3 1 University of Bonn 2 TU Dortmund 3 IBM Research-Almaden Abstract. Assume we are interested in solving

More information

Section 1.7 Sequences, Summations Cardinality of Infinite Sets

Section 1.7 Sequences, Summations Cardinality of Infinite Sets Section 1.7 Sequences, Summations Cardinality of Infinite Sets Definition: A sequence is a function from a subset of the natural numbers (usually of the form {0, 1, 2,... } to a set S. Note: the sets and

More information

Test 1 Review Questions with Solutions

Test 1 Review Questions with Solutions CS3510 Design & Analysis of Algorithms Section A Test 1 Review Questions with Solutions Instructor: Richard Peng Test 1 in class, Wednesday, Sep 13, 2017 Main Topics Asymptotic complexity: O, Ω, and Θ.

More information

Approximate Nearest Line Search in High Dimensions

Approximate Nearest Line Search in High Dimensions Approximate Nearest Line Search in High Dimensions Sepideh Mahabadi MIT mahabadi@mit.edu Abstract We consider the Approximate Nearest Line Search (NLS) problem. Given a set L of N lines in the high dimensional

More information

Integral Geometry and the Polynomial Hirsch Conjecture

Integral Geometry and the Polynomial Hirsch Conjecture Integral Geometry and the Polynomial Hirsch Conjecture Jonathan Kelner, MIT Partially based on joint work with Daniel Spielman Introduction n A lot of recent work on Polynomial Hirsch Conjecture has focused

More information

Joshua Brody and Amit Chakrabarti

Joshua Brody and Amit Chakrabarti Lower Bounds for Gap-Hamming-Distance and Consequences for Data Stream Algorithms Joshua Brody and Amit Chakrabarti Dartmouth College 24th CCC, 2009, Paris Joshua Brody 1 Counting Distinct Elements in

More information

Today. Types of graphs. Complete Graphs. Trees. Hypercubes.

Today. Types of graphs. Complete Graphs. Trees. Hypercubes. Today. Types of graphs. Complete Graphs. Trees. Hypercubes. Complete Graph. K n complete graph on n vertices. All edges are present. Everyone is my neighbor. Each vertex is adjacent to every other vertex.

More information

The complexity of Sorting and sorting in linear-time. Median and Order Statistics. Chapter 8 and Chapter 9

The complexity of Sorting and sorting in linear-time. Median and Order Statistics. Chapter 8 and Chapter 9 Subject 6 Spring 2017 The complexity of Sorting and sorting in linear-time Median and Order Statistics Chapter 8 and Chapter 9 Disclaimer: These abbreviated notes DO NOT substitute the textbook for this

More information

Introduction to Randomized Algorithms

Introduction to Randomized Algorithms Introduction to Randomized Algorithms Gopinath Mishra Advanced Computing and Microelectronics Unit Indian Statistical Institute Kolkata 700108, India. Organization 1 Introduction 2 Some basic ideas from

More information

and 6.855J March 6, Maximum Flows 2

and 6.855J March 6, Maximum Flows 2 5.08 and.855j March, 00 Maximum Flows Network Reliability Communication Network What is the maximum number of arc disjoint paths from s to t? How can we determine this number? Theorem. Let G = (N,A) be

More information

Basic Euclidean Geometry

Basic Euclidean Geometry hapter 1 asic Euclidean Geometry This chapter is not intended to be a complete survey of basic Euclidean Geometry, but rather a review for those who have previously taken a geometry course For a definitive

More information

Section 2.4 Sequences and Summations

Section 2.4 Sequences and Summations Section 2.4 Sequences and Summations Definition: A sequence is a function from a subset of the natural numbers (usually of the form {0, 1, 2,... } to a set S. Note: the sets and {0, 1, 2, 3,..., k} {1,

More information

Sublinear Algorithms January 12, Lecture 2. First, let us look at a couple of simple testers that do not work well.

