A Novel Fractal Monocular and Stereo Video Codec based on MCP and DCP

Size: px
Start display at page:

Download "A Novel Fractal Monocular and Stereo Video Codec based on MCP and DCP"

Transcription

1 A ovel Fractal Monocular and Stereo Video Codec based on MCP and DCP Shiping Zhu a, Zaikuo Wang a, Kamel Belloulata b a Department of Measurement Control and Information Technology, School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 1191, China. b Département d Electronique, Faculté des Sciences de l'ingénieur, Université Djilali Liabès de Si Bel Abbès, Si Bel Abbès,, Algérie. Shiping.Zhu@buaa.edu.cn; wangzaikuo@163.com; Kamel.Belloulata@USherbrooke.ca Abstract-In the paper, a novel fractal monocular video codec is proposed which includes: using new macroblock partition scheme instead of classical quadtree partition scheme; reducing the block searching strategy and range, thus increasing the calculation speed greatly; using homo-i-frame like in H.64; reducing repeating calculation. The fractal monocular video codec uses the MCP structure. And the fractal stereo video codec is proposed which matches the macroblock with two reference frames in left and right views results in increasing compression ratio and reducing bit rate and bandwidth. The proposed fractal stereo video codec combines the MCP and DCP. Experimental results incate the proposed fractal monocular video codec could improve the image quality 13% averagely, raise compression ratio 3-5 times, and reduce compression time 9%; For fractal monocular video codec, the proposed fractal stereo video codec can raise compression ratio 3-5 and improve the image quality.5 db. Index Terms fractal, monocular, stereo, video cong, H.64. I. ITRODUCTIO Fractal cong is based on the Iterative Function System (IFS) [1]. It has been well known that a fractal image codec performs better, in terms of very fast decong process as well as the promise of potentially good compression ratio. But at present, fractal codec is not standarzed because of its huge calculation amount, slow cong speed and the decong image quality needs to be improved. The next generation visual communications must address the application of capture, transmission, and splay of 3D visual information and then realize one of the most desired features of high quality telecommunication services, which is in terms of The sensation of 3D reality. Alternatively, 3D stereoscopic splays can supply the 3D representation through the human brain to fuse the left and right views of the same scene, which are captured from slightly fferent viewing angles. Undoubtedly, it will be a very attractive and effective rection and technique to realize the 3D visual communication in the near future []. The contents in the paper are organized as follows: The theory of fractal cong is summarized in section II. The proposed improving methods for fractal monocular video sequence cong are presented in section III. A detailed design of fractal stereo video sequences compression is presented in section IV. The experimental results are presented in section V. And finally the conclusions are outlined in section VI. II. CLASSICAL FRACTAL IMAGE/VIDEO CODEC Mandelbrot presented the theory of fractal at 197s [3]. Barnsley firstly used this theory to image cong [4], and Jacqain presented automatic fractal image cong method that is based on image partition and used local affine transform instead of full affine transform [1]. And then, Fisher made using of quadtree to improve the method [5]. The matching rule in fractal image cong is RMS: = RMS 1 ri s s ri o o o ri (1) ri ri () s = o = ri s r is pixel value of Range block(r), is pixel value of i Domain block(d), is the number of pixels in the block, s is the scale factor, o is the offset factor. After then, fractal cong method has been applied on video sequence compression, for instance the famous hybrid circular prection mapping (CPM) and non-contractive interframe mapping (CIM) [6]. The CPM/CIM combines fractal video cong with the well-known motion estimation and compensation (ME/MC) algorithm that exploits the high temporal correlations between adjacent frames. In CPM and CIM, each range block is motion compensated by a domain block in the previous frame, which is of the same size as the range block even though the domain block is always larger than the range block in conventional fractal image codec. The main fference between CPM and CIM is that CPM should be contractive for the iterative decong process to converge, d i /1/$5. 1 IEEE 168

2 while CIM need not be contractive since the decong depends on the already decoded frames and is non-iterative. Recently, Wang proposed a hybrid compression algorithm, which merges the advantages of a cube-based fractal compression method and a frame-based fractal compression method, and an adaptive partition instead of fixed-size partition is scussed. The adaptive partition and the hybrid compression algorithm exhibit relatively high compression ratio for the sequence of motion images from a video conference [7]. III. A OVEL FRACTAL MOOCULAR VIDEO CODEC A. Macroblock partition Macroblock partition has a large impact on calculation speed and complexity of video compression algorithm. In CPM/CIM, a frame is partitioned by quadtree partition and the iteration is used in matching process, resulting in high calculation complexity. In this paper, macroblock partition scheme like in H.64 is used. A frame is partitioned into many fixed size (generally pixels) macroblocks, and then each macroblock is partitioned as shown in Fig. 1. Mode 1 Mode Mode 3 Mode 4 Fig. 1. Microblock partition modes Fig.. Subblock partition in mode 4 Before the block matching processing, RMS of the whole microblock is calculated, and γ is defined as a threshold. The steps of macroblock partition are as following: Firstly, RMS is calculated in mode 1, if RMS is less than γ, then current IFS is saved. Otherwise RMS is calculated in mode or 3. If RMS is less than γ in mode or 3, then mode 4 is used. Especially each subblock in mode 4 can be partitioned continually until finng the matching block as shown in Fig.. The percentages of 4 modes in two video sequences are shown in Table I. TABLE I THE PERCETAGES OF FOUR MODES I TWO VIDEO SEQUECES Mode 1 Mode,3 Mode 4 foreman.cif 59.% 16.3% 4.5% news.cif 5.3% 8.6% 1.1% B. Domain block searching strategy and range The most important factor which affects the fractal compression ratio and speed is the number of the macroblock and subblock partition. The more the big size blocks, the better compression performances. As to temporal and spatial relation, the mapping block of R block is very near by the corresponng location in the reference frame, and need not to classify and rotate D block as in CPM/CIM. And the larger searching range is not helpful for the final results, so the searching range is limited from 7 to 15 pixels. C. Using homo-i-frame in H.64 The original reference frame (homo-i-frame in H.64) makes a great impact on compression ratio and decong image quality. In CPM/CIM, the original reference frames are coded by using CPM as shown in Fig. 3, and the original reference frames could be several frames. F F 1 F CPM: circular prection mapping CIM: non-contractive interframe mapping F 3 F 4 F 5 Fig. 3. The hybrid CPM and CIM cong structure But in CPM, the cong process involves complex blockclassifying, block-overturning and iteration in order to make decong frames to converge to original frames, so the compression performances are under the requirements. Then the method based on DCT which has worked effectively in JPEG image compression standard is used to treat the original reference frame. The comparison between CPM/CIM and the proposed method is shown in Table II. TABLE II THE COMPARISO OF ORIGIAL REFERECE FRAME CODIG RESULTS BETWEE CPM/CIM AD THE PROPOSED METHOD PSR/dB Compression Compression ratio time/s CPM/CIM The decrease for compression time is almost 8%, and the increase for PSR is 6.4dB, it will be very helpful for the cong process of latter frames of video sequence. D. Reducing repeating calculation The pixels summation and square summation of each searched D block are calculated accorng to Eq. 1 and Eq. when matching each R block. There are two ways to reduce repeating calculation in program: Firstly, the pixels summation and square summation relate to R block can be calculated and saved before searching, and be looked up in the searching process, thus the repeated calculation can be avoided. Secondly, the pixels summation and square summation of D block are not calculated repeatedly when matching a certain R block, but the same D block will be searched repeatedly for 169

