Image Warping, Compositing & Morphing

Size: px
Start display at page:

Download "Image Warping, Compositing & Morphing"

Transcription

1 Image Processing Image Warping, Compositing & Morphing Adam Finkelstein Princeton Uniersit COS 426, Spring 2005 Image Processing Qantization Uniform Qantization Random dither Ordered dither Flod-Steinberg dither Piel operations Add random noise Add lminance Add contrast Add satration Qantization Filtering Uniform Qantization Random dither Ordered dither Flod-Steinberg dither Blr Detect edges Warping Scale Warp Piel operations Add random noise Add lminance Add contrast Add satration Combining Morph Composite Image Warping Filtering Blr Detect edges Moe piels of image Mapping Resampling Warping Scale Warp Warp Combining Morph Composite Sorce image Oeriew Mapping Forward Reerse Mapping Define transformation Describe the destination (,) for eer location (,) in the sorce (or ice-ersa, if inertible) Resampling Point sampling Triangle filter Gassian filter

2 Eample Mappings Eample Mappings Scale b factor: b " degrees: = factor * = factor * = cos" - sin" = sin" + cos" Scale Eample Mappings Other Mappings Shear in X b factor: = + factor * = An fnction of and : = f(,) = f(,) Shear X 1.3 Shear in Y b factor: = = + factor * Shear Y 1.3 Swirl Image Warping Implementation I Rain Forward Mapping Forward mapping: Iterate oer sorce image for (int = 0; < ma; ++) { for (int = 0; < ma; ++) { float = f(,); float = f(,); dst(,) = src(,); (,) Fish-ee f -30 (,) Sorce image

3 Forward Mapping - NOT Forward Mapping - NOT Iterate oer sorce image Man sorce piels can map to same destination piel Iterate oer sorce image Man sorce piels can map to same destination piel Some destination piels ma not be coered Image Warping Implementation II Reerse mapping: for (int = 0; < ma; ++) { for (int = 0; < ma; ++) { float = f -1 (,); float = f -1 (,); dst(,) = src(,); (,) f Sorce image (,) Reerse Mapping Iterate oer destination image Mst resample sorce Ma oersample, bt mch simpler -30 Resampling Ealate sorce image at arbitrar (,) (,) does not sall hae integer coordinates Oeriew Mapping Forward Reerse» Resampling Point sampling Triangle filter Gassian filter (,) Sorce image (,)

4 Point Sampling Take ale at closest piel: int i = trnc(+0.5); int i = trnc(+0.5); This method is simple, dst(,) = src(i,i); bt it cases aliasing Filtering Compte weighted sm of piel neighborhood Weights are normalized ales of kernel fnction Eqialent to conoltion at samples -30 Scale 0.5 k(i,j) represented b gra ale (,) Filtering Compte weighted sm of piel neighborhood Weights are normalized ales of kernel fnction Eqialent to conoltion at samples Triangle Filtering Kernel is triangle fnction s = 0; for (i = -w; i <= w; i++) for (j = -w; j <= w; j++) s += k(i,j)*i(+i, +j); (,) w (,) r w -w w Tent Fnction k( i, j) =1 k(i,j) represented b gra ale Filter Width = 2 Triangle Filtering Kernel is triangle fnction (,) w -w w Tent Fnction Triangle Filtering (with width = 1) Bilinearl interpolate for closest piels a = linear interpolation of src( 1, 2 ) and src( 2, 2 ) b = linear interpolation of src( 1, 1 ) and src( 2, 1 ) dst(,) = linear interpolation of a and b ( 1, 2 ) a (,) ( 2, 2 ) Filter Width = 1 Width of filter affects blrriness Filter Width = 1 ( 1, 1 ) b ( 2, 1 )

5 Gassian Filtering Filtering Methods Comparison Kernel is Gassian fnction Trade-offs Aliasing erss blrring Comptation speed w -w Gassian Fnction (,) Point Bilinear Gassian Filter Width = 2 Image Warping Implementation Image Warping Implementation Reerse mapping: Reerse mapping: for (int = 0; < ma; ++) { for (int = 0; < ma; ++) { float = f-1(,); float = f-1(,); dst(,) = resample_src(,,w); (,) for (int = 0; < ma; ++) { for (int = 0; < ma; ++) { float = f-1(,); float = f-1(,); dst(,) = resample_src(,,w); (,) f (,) Sorce image Eample: Scale f w (,) Sorce image Eample: Scale (src, dst, s, s): (src, dst, theta): float w # ma(1.0/s,1.0/s); for (int = 0; < ma; ++) { for (int = 0; < ma; ++) { float = / s; float = / s; dst(,) = resample_src(,,w); (,) (,) for (int = 0; < ma; ++) { for (int = 0; < ma; ++) { float = *cos(-") - *sin(-"); float = *sin(-") + *cos(-"); dst(,) = resample_src(,,w); (,) (,) = cos" - sin" = sin" + cos" Scale

6 Eample: Fn Image Processing Swirl (src, dst, theta): for (int = 0; < ma; ++) { for (int = 0; < ma; ++) { float = rot(dist(,center)*theta); float = rot(dist(,center)*theta); dst(,) = resample_src(,,w); (,) f (,) Swirl 45 Qantization Filtering Uniform Qantization Random dither Ordered dither Flod-Steinberg dither Blr Detect edges Warping Scale Warp Piel operations Add random noise Add lminance Add contrast Add satration Combining Morph Composite Oeriew: combining images Oeriew: combining images Image morphing Image morphing Specifing correspondences Warping Bling Specifing correspondences Warping Bling Image compositing Image compositing Ble-screen mattes Alpha channel Porter-Dff compositing algebra Ble-screen mattes Alpha channel Porter-Dff compositing algebra Image Morphing Cross-Dissoling Animate transition between two images Bl images with oer operator alpha of bottom image is 1.0 alpha of top image aries from 0.0 to 1.0 bl(i,j) = (1-t) src(i,j) + t dst(i,j) (0 $ t $ 1) src H&B Figre 16.9 t = 0.0 bl t = 0.5 dst t = 1.0 t