Sublinear Algorithms January 12, Lecture 2. First, let us look at a couple of simple testers that do not work well. Sublinear Algorithms January 12, 2012 Lecture 2 Lecturer: Sofya Raskhodnikova Scribe(s): Madhav Jha 1 Testing if a List is Sorted Input: Goal: a list x 1,..., x n of arbitrary numbers. an -tester for sortedness

More information

On the Rectangle Escape Problem

On the Rectangle Escape Problem CCCG 2013, Waterloo, Ontario, August 8 10, 2013 On the Rectangle Escape Problem Sepehr Assadi Ehsan Emamjomeh-Zadeh Sadra Yazdanbod Hamid Zarrabi-Zadeh Abstract Motivated by a PCB routing application,

More information

CSE200: Computability and complexity Interactive proofs

CSE200: Computability and complexity Interactive proofs CSE200: Computability and complexity Interactive proofs Shachar Lovett January 29, 2018 1 What are interactive proofs Think of a prover trying to convince a verifer that a statement is correct. For example,

More information

Randomness and Computation March 25, Lecture 5

Randomness and Computation March 25, Lecture 5 0368.463 Randomness and Computation March 25, 2009 Lecturer: Ronitt Rubinfeld Lecture 5 Scribe: Inbal Marhaim, Naama Ben-Aroya Today Uniform generation of DNF satisfying assignments Uniform generation

More information

Section 3.1: Nonseparable Graphs Cut vertex of a connected graph G: A vertex x G such that G x is not connected. Theorem 3.1, p. 57: Every connected

Section 3.1: Nonseparable Graphs Cut vertex of a connected graph G: A vertex x G such that G x is not connected. Theorem 3.1, p. 57: Every connected Section 3.1: Nonseparable Graphs Cut vertex of a connected graph G: A vertex x G such that G x is not connected. Theorem 3.1, p. 57: Every connected graph G with at least 2 vertices contains at least 2

More information

Vertex Cover Approximations

Vertex Cover Approximations CS124 Lecture 20 Heuristics can be useful in practice, but sometimes we would like to have guarantees. Approximation algorithms give guarantees. It is worth keeping in mind that sometimes approximation

More information

M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements.

M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements. M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements. Chapter 1: Metric spaces and convergence. (1.1) Recall the standard distance function

More information

CS Foundations of Communication Complexity

CS Foundations of Communication Complexity CS 2429 - Foundations of Communication Complexity Lecturer: Toniann Pitassi 1 Applications of Communication Complexity There are many applications of communication complexity. In our survey article, The

More information

Online Stochastic Matching CMSC 858F: Algorithmic Game Theory Fall 2010

Online Stochastic Matching CMSC 858F: Algorithmic Game Theory Fall 2010 Online Stochastic Matching CMSC 858F: Algorithmic Game Theory Fall 2010 Barna Saha, Vahid Liaghat Abstract This summary is mostly based on the work of Saberi et al. [1] on online stochastic matching problem

More information

4 non-obvious examples/results. 2. The core idea in our probabilistic reformulation

4 non-obvious examples/results. 2. The core idea in our probabilistic reformulation 1. Local weak convergence of graphs/networks Stuff that s obvious when you think about it 4 non-obvious examples/results 2. The core idea in our probabilistic reformulation of special cases of the cavity

More information

Random Sequences and Recursive Measures

Random Sequences and Recursive Measures Random Sequences and Recursive Measures Theodore A. Slaman slaman@math.berkeley.edu University of California, Berkeley December 7, 2003 Random Sequences and Recursive Measures p. 1/22 Randomness There

More information

7. The Gauss-Bonnet theorem

7. The Gauss-Bonnet theorem 7. The Gauss-Bonnet theorem 7.1 Hyperbolic polygons In Euclidean geometry, an n-sided polygon is a subset of the Euclidean plane bounded by n straight lines. Thus the edges of a Euclidean polygon are formed

More information

16 Greedy Algorithms

16 Greedy Algorithms 16 Greedy Algorithms Optimization algorithms typically go through a sequence of steps, with a set of choices at each For many optimization problems, using dynamic programming to determine the best choices

More information

CPSC 536N: Randomized Algorithms Term 2. Lecture 10

CPSC 536N: Randomized Algorithms Term 2. Lecture 10 CPSC 536N: Randomized Algorithms 011-1 Term Prof. Nick Harvey Lecture 10 University of British Columbia In the first lecture we discussed the Max Cut problem, which is NP-complete, and we presented a very

More information

A greedy, partially optimal proof of the Heine-Borel Theorem

A greedy, partially optimal proof of the Heine-Borel Theorem A greedy, partially optimal proof of the Heine-Borel Theorem James Fennell September 28, 2017 Abstract The Heine-Borel theorem states that any open cover of the closed interval Œa; b contains a finite

More information

Jordan Curves. A curve is a subset of IR 2 of the form

Jordan Curves. A curve is a subset of IR 2 of the form Jordan Curves A curve is a subset of IR 2 of the form α = {γ(x) : x [0,1]}, where γ : [0,1] IR 2 is a continuous mapping from the closed interval [0,1] to the plane. γ(0) and γ(1) are called the endpoints

More information