3 adjacent R blocks. So it could reduce large calculation if the pixels summation and square summation of all D blocks are calculated before encong each frame. IV. FRACTAL STEREO VIDEO CODEC BASED O MCP AD DCP The most mature technique for the multi-view video sequences compression is the method which defined in the MPEG-4 multi-view profile [8]. With this approach, for example, the coder first compresses the left view with a monoscopic video sequence cong algorithm. To code the right view, each macroblock is prected both from the left view using sparity compensated prection (DCP), and from the previous frame of the right view using motion compensated prection (MCP) as shown in Fig. 4. To evaluate the performance of the proposed fractal monocular video codec, we use five video sequences: foreman.cif, news.cif, paris.cif, bus.cif and bridgefar.cif (35 88 pixels, 15 frames). The maximum and minimum partition block sizes are pixels and 4 4 pixels respectively. To compare the performances with other methods, H.64 (baseline profile, JM 8.6) and CPM/CIM are used. The comparison of average cong results of five video sequences is shown in Table III. The results incate that the proposed method can raise compression ratio 4 times, speed up compression time 1 times, and improve the image quality 3 to 5 db in comparison with CPM/CIM. And the PSR and compression ratio are low but near to H.64, the compression speed is better than H.64. The comparison is shown in Fig. 6 for fifteen frames of foreman.cif. As the increases, the PSR or the quality of decoded image decrease due to error cumulation. It could be resolved by inserting the I-frame PSR(dB) 3 3 CPM/CIM H.64 8 Fig. 4. MCP and DCP structure for stereo video cong MCP and DCP are used based on fractal video compression algorithm which is presented in Section III in the paper. For right view frames, the coder searches the D block in previous frame of right view using Domain block searching strategy and range in Section III (B), but for left view frames, the coder searches the D block both in right view frame (DCP) and left previous frame (MCP) as shown in Fig. 5, the block which has smaller RMS in two D blocks is the best matching block. Compression ratio (a) Comparison of PSR CPM/CIM H.64 1 (b) Comparison of compression ratio 8 Fig. 5. D block matching in MCP and DCP V. EXPERIMETAL RESULTS Compression time(s) 6 4 CPM/CIM H.64 (c) Comparison of compression time Fig. 6. The experimental comparison of foreman.cif 17

4 TABLE III THE COMPARISO OF AVERAGE CODIG RESULTS OF FIVE VIDEO SEQUECES PSR/dB Compression ratio Compression time / s CPM/CIM H.64 CPM/CIM H.64 CPM/CIM H.64 foreman.cif news.cif paris.cif bus.cif bridge-far.cif To evaluate the performance of the proposed fractal stereo video codec, we use ballroom_r.yuv and ballroom_l.yuv (64 48 pixels, 15 frames). The ballroom_r.yuv is right view, and the ballroom_l.yuv is left view. Firstly, ballroom_l.yuv is compressed by fractal monocular video codec; secondly, it is compressed by fractal stereo video codec. As shown in Fig. 7, the PSR and compression ratio of stereo codec is better than, as the calculation raises, the compression time is more than. The decoded images of 11 th frame of ballroom_r.yuv and ballroom_l.yuv are shown in Fig. 8. (a) is the original image of 11 th frame of ballroom_r.yuv ; (b) is the decoded image of 11 th frame of ballroom_r.yuv (compression ratio: 79.47, PSR: 33.5); (c) is the original image of 11 th frame of ballroom_l.yuv ; (d) is the decoded image of 11 th frame of ballroom_l.yuv (compression ratio: 73., PSR: 33.64). Compression time(s) (c) Comparison of compression time Fig. 7. The comparison of fractal monocular video codec and fractal stereo video codec of ballroom_l.yuv PSR(dB) (a) Comparison of PSR (a) Original image of 11 th frame of ballroom_r.yuv (b) Decoded image of 11 th frame of ballroom_r.yuv Compression ratio (b) Comparison of compression ratio (c) Original image of 11 th frame (b) Decoded image of 11 th frame of ballroom_l.yuv of ballroom_l.yuv Fig. 8. The decoded results of 11 th frame of ballroom_r.yuv and ballroom_l.yuv 171

5 VI. COCLUSIO Based on the classical fractal video compression method, a novel fractal monocular video compression is proposed. The improved techniques include: using more effective macroblock partition scheme instead of classical quadtree partition scheme; reducing the block searching strategy and range, thus increasing the calculation speed greatly; using homo-i-frame like in H.64; reducing repeating calculation, etc. The fractal monocular video codec uses the MCP structure. The fractal stereo video codec is proposed which each macroblock is prected both from the left view using sparity compensated prection (DCP), and from the previous frame of the right view using motion compensated prection (MCP). Experimental results incate that the proposed fractal monocular video codec can raise compression ratio 4 times, speed up compression time 1 times, and improve the image quality 3 to 5 db. As to fractal monocular video codec, the proposed fractal stereo video codec raise compression ratio 3-5 and improve the image quality.5 db. ACKOWLEDGMET The project is sponsored by the ational atural Science Foundation of China (SFC) under grant o and the Scientific Research Foundation for the Returned Overseas Chinese Scholars from the State Education Ministry of China. The authors thank for their financial supports. The authors would also like to express their appreciation to the anonymous reviewers for their insightful comments, which help improving this paper. REFERECES [1] Arnaud E. Jacquin, Image cong based on a fractal theory of iterated contractive image transformations, IEEE Transactions on Image Processing, vol. 1, no. 1, pp. 18-3, 199. [] Y. Wang, J. Ostermann and Y. Q. Zhang, Video Processing and communication, Prentice-Hall, pp ,. [3] Benoît B. Mandelbrot, The Fractal Geometry of ature, ew York: W. H. Freeman and Company, 198. [4] Michael F. Barnsley and Alan D. Sloan, A better way to compress image, Byte Magazine, vol. 13, no. 1, pp , [5] Y. Fisher, Fractal Image Compression, Fractals, vol., no. 3, pp , [6] C. S. Kim, R. C. Kim, and S. U. Lee, Fractal cong of video sequence using circular prection mapping and noncontractive interframe mapping, IEEE Transactions on Image Processing, vol. 7, no. 4, pp , [7] Meiqing Wang, and Choi-Hong Lai, A hybrid fractal video compression method, Computers & Mathematics with Applications, vol. 5, no. 3-4, pp , 5. [8] Strintzis M G, Malassiotis S, Object-based cong of stereoscopis and 3D image sequences, IEEE Signal Processing Magazine, vol. 16, no. 3, pp. 14-8,