7 Image Morphing Combines warping and cross-dissoling src Image Morphing The warping step is the hard one Aim to align featres in images warp warp cross-dissole warp warp t = 0.0 t = 0.5 t = 1.0 dst t How specif mapping for the warp? H&B Figre 16.9 Featre-Based Warping Beier & Neele se pairs of lines to specif warp Gien p in dst image, where is p in sorce image? Warping with One Line Pair What happens to the F? Mapping p p Sorce image is a fraction is a length (in piels) Beier & Neele SIGGRAPH 92 Translation Warping with One Line Pair What happens to the F? Warping with One Line Pair What happens to the F? Scale Rotation

8 Warping with One Line Pair What happens to the F? Warping with Mltiple Line Pairs Use weighted combination of points defined b each pair of corresponding lines In general, similarit transformations What tpes of transformations can t be specified? Beier & Neele, Figre 4 Warping with Mltiple Line Pairs Use weighted combination of points defined b each pair of corresponding lines Weighting Effect of Each Line Pair To weight the contribtion of each line pair, Beier & Neele se: p Mapping p p weight & length[ i] i a dist i # [ ] = $ % + [ ] " b Sorce image p is a weighted aerage Where: length[i] is the length of L[i] dist[i] is the distance from X to L[i] a, b, p are constants that control the warp Warping Psedocode WarpImage(Image, L [ ], L[ ]) begin foreach destination piel p do psm = (0,0) wsm = 0 foreach line L[i] in destination do p [i] = p transformed b (L[i],L [i]) psm = psm + p [i] * weight[i] wsm += weight[i] p = psm / wsm Reslt(p) = Image(p ) Morphing Psedocode GenerateAnimation(Image 0, L 0 [ ], Image 1, L 1 [ ]) begin foreach intermediate frame time t do for i = 1 to nmber of line pairs do L[i] = line t-th of the wa from L 0 [i] to L 1 [i] Warp 0 = WarpImage(Image 0, L 0, L) Warp 1 = WarpImage(Image 1, L 1, L) foreach piel p in FinalImage do Reslt(p) = (1-t) Warp 0 + t Warp 1

9 Beier & Neele Eample Image0 Beier & Neele Eample Warp0 Reslt Image1 Oeriew Image0 Warp0 Reslt Warp1 Image1 Warp1 Een CG folks Can Win an Oscar Image compositing Ble-screen mattes Alpha channel Porter-Dff compositing algebra Image morphing Specifing correspondences Warping Bling Smith Image Compositing Separate an image into elements Rer indepentl Composite together Applications Cel animation Chroma-keing Ble-screen matting Dff Catmll Porter Ble-Screen Matting Composite foregrond and backgrond images Create backgrond image Create foregrond image with ble backgrond Insert non-ble foregrond piels into backgrond Problem: no partial coerage

10 Alpha Channel Compositing with Alpha Encodes piel coerage information % = 0: no coerage (or transparent) % = 1: fll coerage (or opaqe) 0 < % < 1: partial coerage (or semi-transparent) Controls the linear interpolation of foregrond and backgrond piels when elements are composited. %=0 Eample: % = 0.3 %=1 0<%<1 or Partial Coerage 0<%<1 SemiTransparent Semi-Transparent Objects Opaqe Objects Sppose we pt A oer B oer backgrond G A B G How do we combine 2 partiall coered piels? 3 possible colors (0, A, B) 4 regions (0, A, B, AB) AB A How mch of B is blocked b A? A %A B 0 How mch of B shows throgh A (1-%A ) B How mch of G shows throgh both A and B? (1-%A )(1-%B )??? Composition Algebra??? Eample: C = A Oer B 12 reasonable combinations Consider the areas coered: C = %A A + (1-%A) %B B % = %A + (1-%A) %B clear A B A oer B B oer A A in B (1-%A) %B %A B in A A ot B B ot A A atop B B atop A A or b A oer B Porter & Dff `84 Assmption: coerages of A and B are ncorrelated for each piel

11 Image Composition Eample Image Composition Eample [Porter&Dff Compter Graphics 18:3 1984] Image Composition Eample [Porter&Dff Compter Graphics 18:3 1984] Image Processing Qantization Uniform Qantization Random dither Ordered dither Flod-Steinberg dither Piel operations [Porter&Dff Compter Graphics 18:3 1984] Net Time: 3D Rering Misha Kazhdan, CS426, Fall99 Add random noise Add lminance Add contrast Add satration Filtering Blr Detect edges Warping Scale Warp Combining Composite Morph

Image Processing. Overview. Trade spatial resolution for intensity resolution Reduce visual artifacts due to quantization. Sampling and Reconstruction

Image Processing. Overview. Trade spatial resolution for intensity resolution Reduce visual artifacts due to quantization. Sampling and Reconstruction Image Processing Overview Image Representation What is an image? Halftoning and Dithering Trade spatial resolution for intensity resolution Reduce visual artifacts due to quantization Sampling and Reconstruction

More information

Image Compositing & Morphing COS 426

Image Compositing & Morphing COS 426 Image Compositing & Morphing COS 426 Digital Image Processing Changing intensity/color Linear: scale, offset, etc. Nonlinear: gamma, saturation, etc. Add random noise Filtering over neighborhoods Blur

More information

Image Morphing. Michael Kazhdan ( /657) HB Ch Feature Based Image Metamorphosis, Beier and Neely 1992

Image Morphing. Michael Kazhdan ( /657) HB Ch Feature Based Image Metamorphosis, Beier and Neely 1992 Image Morphing Michael Kazhdan (601.457/657) HB Ch. 16.5 Feature Based Image Metamorphosis, Beier and Neely 1992 Image Morphing Animate transition between two images H&B Figure 16.9 Image Morphing Animate

More information

Interactive Computer Graphics. Warping and morphing. Warping and Morphing. Warping and Morphing. Lecture 14+15: Warping and Morphing. What is.

Interactive Computer Graphics. Warping and morphing. Warping and Morphing. Warping and Morphing. Lecture 14+15: Warping and Morphing. What is. Interactive Computer Graphics Warping and morphing Lecture 14+15: Warping and Morphing Lecture 14: Warping and Morphing: Slide 1 Lecture 14: Warping and Morphing: Slide 2 Warping and Morphing What is Warping

More information

Image Compositing & Morphing

Image Compositing & Morphing Image Cmpsiting & Mrphing Adam Finkelstein & Tim Weyrich Princetn University COS 426, Spring 2008 Image Prcessing Pixel peratins Add randm nise Add luminance Add cntrast Add saturatin Blur Detect edges

More information

Image warping. image filtering: change range of image. image warping: change domain of image g(x) = f(h(x)) h(y)=0.5y+0.5. h([x,y])=[x,y/2] f h

Image warping. image filtering: change range of image. image warping: change domain of image g(x) = f(h(x)) h(y)=0.5y+0.5. h([x,y])=[x,y/2] f h Image warping Image warping image filtering: change range of image g() () = h(f()) h(f()) f h g h()=0.5+0.5 image warping: change domain of image g() = f(h()) f h g h([,])=[,/2] Parametric (global) warping

More information

Image warping/morphing

Image warping/morphing Image warping/morphing Digital Visual Effects, Spring 2007 Yung-Yu Chuang 2007/3/20 with slides b Richard Szeliski, Steve Seitz, Tom Funkhouser and Aleei Efros Image warping Image formation B A Sampling

More information

Prof. Feng Liu. Winter /05/2019

Prof. Feng Liu. Winter /05/2019 Prof. Feng Liu Winter 2019 http://www.cs.pd.edu/~fliu/courses/cs410/ 02/05/2019 Last Time Image alignment 2 Toda Image warping The slides for this topic are used from Prof. Yung-Yu Chuang, which use materials

More information

Image Operations in the Frequency Domain

Image Operations in the Frequency Domain Image Processing Image Operations in the Freqenc Domain Freqenc Bands Low Pass Filter High Pass Filter Band pass Filter Blrring Sharpening Image Forier Spectrm Percentage of image power enclosed in circles

More information

Image Transformations

Image Transformations Image Transformations Outline Gre-level transformations Histogram equalization Geometric transformations Affine transformations Interpolation Warping and morphing. Gre-level transformations Changes the

More information

Image Processing, Warping, and Sampling

Image Processing, Warping, and Sampling Image Processing, Warping, and Sampling Michael Kazhdan (601.457/657) HB Ch. 4.8 FvDFH Ch. 14.10 Outline Image Processing Image Warping Image Sampling Image Processing What about the case when the modification

More information

Sampling, Resampling, and Warping. COS 426, Spring 2014 Tom Funkhouser

Sampling, Resampling, and Warping. COS 426, Spring 2014 Tom Funkhouser Sampling, Resampling, and Warping COS 426, Spring 2014 Tom Funkhouser Image Processing Goal: read an image, process it, write the result input.jpg output.jpg imgpro input.jpg output.jpg histogram_equalization

More information

Image Filtering, Warping and Sampling

Image Filtering, Warping and Sampling Image Filtering, Warping and Sampling Connelly Barnes CS 4810 University of Virginia Acknowledgement: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David

More information

Image Restoration Image Degradation and Restoration

Image Restoration Image Degradation and Restoration Image Degradation and Restoration hxy Image Degradation Model: Spatial domain representation can be modeled by: g x y h x y f x y x y Freqency domain representation can be modeled by: G F N Prepared By:

More information

Modeling Transformations

Modeling Transformations Modeling Transformations Michael Kazhdan (601.457/657) HB Ch. 5 FvDFH Ch. 5 Overview Ra-Tracing so far Modeling transformations Ra Tracing Image RaTrace(Camera camera, Scene scene, int width, int heigh,

More information

Announcements. Motion. Motion. Continuous Motion. Background Subtraction

Announcements. Motion. Motion. Continuous Motion. Background Subtraction Annoncements Motion CSE 5A Lectre 13 Homework is de toda, 11:59 PM Reading: Section 10.6.1: Optical Flow and Motion Section 10.6.: Flow Models Introdctor echniqes or 3-D Compter Vision, rcco and Verri

More information

Limitations of Thresholding

Limitations of Thresholding Limitations of Thresholding Wh can we segment images much better b ee than through thresholding processes? We might improve results b considering image contet: Surface Coherence Gradient.illusion.arp.jpg

More information

CS 557 Lecture IX. Drexel University Dept. of Computer Science

CS 557 Lecture IX. Drexel University Dept. of Computer Science CS 7 Lectre IX Dreel Uniersity Dept. of Compter Science Fall 00 Shortest Paths Finding the Shortest Paths in a graph arises in many different application: Transportation Problems: Finding the cheapest

More information

Modeling Transformations

Modeling Transformations Modeling Transformations Michael Kazhdan (601.457/657) HB Ch. 5 FvDFH Ch. 5 Announcement Assignment 2 has been posted: Due: 10/24 ASAP: Download the code and make sure it compiles» On windows: just build