A novel fractal monocular and stereo video codec with object-based functionality

A novel fractal monocular and stereo video codec with object-based functionality Zhu et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:227 RESEARCH Open Access A novel fractal monocular and stereo video codec with object-based functionality Shiping Zhu *, Liyun Li

More information

FRACTAL IMAGE COMPRESSION OF GRAYSCALE AND RGB IMAGES USING DCT WITH QUADTREE DECOMPOSITION AND HUFFMAN CODING. Moheb R. Girgis and Mohammed M.

FRACTAL IMAGE COMPRESSION OF GRAYSCALE AND RGB IMAGES USING DCT WITH QUADTREE DECOMPOSITION AND HUFFMAN CODING. Moheb R. Girgis and Mohammed M. 322 FRACTAL IMAGE COMPRESSION OF GRAYSCALE AND RGB IMAGES USING DCT WITH QUADTREE DECOMPOSITION AND HUFFMAN CODING Moheb R. Girgis and Mohammed M. Talaat Abstract: Fractal image compression (FIC) is a

More information

Hybrid image coding based on partial fractal mapping

Hybrid image coding based on partial fractal mapping Signal Processing: Image Communication 15 (2000) 767}779 Hybrid image coding based on partial fractal mapping Zhou Wang, David Zhang*, Yinglin Yu Department of Electrical and Computer Engineering, University

More information

Fractal Compression. Related Topic Report. Henry Xiao. Queen s University. Kingston, Ontario, Canada. April 2004

Fractal Compression. Related Topic Report. Henry Xiao. Queen s University. Kingston, Ontario, Canada. April 2004 Fractal Compression Related Topic Report By Henry Xiao Queen s University Kingston, Ontario, Canada April 2004 Fractal Introduction Fractal is first introduced in geometry field. The birth of fractal geometry

More information

Pak. J. Biotechnol. Vol. 13 (special issue on Innovations in information Embedded and Communication Systems) Pp (2016)

Pak. J. Biotechnol. Vol. 13 (special issue on Innovations in information Embedded and Communication Systems) Pp (2016) FRACTAL IMAGE COMPRESSIO USIG QUATUM ALGORITHM T Janani* and M Bharathi* Department of Electronics and Communication Engineering, Kumaraguru College of Technology, Coimbatore, India - 641049. Email: bharathi.m.ece@kct.ac.in,

More information

Iterated Functions Systems and Fractal Coding

Iterated Functions Systems and Fractal Coding Qing Jun He 90121047 Math 308 Essay Iterated Functions Systems and Fractal Coding 1. Introduction Fractal coding techniques are based on the theory of Iterated Function Systems (IFS) founded by Hutchinson

More information

JPEG 2000 vs. JPEG in MPEG Encoding

JPEG 2000 vs. JPEG in MPEG Encoding JPEG 2000 vs. JPEG in MPEG Encoding V.G. Ruiz, M.F. López, I. García and E.M.T. Hendrix Dept. Computer Architecture and Electronics University of Almería. 04120 Almería. Spain. E-mail: vruiz@ual.es, mflopez@ace.ual.es,

More information

CHAPTER 4 FRACTAL IMAGE COMPRESSION

CHAPTER 4 FRACTAL IMAGE COMPRESSION 49 CHAPTER 4 FRACTAL IMAGE COMPRESSION 4.1 INTRODUCTION Fractals were first introduced in the field of geometry. The birth of fractal geometry is traced back to the IBM mathematician B. Mandelbrot and

More information

Modified No Search Scheme based Domain Blocks Sorting Strategies for Fractal Image Coding

Modified No Search Scheme based Domain Blocks Sorting Strategies for Fractal Image Coding Modified No Search Scheme based Domain Blocks Sorting Strategies for Fractal Image Coding Xing-Yuan Wang, Dou-Dou Zhang, and Na Wei Faculty of Electronic Information and Electrical Engineering, Dalian

More information

Review and Implementation of DWT based Scalable Video Coding with Scalable Motion Coding.

Review and Implementation of DWT based Scalable Video Coding with Scalable Motion Coding. Project Title: Review and Implementation of DWT based Scalable Video Coding with Scalable Motion Coding. Midterm Report CS 584 Multimedia Communications Submitted by: Syed Jawwad Bukhari 2004-03-0028 About

More information

Fractal Image Coding (IFS) Nimrod Peleg Update: Mar. 2008

Fractal Image Coding (IFS) Nimrod Peleg Update: Mar. 2008 Fractal Image Coding (IFS) Nimrod Peleg Update: Mar. 2008 What is a fractal? A fractal is a geometric figure, often characterized as being self-similar : irregular, fractured, fragmented, or loosely connected

More information

MOTION COMPENSATION IN BLOCK DCT CODING BASED ON PERSPECTIVE WARPING

MOTION COMPENSATION IN BLOCK DCT CODING BASED ON PERSPECTIVE WARPING MOTION COMPENSATION IN BLOCK DCT CODING BASED ON PERSPECTIVE WARPING L. Capodiferro*, S. Puledda*, G. Jacovitti** * Fondazione Ugo Bordoni c/o ISPT, Viale Europa 190, 00149 Rome, Italy Tel: +39-6-54802132;

More information

Rate Distortion Optimization in Video Compression

Rate Distortion Optimization in Video Compression Rate Distortion Optimization in Video Compression Xue Tu Dept. of Electrical and Computer Engineering State University of New York at Stony Brook 1. Introduction From Shannon s classic rate distortion

More information

Fractal Image Compression on a Pseudo Spiral Architecture

Fractal Image Compression on a Pseudo Spiral Architecture Fractal Image Compression on a Pseudo Spiral Huaqing Wang, Meiqing Wang, Tom Hintz, Xiangjian He, Qiang Wu Faculty of Information Technology, University of Technology, Sydney PO Box 123, Broadway 2007,