More information

CS 335 Graphics and Multimedia. Geometric Warping

CS 335 Graphics and Multimedia. Geometric Warping CS 335 Graphics and Multimedia Geometric Warping Geometric Image Operations Eample transformations Straightforward methods and their problems The affine transformation Transformation algorithms: Forward

More information

Image Warping, mesh, and triangulation CSE399b, Spring 07 Computer Vision

Image Warping, mesh, and triangulation CSE399b, Spring 07 Computer Vision http://grail.cs.washington.edu/projects/rotoscoping/ Image Warping, mesh, and triangulation CSE399b, Spring 7 Computer Vision Man of the slides from A. Efros. Parametric (global) warping Eamples of parametric

More information

Spatial domain: Enhancement in the case of a single image

Spatial domain: Enhancement in the case of a single image Unit-6 Spatial domain: Enhancement in the case of a single image Spatial masks Man image enhancement techniqes are based on spatial operations performed on local neighborhoods of inpt piels. The image

More information

The final datapath. M u x. Add. 4 Add. Shift left 2. PCSrc. RegWrite. MemToR. MemWrite. Read data 1 I [25-21] Instruction. Read. register 1 Read.

The final datapath. M u x. Add. 4 Add. Shift left 2. PCSrc. RegWrite. MemToR. MemWrite. Read data 1 I [25-21] Instruction. Read. register 1 Read. The final path PC 4 Add Reg Shift left 2 Add PCSrc Instrction [3-] Instrction I [25-2] I [2-6] I [5 - ] register register 2 register 2 Registers ALU Zero Reslt ALUOp em Data emtor RegDst ALUSrc em I [5

More information

Image Enhancement in the Frequency Domain Periodicity and the need for Padding:

Image Enhancement in the Frequency Domain Periodicity and the need for Padding: Prepared B: Dr. Hasan Demirel PhD Image Enhancement in the Freqenc Domain Periodicit and the need for Padding: Periodicit propert of the DFT: The discrete Forier Transform and the inverse Forier transforms

More information

Today. B-splines. B-splines. B-splines. Computergrafik. Curves NURBS Surfaces. Bilinear patch Bicubic Bézier patch Advanced surface modeling

Today. B-splines. B-splines. B-splines. Computergrafik. Curves NURBS Surfaces. Bilinear patch Bicubic Bézier patch Advanced surface modeling Comptergrafik Matthias Zwicker Uniersität Bern Herbst 29 Cres Srfaces Parametric srfaces Bicbic Bézier patch Adanced srface modeling Piecewise Bézier cres Each segment spans for control points Each segment

More information

POWER-OF-2 BOUNDARIES

POWER-OF-2 BOUNDARIES Warren.3.fm Page 5 Monday, Jne 17, 5:6 PM CHAPTER 3 POWER-OF- BOUNDARIES 3 1 Ronding Up/Down to a Mltiple of a Known Power of Ronding an nsigned integer down to, for eample, the net smaller mltiple of

More information

IMAGE ENHANCEMENT IN THE FREQUENCY DOMAIN (1)

IMAGE ENHANCEMENT IN THE FREQUENCY DOMAIN (1) KOM3 Image Processing in Indstrial Systems Dr Mharrem Mercimek IMAGE ENHANCEMENT IN THE FREQUENCY DOMAIN KOM3 Image Processing in Indstrial Systems Some of the contents are adopted from R. C. Gonzalez

More information

Image Compositing. Key Concepts. Colbert Challenge

Image Compositing. Key Concepts. Colbert Challenge CS148: Introduction to Computer Graphics and Imaging Image Compositing Colbert Challenge Key Concepts Optical compositing and mattes The alpha channel Compositing operators Premultipled alpha Matte extraction

More information

The single-cycle design from last time

The single-cycle design from last time lticycle path Last time we saw a single-cycle path and control nit for or simple IPS-based instrction set. A mlticycle processor fies some shortcomings in the single-cycle CPU. Faster instrctions are not

More information

Prof. Kozyrakis. 1. (10 points) Consider the following fragment of Java code:

Prof. Kozyrakis. 1. (10 points) Consider the following fragment of Java code: EE8 Winter 25 Homework #2 Soltions De Thrsday, Feb 2, 5 P. ( points) Consider the following fragment of Java code: for (i=; i

More information

Image Warping. Computational Photography Derek Hoiem, University of Illinois 09/28/17. Photo by Sean Carroll

Image Warping. Computational Photography Derek Hoiem, University of Illinois 09/28/17. Photo by Sean Carroll Image Warping 9/28/7 Man slides from Alosha Efros + Steve Seitz Computational Photograph Derek Hoiem, Universit of Illinois Photo b Sean Carroll Reminder: Proj 2 due monda Much more difficult than project

More information

Photo by Carl Warner

Photo by Carl Warner Photo b Carl Warner Photo b Carl Warner Photo b Carl Warner Fitting and Alignment Szeliski 6. Computer Vision CS 43, Brown James Has Acknowledgment: Man slides from Derek Hoiem and Grauman&Leibe 2008 AAAI

More information

Image Analysis & Retrieval Lec 05 - Interesting Points Detection

Image Analysis & Retrieval Lec 05 - Interesting Points Detection CS/ 5590 / NG 401 Special Topics Spring 018 mage Analsis & Retrieal Lec 05 - nteresting Points Detection Zh Li Dept of CS UMKC Office: FH560 mail: lizh@mkc.ed Ph: 346. http://l.web.mkc.ed/lizh mage Analsis

More information

Chapter 4: Network Layer. TDTS06 Computer networks. Chapter 4: Network Layer. Network layer. Two Key Network-Layer Functions