More information

A Review of Image Compression Techniques

A Review of Image Compression Techniques A Review of Image Compression Techniques Rajesh, Gagan Kumar Computer Science and Engineering Department, MIET College, Mohri, Kurukshetra, Haryana, India Abstract: The demand for images, video sequences

More information

Optimized Progressive Coding of Stereo Images Using Discrete Wavelet Transform

Optimized Progressive Coding of Stereo Images Using Discrete Wavelet Transform Optimized Progressive Coding of Stereo Images Using Discrete Wavelet Transform Torsten Palfner, Alexander Mali and Erika Müller Institute of Telecommunications and Information Technology, University of

More information

Block-Matching based image compression

Block-Matching based image compression IEEE Ninth International Conference on Computer and Information Technology Block-Matching based image compression Yun-Xia Liu, Yang Yang School of Information Science and Engineering, Shandong University,

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering Volume 2, Issue 8, August 2012 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A Study on Block

More information

A 3-D Virtual SPIHT for Scalable Very Low Bit-Rate Embedded Video Compression

A 3-D Virtual SPIHT for Scalable Very Low Bit-Rate Embedded Video Compression A 3-D Virtual SPIHT for Scalable Very Low Bit-Rate Embedded Video Compression Habibollah Danyali and Alfred Mertins University of Wollongong School of Electrical, Computer and Telecommunications Engineering

More information

Optimizing the Deblocking Algorithm for. H.264 Decoder Implementation

Optimizing the Deblocking Algorithm for. H.264 Decoder Implementation Optimizing the Deblocking Algorithm for H.264 Decoder Implementation Ken Kin-Hung Lam Abstract In the emerging H.264 video coding standard, a deblocking/loop filter is required for improving the visual

More information

Frequency Band Coding Mode Selection for Key Frames of Wyner-Ziv Video Coding

Frequency Band Coding Mode Selection for Key Frames of Wyner-Ziv Video Coding 2009 11th IEEE International Symposium on Multimedia Frequency Band Coding Mode Selection for Key Frames of Wyner-Ziv Video Coding Ghazaleh R. Esmaili and Pamela C. Cosman Department of Electrical and

More information

FOR compressed video, due to motion prediction and

FOR compressed video, due to motion prediction and 1390 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 24, NO. 8, AUGUST 2014 Multiple Description Video Coding Based on Human Visual System Characteristics Huihui Bai, Weisi Lin, Senior

More information

Stereo Image Compression

Stereo Image Compression Stereo Image Compression Deepa P. Sundar, Debabrata Sengupta, Divya Elayakumar {deepaps, dsgupta, divyae}@stanford.edu Electrical Engineering, Stanford University, CA. Abstract In this report we describe

More information

Module 7 VIDEO CODING AND MOTION ESTIMATION

Module 7 VIDEO CODING AND MOTION ESTIMATION Module 7 VIDEO CODING AND MOTION ESTIMATION Lesson 20 Basic Building Blocks & Temporal Redundancy Instructional Objectives At the end of this lesson, the students should be able to: 1. Name at least five

More information

On the Selection of Image Compression Algorithms

On the Selection of Image Compression Algorithms On the Selection of Image Compression Algorithms Chaur- Chin Chen Department of Computer Science National Tsing Hua University Hsinchu 300, Taiwan Acknowledgments: The author thanks Professor Anil K. Jain,

More information

Motion Estimation for Video Coding Standards

Motion Estimation for Video Coding Standards Motion Estimation for Video Coding Standards Prof. Ja-Ling Wu Department of Computer Science and Information Engineering National Taiwan University Introduction of Motion Estimation The goal of video compression

More information

A New Configuration of Adaptive Arithmetic Model for Video Coding with 3D SPIHT

A New Configuration of Adaptive Arithmetic Model for Video Coding with 3D SPIHT A New Configuration of Adaptive Arithmetic Model for Video Coding with 3D SPIHT Wai Chong Chia, Li-Minn Ang, and Kah Phooi Seng Abstract The 3D Set Partitioning In Hierarchical Trees (SPIHT) is a video

More information

An Elevated Area Classification Scheme Situated on Regional Fractal Dimension Himanshu Tayagi Trinity College, Tublin, Ireland

An Elevated Area Classification Scheme Situated on Regional Fractal Dimension Himanshu Tayagi Trinity College, Tublin, Ireland An Elevated Area Classification Scheme Situated on Regional Fractal Dimension Himanshu Tayagi Trinity College, Tublin, Ireland ================================================================= Abstract

More information

A new fractal algorithm to model discrete sequences

A new fractal algorithm to model discrete sequences A new fractal algorithm to model discrete sequences Zhai Ming-Yue( 翟明岳 ) a) Heidi Kuzuma b) and James W. Rector b)c) a) School of EE Engineering North China Electric Power University Beijing 102206 China

More information

Fast Fractal Image Encoder

Fast Fractal Image Encoder International Journal of Information Technology, Vol. 13 No. 1 2007 Yung-Gi, Wu Department of Computer Science & Information Engineering Leader University, Tainan, Taiwan Email: wyg@mail.leader.edu.tw

More information

Encoding Time in seconds. Encoding Time in seconds. PSNR in DB. Encoding Time for Mandrill Image. Encoding Time for Lena Image 70. Variance Partition

Encoding Time in seconds. Encoding Time in seconds. PSNR in DB. Encoding Time for Mandrill Image. Encoding Time for Lena Image 70. Variance Partition Fractal Image Compression Project Report Viswanath Sankaranarayanan 4 th December, 1998 Abstract The demand for images, video sequences and computer animations has increased drastically over the years.