Chapter 4: Network Layer. TDTS06 Computer networks. Chapter 4: Network Layer. Network layer. Two Key Network-Layer Functions Chapter : Netork Laer TDTS06 Compter s Lectre : Netork laer II Roting algorithms Jose M. Peña, jospe@ida.li.se ID/DIT, LiU 009-09- Chapter goals: nderstand principles behind laer serices: laer serice models

More information

The extra single-cycle adders

The extra single-cycle adders lticycle Datapath As an added bons, we can eliminate some of the etra hardware from the single-cycle path. We will restrict orselves to sing each fnctional nit once per cycle, jst like before. Bt since

More information

Modeling Transformations

Modeling Transformations Transformations Transformations Specif transformations for objects o Allos definitions of objects in on coordinate sstems o Allos use of object definition multiple times in a scene Adam Finkelstein Princeton

More information

Assignments. Computer Networks LECTURE 7 Network Layer: Routing and Addressing. Network Layer Function. Internet Architecture

Assignments. Computer Networks LECTURE 7 Network Layer: Routing and Addressing. Network Layer Function. Internet Architecture ompter Netorks LETURE Netork Laer: Roting and ddressing ssignments Project : Web Pro Serer DUE OT Sandha Darkadas Department of ompter Science Uniersit of Rochester Internet rchitectre Bottom-p: phsical:

More information

Image Restoration. CS 663, Ajit Rajwade

Image Restoration. CS 663, Ajit Rajwade Image Restoration CS 663 Ajit Rajwade Contents Introdction to image restoration Inerse ilter Spread spectrm ilters coded apertre camera and ltter-shtter camera Wiener ilter aim assmptions ormla and deriation

More information

Image Warping CSE399b, Spring 07 Computer Vision

Image Warping CSE399b, Spring 07 Computer Vision Image Warping CSE399b, Spring 7 Computer Vision http://maps.a9.com http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html Autostiching on A9.com

More information

CS4670: Computer Vision

CS4670: Computer Vision CS467: Computer Vision Noah Snavely Lecture 8: Geometric transformations Szeliski: Chapter 3.6 Reading Announcements Project 2 out today, due Oct. 4 (demo at end of class today) Image alignment Why don

More information

Chapter 7 TOPOLOGY CONTROL

Chapter 7 TOPOLOGY CONTROL Chapter TOPOLOGY CONTROL Oeriew Topology Control Gabriel Graph et al. XTC Interference SINR & Schedling Complexity Distribted Compting Grop Mobile Compting Winter 00 / 00 Distribted Compting Grop MOBILE

More information

Feature extraction: Corners Harris Corners Pkwy, Charlotte, NC

Feature extraction: Corners Harris Corners Pkwy, Charlotte, NC Featre etraction: Corners 9300 Harris Corners Pkw Charlotte NC Wh etract featres? Motiation: panorama stitching We hae two images how do we combine them? Wh etract featres? Motiation: panorama stitching

More information

Chapter 6: Pipelining

Chapter 6: Pipelining CSE 322 COPUTER ARCHITECTURE II Chapter 6: Pipelining Chapter 6: Pipelining Febrary 10, 2000 1 Clothes Washing CSE 322 COPUTER ARCHITECTURE II The Assembly Line Accmlate dirty clothes in hamper Place in

More information

Network layer. Two Key Network-Layer Functions. Datagram Forwarding table. IP datagram format. IP Addressing: introduction

Network layer. Two Key Network-Layer Functions. Datagram Forwarding table. IP datagram format. IP Addressing: introduction Netork laer transport segment sending to receiing host on sending side encapslates segments into grams on rcing side, deliers segments to transport laer laer protocols in eer host, roter roter eamines

More information

Computer Graphics. Si Lu. Fall er_graphics.htm 10/11/2017

Computer Graphics. Si Lu. Fall er_graphics.htm 10/11/2017 Computer Graphics Si Lu Fall 27 http://www.cs.pd.edu/~lusi/cs447/cs447_547_comput er_graphics.htm //27 Last time Filtering Resampling 2 Toda Compositing NPR 3D Graphics Toolkits Transformations 3 Demo

More information

Geometric Image Transformations and Related Topics

Geometric Image Transformations and Related Topics Geometric Image Transformations and Related Topics 9 th Lesson on Image Processing Martina Mudrová 2004 Topics What will be the topic of the following lesson? Geometric image transformations Interpolation

More information

Multi-stable Perception. Necker Cube

Multi-stable Perception. Necker Cube Multi-stable Perception Necker Cube Spinning dancer illusion, Nobuuki Kaahara Fitting and Alignment Computer Vision Szeliski 6.1 James Has Acknowledgment: Man slides from Derek Hoiem, Lana Lazebnik, and

More information

Image warping/morphing

Image warping/morphing Image warping/morphing Digital Visual Effects Yung-Yu Chuang with slides by Richard Szeliski, Steve Seitz, Tom Funkhouser and Alexei Efros Image warping Image formation B A Sampling and quantization What

More information

Review Multicycle: What is Happening. Controlling The Multicycle Design

Review Multicycle: What is Happening. Controlling The Multicycle Design Review lticycle: What is Happening Reslt Zero Op SrcA SrcB Registers Reg Address emory em Data Sign etend Shift left Sorce A B Ot [-6] [5-] [-6] [5-] [5-] Instrction emory IR RegDst emtoreg IorD em em

More information

Layered Light Field Reconstruction for Defocus Blur

Layered Light Field Reconstruction for Defocus Blur Layered Light Field Reconstrction for Defocs Blr KARTHIK VAIDYANATHAN, JACOB MUNKBERG, PETRIK CLARBERG and MARCO SALVI Intel Corporation We present a novel algorithm for reconstrcting high qality defocs

More information

Digital Image Processing Chapter 5: Image Restoration

Digital Image Processing Chapter 5: Image Restoration Digital Image Processing Chapter 5: Image Restoration Concept of Image Restoration Image restoration is to restore a degraded image back to the original image while image enhancement is to maniplate the

More information

CS 251, Spring 2018, Assignment 3.0 3% of course mark

CS 251, Spring 2018, Assignment 3.0 3% of course mark CS 25, Spring 28, Assignment 3. 3% of corse mark De onday, Jne 25th, 5:3 P. (5 points) Consider the single-cycle compter shown on page 6 of this assignment. Sppose the circit elements take the following

More information

CS 251, Winter 2019, Assignment % of course mark

CS 251, Winter 2019, Assignment % of course mark CS 25, Winter 29, Assignment.. 3% of corse mark De Wednesday, arch 3th, 5:3P Lates accepted ntil Thrsday arch th, pm with a 5% penalty. (7 points) In the diagram below, the mlticycle compter from the corse

More information

CS 251, Winter 2018, Assignment % of course mark

CS 251, Winter 2018, Assignment % of course mark CS 25, Winter 28, Assignment 3.. 3% of corse mark De onday, Febrary 26th, 4:3 P Lates accepted ntil : A, Febrary 27th with a 5% penalty. IEEE 754 Floating Point ( points): (a) (4 points) Complete the following

More information

CS770/870 Spring 2017 Transformations

CS770/870 Spring 2017 Transformations CS770/870 Spring 2017 Transformations Coordinate sstems 2D Transformations Homogeneous coordinates Matrices, vectors, points Coordinate Sstems Coordinate sstems used in graphics Screen coordinates: the

More information

Modeling Transformations

Modeling Transformations שיעור 3 גרפיקה ממוחשבת תשס"ח ב ליאור שפירא Modeling Transformations Heavil based on: Thomas Funkhouser Princeton Universit CS 426, Fall 2 Modeling Transformations Specif transformations for objects Allows

More information

Last Lecture. Edge Detection. Filtering Pyramid

Last Lecture. Edge Detection. Filtering Pyramid Last Lecture Edge Detection Filtering Pramid Toda Motion Deblur Image Transformation Removing Camera Shake from a Single Photograph Rob Fergus, Barun Singh, Aaron Hertzmann, Sam T. Roweis and William T.

More information

Stereopsis Raul Queiroz Feitosa

Stereopsis Raul Queiroz Feitosa Stereopsis Ral Qeiroz Feitosa 5/24/2017 Stereopsis 1 Objetie This chapter introdces the basic techniqes for a 3 dimensional scene reconstrction based on a set of projections of indiidal points on two calibrated

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Introdction (forarding and roting) Reie of qeeing theor Roting algorithms Link state, Distance Vector Roter design and operation IP: Internet Protocol IP4 (datagram format, addressing, ICMP,

More information

Spatial domain processing Remove the additive noise Frequency domain

Spatial domain processing Remove the additive noise Frequency domain Image Comm. Lab EE/NTHU 1 Chapter 5 Image Restoration and Reconstrction Degraded digital image restoration Spatial domain processing Remoe the additie noise Freqency domain Highlight ht the blrred image

More information

CS 450: COMPUTER GRAPHICS REVIEW: CLIPPING SPRING 2015 DR. MICHAEL J. REALE

CS 450: COMPUTER GRAPHICS REVIEW: CLIPPING SPRING 2015 DR. MICHAEL J. REALE CS 45: COMPUTER GRAPHICS REVIEW: CLIPPING SPRING 215 DR. MICHAEL J. REALE CLIPPING Clipping = removing part or all of the primitives otside of the clipping volme/window Clipping volme in OpenGL nit cbe

More information

Computer Architecture Chapter 5. Fall 2005 Department of Computer Science Kent State University

Computer Architecture Chapter 5. Fall 2005 Department of Computer Science Kent State University Compter Architectre Chapter 5 Fall 25 Department of Compter Science Kent State University The Processor: Datapath & Control Or implementation of the MIPS is simplified memory-reference instrctions: lw,

More information

Maximal Cliques in Unit Disk Graphs: Polynomial Approximation

Maximal Cliques in Unit Disk Graphs: Polynomial Approximation Maximal Cliqes in Unit Disk Graphs: Polynomial Approximation Rajarshi Gpta, Jean Walrand, Oliier Goldschmidt 2 Department of Electrical Engineering and Compter Science Uniersity of California, Berkeley,

More information

Scene Graphs & Modeling Transformations COS 426

Scene Graphs & Modeling Transformations COS 426 Scene Graphs & Modeling Transformations COS 426 3D Object Representations Points Range image Point cloud Surfaces Polgonal mesh Subdivision Parametric Implicit Solids Voels BSP tree CSG Sweep High-level

More information

Math 365 Wednesday 4/10/ & 10.2 Graphs

Math 365 Wednesday 4/10/ & 10.2 Graphs Math 365 Wednesda 4/10/19 10.1 & 10.2 Graphs Eercise 44. (Relations and digraphs) For each the relations in Eercise 43(a), dra the corresponding directed graph here V = {0, 1, 2, 3} and a! b if a b. What

More information

CS 153 Design of Operating Systems

CS 153 Design of Operating Systems CS 53 Design of Operating Systems Spring 8 Lectre 9: Locality and Cache Instrctor: Chengy Song Slide contribtions from Nael Ab-Ghazaleh, Harsha Madhyvasta and Zhiyn Qian Some slides modified from originals