More information

Contrast Prediction for Fractal Image Compression

Contrast Prediction for Fractal Image Compression he 4th Worshop on Combinatorial Mathematics and Computation heor Contrast Prediction for Fractal Image Compression Shou-Cheng Hsiung and J. H. Jeng Department of Information Engineering I-Shou Universit,

More information

5.7. Fractal compression Overview

5.7. Fractal compression Overview 5.7. Fractal compression Overview 1. Introduction 2. Principles 3. Encoding 4. Decoding 5. Example 6. Evaluation 7. Comparison 8. Literature References 1 Introduction (1) - General Use of self-similarities

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering Volume 2, Issue 1, January 2012 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: An analytical study on stereo

More information

Image Compression - An Overview Jagroop Singh 1

Image Compression - An Overview Jagroop Singh 1 www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 5 Issues 8 Aug 2016, Page No. 17535-17539 Image Compression - An Overview Jagroop Singh 1 1 Faculty DAV Institute

More information

A STUDY ON VIDEO RATE WEIGHTED ESTIMATION CONTROL ALGORITHM

A STUDY ON VIDEO RATE WEIGHTED ESTIMATION CONTROL ALGORITHM A STUDY O VIDEO RATE WEIGHTED ESTIMATIO COTROL ALGORITHM 1 ZHOG XIA, 2 HA KAIHOG 1 CS, Department of Computer Science, Huazhong University of Science and Technology, CHIA 2 CAT, Department of Computer

More information

Roshni S. Khedgaonkar M.Tech Student Department of Computer Science and Engineering, YCCE, Nagpur, India

Roshni S. Khedgaonkar M.Tech Student Department of Computer Science and Engineering, YCCE, Nagpur, India ISSN : 2250-3021 Application of Quadtree Partitioning in Fractal Image Compression using Error Based Approach Roshni S. Khedgaonkar M.Tech Student Department of Computer Science and Engineering, YCCE,

More information

Colour Image Compression Method Based On Fractal Block Coding Technique

Colour Image Compression Method Based On Fractal Block Coding Technique Colour Image Compression Method Based On Fractal Block Coding Technique Dibyendu Ghoshal, Shimal Das Abstract Image compression based on fractal coding is a lossy compression method and normally used for

More information

A New Fast Motion Estimation Algorithm. - Literature Survey. Instructor: Brian L. Evans. Authors: Yue Chen, Yu Wang, Ying Lu.

A New Fast Motion Estimation Algorithm. - Literature Survey. Instructor: Brian L. Evans. Authors: Yue Chen, Yu Wang, Ying Lu. A New Fast Motion Estimation Algorithm - Literature Survey Instructor: Brian L. Evans Authors: Yue Chen, Yu Wang, Ying Lu Date: 10/19/1998 A New Fast Motion Estimation Algorithm 1. Abstract Video compression

More information

Enhanced Hexagon with Early Termination Algorithm for Motion estimation

Enhanced Hexagon with Early Termination Algorithm for Motion estimation Volume No - 5, Issue No - 1, January, 2017 Enhanced Hexagon with Early Termination Algorithm for Motion estimation Neethu Susan Idiculay Assistant Professor, Department of Applied Electronics & Instrumentation,

More information

In the name of Allah. the compassionate, the merciful

In the name of Allah. the compassionate, the merciful In the name of Allah the compassionate, the merciful Digital Video Systems S. Kasaei Room: CE 315 Department of Computer Engineering Sharif University of Technology E-Mail: skasaei@sharif.edu Webpage:

More information

Context based optimal shape coding

Context based optimal shape coding IEEE Signal Processing Society 1999 Workshop on Multimedia Signal Processing September 13-15, 1999, Copenhagen, Denmark Electronic Proceedings 1999 IEEE Context based optimal shape coding Gerry Melnikov,

More information

AN IMPROVED DOMAIN CLASSIFICATION SCHEME BASED ON LOCAL FRACTAL DIMENSION

AN IMPROVED DOMAIN CLASSIFICATION SCHEME BASED ON LOCAL FRACTAL DIMENSION AN IMPROVED DOMAIN CLASSIFICATION SCHEME BASED ON LOCAL FRACTAL DIMENSION JAYAMOHAN M. Department of Computer Science, College of Applied Science, Adoor, Kerala, India, 691523. jmohanm@gmail.com K. REVATHY

More information

Genetic Algorithm based Fractal Image Compression

Genetic Algorithm based Fractal Image Compression Vol.3, Issue.2, March-April. 2013 pp-1123-1128 ISSN: 2249-6645 Genetic Algorithm based Fractal Image Compression Mahesh G. Huddar Lecturer, Dept. of CSE,Hirasugar Institute of Technology, Nidasoshi, India

More information

MOTION STEREO DOUBLE MATCHING RESTRICTION IN 3D MOVEMENT ANALYSIS

MOTION STEREO DOUBLE MATCHING RESTRICTION IN 3D MOVEMENT ANALYSIS MOTION STEREO DOUBLE MATCHING RESTRICTION IN 3D MOVEMENT ANALYSIS ZHANG Chun-sen Dept of Survey, Xi an University of Science and Technology, No.58 Yantazhonglu, Xi an 710054,China -zhchunsen@yahoo.com.cn

More information

F..\ Compression of IP Images for Autostereoscopic 3D Imaging Applications

F..\ Compression of IP Images for Autostereoscopic 3D Imaging Applications Compression of IP Images for Autostereoscopic 3D Imaging Applications N.P.Sgouros', A.G.Andreou', MSSangriotis', P.G.Papageorgas2, D.M.Maroulis', N.G.Theofanous' 1. Dep. of Informatics and Telecommunications,

More information

Abstract. Keywords. Fractals, image compression, iterated function system, image encoding, fractal theory I. INTRODUCTION

Abstract. Keywords. Fractals, image compression, iterated function system, image encoding, fractal theory I. INTRODUCTION FRACTAL IMAGE COMPRESSION: the new saga of compression Abstract Akhil Singal 1, Rajni 2, Krishan 3 1 M.Tech. Scholar, Electronics and Communication Engineering Department D.C.R.U.S.T, Murthal, Sonepat,

More information

Research on Distributed Video Compression Coding Algorithm for Wireless Sensor Networks

Research on Distributed Video Compression Coding Algorithm for Wireless Sensor Networks Sensors & Transducers 203 by IFSA http://www.sensorsportal.com Research on Distributed Video Compression Coding Algorithm for Wireless Sensor Networks, 2 HU Linna, 2 CAO Ning, 3 SUN Yu Department of Dianguang,

More information

SURVEILLANCE VIDEO FOR MOBILE DEVICES

SURVEILLANCE VIDEO FOR MOBILE DEVICES SURVEILLANCE VIDEO FOR MOBILE DEVICES Olivier Steiger, Touradj Ebrahimi Signal Processing Institute Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne, Switzerland {olivier.steiger,touradj.ebrahimi}@epfl.ch

More information

Hardware Architecture for Fractal Image Encoder with Quadtree Partitioning

Hardware Architecture for Fractal Image Encoder with Quadtree Partitioning Hardware Architecture for Fractal Image Encoder with Quadtree Partitioning Mamata Panigrahy Indrajit Chakrabarti Anindya Sundar Dhar ABSTRACT This paper presents the hardware architecture for fractal image

More information

CMPT 365 Multimedia Systems. Media Compression - Video

CMPT 365 Multimedia Systems. Media Compression - Video CMPT 365 Multimedia Systems Media Compression - Video Spring 2017 Edited from slides by Dr. Jiangchuan Liu CMPT365 Multimedia Systems 1 Introduction What s video? a time-ordered sequence of frames, i.e.,

More information

Video Compression An Introduction

Video Compression An Introduction Video Compression An Introduction The increasing demand to incorporate video data into telecommunications services, the corporate environment, the entertainment industry, and even at home has made digital

More information

IMPROVED ARTIFICIAL FISH SWARM ALGORITHM AND ITS APPLICATION IN OPTIMAL DESIGN OF TRUSS STRUCTURE

IMPROVED ARTIFICIAL FISH SWARM ALGORITHM AND ITS APPLICATION IN OPTIMAL DESIGN OF TRUSS STRUCTURE IMPROVED ARTIFICIAL FISH SWARM ALGORITHM AD ITS APPLICATIO I OPTIMAL DESIG OF TRUSS STRUCTURE ACAG LI, CHEGUAG BA, SHUJIG ZHOU, SHUAGHOG PEG, XIAOHA ZHAG College of Civil Engineering, Hebei University

More information

Fast Mode Decision for H.264/AVC Using Mode Prediction

Fast Mode Decision for H.264/AVC Using Mode Prediction Fast Mode Decision for H.264/AVC Using Mode Prediction Song-Hak Ri and Joern Ostermann Institut fuer Informationsverarbeitung, Appelstr 9A, D-30167 Hannover, Germany ri@tnt.uni-hannover.de ostermann@tnt.uni-hannover.de

More information

2014 Summer School on MPEG/VCEG Video. Video Coding Concept

2014 Summer School on MPEG/VCEG Video. Video Coding Concept 2014 Summer School on MPEG/VCEG Video 1 Video Coding Concept Outline 2 Introduction Capture and representation of digital video Fundamentals of video coding Summary Outline 3 Introduction Capture and representation

More information

Multimedia Systems Video II (Video Coding) Mahdi Amiri April 2012 Sharif University of Technology

Multimedia Systems Video II (Video Coding) Mahdi Amiri April 2012 Sharif University of Technology Course Presentation Multimedia Systems Video II (Video Coding) Mahdi Amiri April 2012 Sharif University of Technology Video Coding Correlation in Video Sequence Spatial correlation Similar pixels seem

More information

A New Approach to Fractal Image Compression Using DBSCAN

A New Approach to Fractal Image Compression Using DBSCAN International Journal of Electrical Energy, Vol. 2, No. 1, March 2014 A New Approach to Fractal Image Compression Using DBSCAN Jaseela C C and Ajay James Dept. of Computer Science & Engineering, Govt.

More information

FRAME-LEVEL QUALITY AND MEMORY TRAFFIC ALLOCATION FOR LOSSY EMBEDDED COMPRESSION IN VIDEO CODEC SYSTEMS

FRAME-LEVEL QUALITY AND MEMORY TRAFFIC ALLOCATION FOR LOSSY EMBEDDED COMPRESSION IN VIDEO CODEC SYSTEMS FRAME-LEVEL QUALITY AD MEMORY TRAFFIC ALLOCATIO FOR LOSSY EMBEDDED COMPRESSIO I VIDEO CODEC SYSTEMS Li Guo, Dajiang Zhou, Shinji Kimura, and Satoshi Goto Graduate School of Information, Production and

More information

Mesh Based Interpolative Coding (MBIC)

Mesh Based Interpolative Coding (MBIC) Mesh Based Interpolative Coding (MBIC) Eckhart Baum, Joachim Speidel Institut für Nachrichtenübertragung, University of Stuttgart An alternative method to H.6 encoding of moving images at bit rates below

More information

Fractal Image Compression. Kyle Patel EENG510 Image Processing Final project

Fractal Image Compression. Kyle Patel EENG510 Image Processing Final project Fractal Image Compression Kyle Patel EENG510 Image Processing Final project Introduction Extension of Iterated Function Systems (IFS) for image compression Typically used for creating fractals Images tend

More information

A Novel Deblocking Filter Algorithm In H.264 for Real Time Implementation

A Novel Deblocking Filter Algorithm In H.264 for Real Time Implementation 2009 Third International Conference on Multimedia and Ubiquitous Engineering A Novel Deblocking Filter Algorithm In H.264 for Real Time Implementation Yuan Li, Ning Han, Chen Chen Department of Automation,

More information

COMPARATIVE ANALYSIS OF BLOCK MATCHING ALGORITHMS FOR VIDEO COMPRESSION

COMPARATIVE ANALYSIS OF BLOCK MATCHING ALGORITHMS FOR VIDEO COMPRESSION COMPARATIVE ANALYSIS OF BLOCK MATCHING ALGORITHMS FOR VIDEO COMPRESSION S.Sowmyayani #1, P.Arockia Jansi Rani *2 #1 Research Scholar, Department of Computer Science and Engineering, Manonmaniam Sundaranar

More information

Reduced Frame Quantization in Video Coding

Reduced Frame Quantization in Video Coding Reduced Frame Quantization in Video Coding Tuukka Toivonen and Janne Heikkilä Machine Vision Group Infotech Oulu and Department of Electrical and Information Engineering P. O. Box 500, FIN-900 University

More information

View Synthesis for Multiview Video Compression

View Synthesis for Multiview Video Compression View Synthesis for Multiview Video Compression Emin Martinian, Alexander Behrens, Jun Xin, and Anthony Vetro email:{martinian,jxin,avetro}@merl.com, behrens@tnt.uni-hannover.de Mitsubishi Electric Research

More information

Very Low Bit Rate Color Video

Very Low Bit Rate Color Video 1 Very Low Bit Rate Color Video Coding Using Adaptive Subband Vector Quantization with Dynamic Bit Allocation Stathis P. Voukelatos and John J. Soraghan This work was supported by the GEC-Marconi Hirst

More information

STUDY AND IMPLEMENTATION OF VIDEO COMPRESSION STANDARDS (H.264/AVC, DIRAC)

STUDY AND IMPLEMENTATION OF VIDEO COMPRESSION STANDARDS (H.264/AVC, DIRAC) STUDY AND IMPLEMENTATION OF VIDEO COMPRESSION STANDARDS (H.264/AVC, DIRAC) EE 5359-Multimedia Processing Spring 2012 Dr. K.R Rao By: Sumedha Phatak(1000731131) OBJECTIVE A study, implementation and comparison

More information

Outline Introduction MPEG-2 MPEG-4. Video Compression. Introduction to MPEG. Prof. Pratikgiri Goswami