More information

EXAMINATIONS 2010 END OF YEAR NWEN 242 COMPUTER ORGANIZATION

EXAMINATIONS 2010 END OF YEAR NWEN 242 COMPUTER ORGANIZATION EXAINATIONS 2010 END OF YEAR COPUTER ORGANIZATION Time Allowed: 3 Hors (180 mintes) Instrctions: Answer all qestions. ake sre yor answers are clear and to the point. Calclators and paper foreign langage

More information

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Homework Set 9 Fall, 2018

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Homework Set 9 Fall, 2018 OPTI-502 Optical Design and Instrmentation I John E. Greivenkamp Assigned: 10/31/18 Lectre 21 De: 11/7/18 Lectre 23 Note that in man 502 homework and exam problems (as in the real world!!), onl the magnitde

More information

Review. How to represent real numbers

Review. How to represent real numbers PCWrite PC IorD Review ALUSrcA emread Address Write data emory emwrite em Data IRWrite [3-26] [25-2] [2-6] [5-] [5-] RegDst Read register Read register 2 Write register Write data RegWrite Read data Read

More information

Modeling Transformations

Modeling Transformations Modeling Transformations Thomas Funkhouser Princeton Universit CS 426, Fall 2 Modeling Transformations Specif transformations for objects Allos definitions of objects in on coordinate sstems Allos use

More information

Bias of Higher Order Predictive Interpolation for Sub-pixel Registration

Bias of Higher Order Predictive Interpolation for Sub-pixel Registration Bias of Higher Order Predictive Interpolation for Sb-pixel Registration Donald G Bailey Institte of Information Sciences and Technology Massey University Palmerston North, New Zealand D.G.Bailey@massey.ac.nz

More information

CS 153 Design of Operating Systems

CS 153 Design of Operating Systems CS 53 Design of Operating Systems Spring 8 Lectre 6: Paging Instrctor: Chengy Song Slide contribtions from Nael Ab-Ghazaleh, Harsha Madhyvasta and Zhiyn Qian Some slides modified from originals by Dave

More information

Warping, Morphing and Mosaics

Warping, Morphing and Mosaics Computational Photograph and Video: Warping, Morphing and Mosaics Prof. Marc Pollefes Dr. Gabriel Brostow Toda s schedule Last week s recap Warping Morphing Mosaics Toda s schedule Last week s recap Warping

More information

Deep Image Homography Estimation

Deep Image Homography Estimation Deep Image omography Estimation Daniel DeTone Magic Leap, Inc. Montain View, CA ddetone@magicleap.com Tomasz Malisiewicz Magic Leap, Inc. Montain View, CA tmalisiewicz@magicleap.com Andrew Rabinoich Magic

More information

Tu P7 15 First-arrival Traveltime Tomography with Modified Total Variation Regularization

Tu P7 15 First-arrival Traveltime Tomography with Modified Total Variation Regularization T P7 15 First-arrival Traveltime Tomography with Modified Total Variation Reglarization W. Jiang* (University of Science and Technology of China) & J. Zhang (University of Science and Technology of China)

More information

Lecture 10: Pipelined Implementations

Lecture 10: Pipelined Implementations U 8-7 S 9 L- 8-7 Lectre : Pipelined Implementations James. Hoe ept of EE, U Febrary 23, 29 nnoncements: Project is de this week idterm graded, d reslts posted Handots: H9 Homework 3 (on lackboard) Graded

More information

To Do. Course Outline. Course Outline. Goals. Motivation. Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 3: Transformations 1

To Do. Course Outline. Course Outline. Goals. Motivation. Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 3: Transformations 1 Fondations of Compter Graphics (Fall 212) CS 184, Lectre 3: Transformations 1 http://inst.eecs.berkele.ed/~cs184 Sbmit HW b To Do Start looking at HW 1 (simple, bt need to think) Ais-angle rotation and

More information

Reading. 13. Texture Mapping. Non-parametric texture mapping. Texture mapping. Required. Watt, intro to Chapter 8 and intros to 8.1, 8.4, 8.6, 8.8.

Reading. 13. Texture Mapping. Non-parametric texture mapping. Texture mapping. Required. Watt, intro to Chapter 8 and intros to 8.1, 8.4, 8.6, 8.8. Reading Reqired Watt, intro to Chapter 8 and intros to 8.1, 8.4, 8.6, 8.8. Recommended 13. Textre Mapping Pal S. Heckbert. Srvey of textre mapping. IEEE Compter Graphics and Applications 6(11): 56--67,

More information

h-vectors of PS ear-decomposable graphs

h-vectors of PS ear-decomposable graphs h-vectors of PS ear-decomposable graphs Nima Imani 2, Lee Johnson 1, Mckenzie Keeling-Garcia 1, Steven Klee 1 and Casey Pinckney 1 1 Seattle University Department of Mathematics, 901 12th Avene, Seattle,

More information

tpa, bq a b is a multiple of 5 u tp0, 0q, p0, 5q, p0, 5q,...,

tpa, bq a b is a multiple of 5 u tp0, 0q, p0, 5q, p0, 5q,..., A binar relation on a set A is a sbset of A ˆ A, hereelements pa, bq are ritten as a b. For eample, let A Z, so A ˆ A tpn, mq n, m P Z. Let be the binar relation gien b a b if and onl if a and b hae the

More information

Object Pose from a Single Image

Object Pose from a Single Image Object Pose from a Single Image How Do We See Objects in Depth? Stereo Use differences between images in or left and right eye How mch is this difference for a car at 00 m? Moe or head sideways Or, the

More information

Degraded digital image restoration Spatial domain processing Additive noise Frequency domain Blurred image

Degraded digital image restoration Spatial domain processing Additive noise Frequency domain Blurred image Image Comm. Lab EE/NTHU 1 Chapter 5 Image Restoration Degraded digital image restoration Spatial domain processing Additie noise Freqency domain Blrred image Image Comm. Lab EE/NTHU 2 5. 1 Model of Image

More information

Determining the 2d transformation that brings one image into alignment (registers it) with another. And

Determining the 2d transformation that brings one image into alignment (registers it) with another. And Last two lectures: Representing an image as a weighted combination of other images. Toda: A different kind of coordinate sstem change. Solving the biggest problem in using eigenfaces? Toda Recognition

More information

v e v 1 C 2 b) Completely assigned T v a) Partially assigned Tv e T v 2 p k

v e v 1 C 2 b) Completely assigned T v a) Partially assigned Tv e T v 2 p k Approximation Algorithms for a Capacitated Network Design Problem R. Hassin 1? and R. Rai 2?? and F. S. Salman 3??? 1 Department of Statistics and Operations Research, Tel-Ai Uniersity, Tel Ai 69978, Israel.