Outline Introduction MPEG-2 MPEG-4. Video Compression. Introduction to MPEG. Prof. Pratikgiri Goswami to MPEG Prof. Pratikgiri Goswami Electronics & Communication Department, Shree Swami Atmanand Saraswati Institute of Technology, Surat. Outline of Topics 1 2 Coding 3 Video Object Representation Outline

More information

A Rapid Scheme for Slow-Motion Replay Segment Detection

A Rapid Scheme for Slow-Motion Replay Segment Detection A Rapid Scheme for Slow-Motion Replay Segment Detection Wei-Hong Chuang, Dun-Yu Hsiao, Soo-Chang Pei, and Homer Chen Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan 10617,

More information

An Information Hiding Algorithm for HEVC Based on Angle Differences of Intra Prediction Mode

An Information Hiding Algorithm for HEVC Based on Angle Differences of Intra Prediction Mode An Information Hiding Algorithm for HEVC Based on Angle Differences of Intra Prediction Mode Jia-Ji Wang1, Rang-Ding Wang1*, Da-Wen Xu1, Wei Li1 CKC Software Lab, Ningbo University, Ningbo, Zhejiang 3152,

More information

Testing HEVC model HM on objective and subjective way

Testing HEVC model HM on objective and subjective way Testing HEVC model HM-16.15 on objective and subjective way Zoran M. Miličević, Jovan G. Mihajlović and Zoran S. Bojković Abstract This paper seeks to provide performance analysis for High Efficient Video

More information

Application of Geometry Rectification to Deformed Characters Recognition Liqun Wang1, a * and Honghui Fan2

Application of Geometry Rectification to Deformed Characters Recognition Liqun Wang1, a * and Honghui Fan2 6th International Conference on Electronic, Mechanical, Information and Management (EMIM 2016) Application of Geometry Rectification to Deformed Characters Liqun Wang1, a * and Honghui Fan2 1 School of

More information

A Generalized Mandelbrot Set Based On Distance Ratio

A Generalized Mandelbrot Set Based On Distance Ratio A Generalized Mandelbrot Set Based On Distance Ratio Xizhe Zhang College of Computer Science and Technology, Jilin University No.2699, Qianjin street 3002, Changchun, Jilin, China zxzok@63.com Tianyang

More information

Image and Video Quality Assessment Using Neural Network and SVM

Image and Video Quality Assessment Using Neural Network and SVM TSINGHUA SCIENCE AND TECHNOLOGY ISSN 1007-0214 18/19 pp112-116 Volume 13, Number 1, February 2008 Image and Video Quality Assessment Using Neural Network and SVM DING Wenrui (), TONG Yubing (), ZHANG Qishan

More information

Error Concealment Used for P-Frame on Video Stream over the Internet

Error Concealment Used for P-Frame on Video Stream over the Internet Error Concealment Used for P-Frame on Video Stream over the Internet MA RAN, ZHANG ZHAO-YANG, AN PING Key Laboratory of Advanced Displays and System Application, Ministry of Education School of Communication

More information

Research Article International Journals of Advanced Research in Computer Science and Software Engineering ISSN: X (Volume-7, Issue-6)

Research Article International Journals of Advanced Research in Computer Science and Software Engineering ISSN: X (Volume-7, Issue-6) International Journals of Advanced Research in Computer Science and Software Engineering ISS: 2277-128X (Volume-7, Issue-6) Research Article June 2017 Image Encryption Based on 2D Baker Map and 1D Logistic

More information

Spatio-Temporal LBP based Moving Object Segmentation in Compressed Domain

Spatio-Temporal LBP based Moving Object Segmentation in Compressed Domain 2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance Spatio-Temporal LBP based Moving Object Segmentation in Compressed Domain Jianwei Yang 1, Shizheng Wang 2, Zhen

More information

Low Overhead Geometric On-demand Routing Protocol for Mobile Ad Hoc Networks

Low Overhead Geometric On-demand Routing Protocol for Mobile Ad Hoc Networks Low Overhead Geometric On-demand Routing Protocol for Mobile Ad Hoc Networks Chang Su, Lili Zheng, Xiaohai Si, Fengjun Shang Institute of Computer Science & Technology Chongqing University of Posts and

More information

Research on the Application of Digital Images Based on the Computer Graphics. Jing Li 1, Bin Hu 2

Research on the Application of Digital Images Based on the Computer Graphics. Jing Li 1, Bin Hu 2 Applied Mechanics and Materials Online: 2014-05-23 ISSN: 1662-7482, Vols. 556-562, pp 4998-5002 doi:10.4028/www.scientific.net/amm.556-562.4998 2014 Trans Tech Publications, Switzerland Research on the

More information

Fast Decision of Block size, Prediction Mode and Intra Block for H.264 Intra Prediction EE Gaurav Hansda

Fast Decision of Block size, Prediction Mode and Intra Block for H.264 Intra Prediction EE Gaurav Hansda Fast Decision of Block size, Prediction Mode and Intra Block for H.264 Intra Prediction EE 5359 Gaurav Hansda 1000721849 gaurav.hansda@mavs.uta.edu Outline Introduction to H.264 Current algorithms for

More information

Express Letters. A Simple and Efficient Search Algorithm for Block-Matching Motion Estimation. Jianhua Lu and Ming L. Liou

Express Letters. A Simple and Efficient Search Algorithm for Block-Matching Motion Estimation. Jianhua Lu and Ming L. Liou IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 2, APRIL 1997 429 Express Letters A Simple and Efficient Search Algorithm for Block-Matching Motion Estimation Jianhua Lu and

More information

On the Selection of Image Compression Algorithms

On the Selection of Image Compression Algorithms On the Selection of Image Compression Algorithms Chaur-Chin Chen Department of Computer Science National Tsing Hua University Hsinchu 300, Taiwan e-mail: cchen@cs.nthu.edu.tw Abstract This paper attempts

More information

Fractal Coding. CS 6723 Image Processing Fall 2013

Fractal Coding. CS 6723 Image Processing Fall 2013 Fractal Coding CS 6723 Image Processing Fall 2013 Fractals and Image Processing The word Fractal less than 30 years by one of the history s most creative mathematician Benoit Mandelbrot Other contributors:

More information

THE TRANSFORM AND DATA COMPRESSION HANDBOOK

THE TRANSFORM AND DATA COMPRESSION HANDBOOK THE TRANSFORM AND DATA COMPRESSION HANDBOOK Edited by K.R. RAO University of Texas at Arlington AND RC. YIP McMaster University CRC Press Boca Raton London New York Washington, D.C. Contents 1 Karhunen-Loeve