More information

7. Texture Mapping. Idea. Examples Image Textures. Motivation. Textures can be images or procedures. Textures can be 2D or 3D

7. Texture Mapping. Idea. Examples Image Textures. Motivation. Textures can be images or procedures. Textures can be 2D or 3D 3 4 Idea Add srface detail withot raising geometric complexity Textres can be images or procedres Textres can be D or 3D Motiation Wireframe Model + Lighting & Shading + Textre Mapping http://www.3drender.com/jbirn/prodctions.html

More information

How is project #1 going?

How is project #1 going? How is project # going? Last Lecture Edge Detection Filtering Pramid Toda Motion Deblur Image Transformation Removing Camera Shake from a Single Photograph Rob Fergus, Barun Singh, Aaron Hertzmann, Sam

More information

CS 153 Design of Operating Systems Spring 18

CS 153 Design of Operating Systems Spring 18 CS 153 Design of Operating Systems Spring 18 Lectre 11: Semaphores Instrctor: Chengy Song Slide contribtions from Nael Ab-Ghazaleh, Harsha Madhyvasta and Zhiyn Qian Last time Worked throgh software implementation

More information

On Bichromatic Triangle Game

On Bichromatic Triangle Game On Bichromatic Triangle Game Gordana Manić Daniel M. Martin Miloš Stojakoić Agst 16, 2012 Abstract We stdy a combinatorial game called Bichromatic Triangle Game, defined as follows. Two players R and B

More information

Hardware Design Tips. Outline

Hardware Design Tips. Outline Hardware Design Tips EE 36 University of Hawaii EE 36 Fall 23 University of Hawaii Otline Verilog: some sbleties Simlators Test Benching Implementing the IPS Actally a simplified 6 bit version EE 36 Fall

More information

Image Metamorphosis By Affine Transformations

Image Metamorphosis By Affine Transformations Image Metamorphosis B Affine Transformations Tim Mers and Peter Spiegel December 16, 2005 Abstract Among the man was to manipulate an image is a technique known as morphing. Image morphing is a special

More information

EECS 487: Interactive Computer Graphics f

EECS 487: Interactive Computer Graphics f Interpolating Key Vales EECS 487: Interactive Compter Graphics f Keys Lectre 33: Keyframe interpolation and splines Cbic splines The key vales of each variable may occr at different frames The interpolation

More information

Image Compression Compression Fundamentals

Image Compression Compression Fundamentals Compression Fndamentals Data compression refers to the process of redcing the amont of data reqired to represent given qantity of information. Note that data and information are not the same. Data refers

More information

Seismic trace interpolation with approximate message passing Navid Ghadermarzy and Felix Herrmann and Özgür Yılmaz, University of British Columbia

Seismic trace interpolation with approximate message passing Navid Ghadermarzy and Felix Herrmann and Özgür Yılmaz, University of British Columbia Seismic trace interpolation with approximate message passing Navid Ghadermarzy and Felix Herrmann and Özgür Yılmaz, University of British Colmbia SUMMARY Approximate message passing (AMP) is a comptationally

More information

CS 4204 Computer Graphics

CS 4204 Computer Graphics CS 424 Compter Graphics Crves and Srfaces Yong Cao Virginia Tech Reference: Ed Angle, Interactive Compter Graphics, University of New Mexico, class notes Crve and Srface Modeling Objectives Introdce types

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Computer Graphics Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical

More information

Prof. Feng Liu. Fall /25/2018

Prof. Feng Liu. Fall /25/2018 Prof. Feng Liu Fall 08 http://www.cs.pd.edu/~fliu/courses/cs7/ 0/5/08 Last time Clipping Toda Rasterization In-class Mid-term November Close-book eam Notes on page of A or Letter size paper Where We Stand

More information

A Layered Approach to Stereo Reconstruction

A Layered Approach to Stereo Reconstruction Appeared in the 1998 Conference on Compter Vision and Pattern Recognition, Santa Barbara, CA, Jne 1998. A Layered Approach to Stereo Reconstrction Simon Baker Richard Szeliski and P. Anandan Department

More information

Broad field that includes low-level operations as well as complex high-level algorithms

Broad field that includes low-level operations as well as complex high-level algorithms Image processing About Broad field that includes low-level operations as well as complex high-level algorithms Low-level image processing Computer vision Computational photography Several procedures and

More information

PART I: Adding Instructions to the Datapath. (2 nd Edition):

PART I: Adding Instructions to the Datapath. (2 nd Edition): EE57 Instrctor: G. Pvvada ===================================================================== Homework #5b De: check on the blackboard =====================================================================

More information

Towards applications based on measuring the orbital angular momentum of light

Towards applications based on measuring the orbital angular momentum of light CHAPTER 8 Towards applications based on measring the orbital anglar momentm of light Efficient measrement of the orbital anglar momentm (OAM) of light has been a longstanding problem in both classical

More information