More information

Hybrid Video Compression Using Selective Keyframe Identification and Patch-Based Super-Resolution

Hybrid Video Compression Using Selective Keyframe Identification and Patch-Based Super-Resolution 2011 IEEE International Symposium on Multimedia Hybrid Video Compression Using Selective Keyframe Identification and Patch-Based Super-Resolution Jeffrey Glaister, Calvin Chan, Michael Frankovich, Adrian

More information

FSRM Feedback Algorithm based on Learning Theory

FSRM Feedback Algorithm based on Learning Theory Send Orders for Reprints to reprints@benthamscience.ae The Open Cybernetics & Systemics Journal, 2015, 9, 699-703 699 FSRM Feedback Algorithm based on Learning Theory Open Access Zhang Shui-Li *, Dong

More information

A Quantized Transform-Domain Motion Estimation Technique for H.264 Secondary SP-frames

A Quantized Transform-Domain Motion Estimation Technique for H.264 Secondary SP-frames A Quantized Transform-Domain Motion Estimation Technique for H.264 Secondary SP-frames Ki-Kit Lai, Yui-Lam Chan, and Wan-Chi Siu Centre for Signal Processing Department of Electronic and Information Engineering

More information

Yui-Lam CHAN and Wan-Chi SIU

Yui-Lam CHAN and Wan-Chi SIU A NEW ADAPTIVE INTERFRAME TRANSFORM CODING USING DIRECTIONAL CLASSIFICATION Yui-Lam CHAN and Wan-Chi SIU Department of Electronic Engineering Hong Kong Polytechnic Hung Hom, Kowloon, Hong Kong ABSTRACT

More information

Advances of MPEG Scalable Video Coding Standard

Advances of MPEG Scalable Video Coding Standard Advances of MPEG Scalable Video Coding Standard Wen-Hsiao Peng, Chia-Yang Tsai, Tihao Chiang, and Hsueh-Ming Hang National Chiao-Tung University 1001 Ta-Hsueh Rd., HsinChu 30010, Taiwan pawn@mail.si2lab.org,

More information

Three Dimensional Motion Vectorless Compression

Three Dimensional Motion Vectorless Compression 384 IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.4, April 9 Three Dimensional Motion Vectorless Compression Rohini Nagapadma and Narasimha Kaulgud* Department of E &

More information

A Video Watermarking Algorithm Based on the Human Visual System Properties

A Video Watermarking Algorithm Based on the Human Visual System Properties A Video Watermarking Algorithm Based on the Human Visual System Properties Ji-Young Moon 1 and Yo-Sung Ho 2 1 Samsung Electronics Co., LTD 416, Maetan3-dong, Paldal-gu, Suwon-si, Gyenggi-do, Korea jiyoung.moon@samsung.com

More information

3D Searchless Fractal Video Encoding at Low Bit Rates

3D Searchless Fractal Video Encoding at Low Bit Rates Noname manuscript No. (will be inserted by the editor) 3D Searchless Fractal Video Encoding at Low Bit Rates Vitor de Lima William Robson Schwartz Helio Pedrini Received: date / Accepted: date Abstract

More information

Chapter 10. Basic Video Compression Techniques Introduction to Video Compression 10.2 Video Compression with Motion Compensation

Chapter 10. Basic Video Compression Techniques Introduction to Video Compression 10.2 Video Compression with Motion Compensation Chapter 10 Basic Video Compression Techniques 10.1 Introduction to Video Compression 10.2 Video Compression with Motion Compensation 10.3 Search for Motion Vectors 10.4 H.261 10.5 H.263 10.6 Further Exploration

More information

View Synthesis for Multiview Video Compression

View Synthesis for Multiview Video Compression MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com View Synthesis for Multiview Video Compression Emin Martinian, Alexander Behrens, Jun Xin, and Anthony Vetro TR2006-035 April 2006 Abstract

More information

Multiview Image Compression using Algebraic Constraints

Multiview Image Compression using Algebraic Constraints Multiview Image Compression using Algebraic Constraints Chaitanya Kamisetty and C. V. Jawahar Centre for Visual Information Technology, International Institute of Information Technology, Hyderabad, INDIA-500019

More information

Laboratoire d'informatique, de Robotique et de Microélectronique de Montpellier Montpellier Cedex 5 France

Laboratoire d'informatique, de Robotique et de Microélectronique de Montpellier Montpellier Cedex 5 France Video Compression Zafar Javed SHAHID, Marc CHAUMONT and William PUECH Laboratoire LIRMM VOODDO project Laboratoire d'informatique, de Robotique et de Microélectronique de Montpellier LIRMM UMR 5506 Université

More information

EE 5359 H.264 to VC 1 Transcoding

EE 5359 H.264 to VC 1 Transcoding EE 5359 H.264 to VC 1 Transcoding Vidhya Vijayakumar Multimedia Processing Lab MSEE, University of Texas @ Arlington vidhya.vijayakumar@mavs.uta.edu Guided by Dr.K.R. Rao Goals Goals The goal of this project

More information

Chapter 11.3 MPEG-2. MPEG-2: For higher quality video at a bit-rate of more than 4 Mbps Defined seven profiles aimed at different applications:

Chapter 11.3 MPEG-2. MPEG-2: For higher quality video at a bit-rate of more than 4 Mbps Defined seven profiles aimed at different applications: Chapter 11.3 MPEG-2 MPEG-2: For higher quality video at a bit-rate of more than 4 Mbps Defined seven profiles aimed at different applications: Simple, Main, SNR scalable, Spatially scalable, High, 4:2:2,

More information

Image Error Concealment Based on Watermarking

Image Error Concealment Based on Watermarking Image Error Concealment Based on Watermarking Shinfeng D. Lin, Shih-Chieh Shie and Jie-Wei Chen Department of Computer Science and Information Engineering,National Dong Hwa Universuty, Hualien, Taiwan,

More information

Combined Copyright Protection and Error Detection Scheme for H.264/AVC

Combined Copyright Protection and Error Detection Scheme for H.264/AVC Combined Copyright Protection and Error Detection Scheme for H.264/AVC XIAOMING CHEN, YUK YING CHUNG, FANGFEI XU, AHMED FAWZI OTOOM, *CHANGSEOK BAE School of Information Technologies, The University of

More information

Rate-distortion Optimized Streaming of Compressed Light Fields with Multiple Representations

Rate-distortion Optimized Streaming of Compressed Light Fields with Multiple Representations Rate-distortion Optimized Streaming of Compressed Light Fields with Multiple Representations Prashant Ramanathan and Bernd Girod Department of Electrical Engineering Stanford University Stanford CA 945

More information