Pre AP Geometry. Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Geometry

Size: px
Start display at page:

Download "Pre AP Geometry. Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Geometry"

Transcription

1 Pre AP Geometry Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Geometry 1

2 The content of the mathematics standards is intended to support the following five goals for students: becoming mathematical problem solvers, communicating mathematically, reasoning mathematically, making mathematical connections, and using mathematical representations to model and interpret practical situations. Mathematical Problem Solving Students will apply mathematical concepts and skills and the relationships among them to solve problem situations of varying complexities. Students also will recognize and create problems from real-life data and situations within and outside mathematics and then apply appropriate strategies to find acceptable solutions. To accomplish this goal, students will need to develop a repertoire of skills and strategies for solving a variety of problem types. A major goal of the mathematics program is to help students become competent mathematical problem solvers. Mathematical Communication Students will use the language of mathematics, including specialized vocabulary and symbols, to express mathematical ideas precisely. Representing, discussing, reading, writing, and listening to mathematics will help students to clarify their thinking and deepen their understanding of the mathematics being studied. Mathematical Reasoning Students will recognize reasoning and proof as fundamental aspects of mathematics. Students will learn and apply inductive and deductive reasoning skills to make, test, and evaluate mathematical statements and to justify steps in mathematical procedures. Students will use logical reasoning to analyze an argument and to determine whether conclusions are valid. In addition, students will learn to apply proportional and spatial reasoning and to reason from a variety of representations such as graphs, tables, and charts. Mathematical Connections Students will relate concepts and procedures from different topics in mathematics to one another and see mathematics as an integrated field of study. Through the application of content and process skills, students will make connections between different areas of mathematics and between mathematics and other disciplines, especially science. Science and mathematics teachers and curriculum writers are encouraged to develop mathematics and science curricula that reinforce each other. Mathematical Representations Students will represent and describe mathematical ideas, generalizations, and relationships with a variety of methods. Students will understand that representations of mathematical ideas are an essential part of learning, doing, and communicating mathematics. Students should move easily among different representations graphical, numerical, algebraic, verbal, and physical and recognize that representation is both a process and a product Mathematics Standards of Learning for Virginia Public Schools Links to the Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Geometry Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Geometry 2

3 Geometry Trigonometry SOLs that will be taught in this course include the following: (The pacing guide determines the order each SOL will be taught.) G.1 G.2 G.3 G.4 G.5 G.6 G.7 G.8 G.9 G.11 G.12 G.13 G.14 T.1 T.2 T.3 T.4 T.9 G.10 Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Geometry 3

4 STANDARD G.1 TOPIC: REASONING, LINES, AND TRANSFORMATIONS The student will construct and judge the validity of a logical argument consisting of a set of premises and a conclusion. This will include a) identifying the converse, inverse, and contrapositive of a conditional statement; b) translating a short verbal argument into symbolic form; c) using Venn diagrams to represent set relationships; and d) using deductive reasoning. Inductive reasoning, deductive reasoning, and proof are critical in establishing general claims. Deductive reasoning is the method that uses logic to draw conclusions based on definitions, postulates, and theorems. Inductive reasoning is the method of drawing conclusions from a limited set of observations. Proof is a justification that is logically valid and based on initial assumptions, definitions, postulates, and theorems. Logical arguments consist of a set of premises or hypotheses and a conclusion. Euclidean geometry is an axiomatic system based on undefined terms (point, line and plane), postulates, and theorems. When a conditional and its converse are true, the statements can be written as a biconditional, i.e., iff or if and only if. Logical arguments that are valid may not be true. Truth and validity are not synonymous. Identify the converse, inverse, and contrapositive of a conditional statement. Translate verbal arguments into symbolic form, such as q) and (~p ~q). Determine the validity of a logical argument. Use valid forms of deductive reasoning, including the law of syllogism, the law of the contrapositive, the law of detachment, and counterexamples. Select and use various types of reasoning and methods of proof, as appropriate. (p Use Venn diagrams to represent set relationships, such as intersection and union. Interpret Venn diagrams. Recognize and use the symbols of formal logic, which include,, ~,,, and. Mathematics Standards of Learning Curriculum Framework 2009: Geometry 2

5 STANDARD G.2 TOPIC: REASONING, LINES, AND TRANSFORMATIONS The student will use the relationships between angles formed by two lines cut by a transversal to a) determine whether two lines are parallel; b) verify the parallelism, using algebraic and coordinate methods as well as deductive proofs; and c) solve real-world problems involving angles formed when parallel lines are cut by a transversal. Parallel lines intersected by a transversal form angles with specific relationships. Some angle relationships may be used when proving two lines intersected by a transversal are parallel. The Parallel Postulate differentiates Euclidean from non-euclidean geometries such as spherical geometry and hyperbolic geometry. Use algebraic and coordinate methods as well as deductive proofs to verify whether two lines are parallel. Solve problems by using the relationships between pairs of angles formed by the intersection of two parallel lines and a transversal including corresponding angles, alternate interior angles, alternate exterior angles, and same-side (consecutive) interior angles. Solve real-world problems involving intersecting and parallel lines in a plane. Mathematics Standards of Learning Curriculum Framework 2009: Geometry 3

6 STANDARD G.3 TOPIC: REASONING, LINES, AND TRANSFORMATIONS The student will use pictorial representations, including computer software, constructions, and coordinate methods, to solve problems involving symmetry and transformation. This will include a) investigating and using formulas for finding distance, midpoint, and slope; b) applying slope to verify and determine whether lines are parallel or perpendicular; c) investigating symmetry and determining whether a figure is symmetric with respect to a line or a point; and d) determining whether a figure has been translated, reflected, rotated, or dilated, using coordinate methods. Transformations and combinations of transformations can be used to describe movement of objects in a plane. The distance formula is an application of the Pythagorean Theorem. Geometric figures can be represented in the coordinate plane. Techniques for investigating symmetry may include paper folding, coordinate methods, and dynamic geometry software. Parallel lines have the same slope. The product of the slopes of perpendicular lines is -1. The image of an object or function graph after an isomorphic transformation is congruent to the preimage of the object. Find the coordinates of the midpoint of a segment, using the midpoint formula. Use a formula to find the slope of a line. Compare the slopes to determine whether two lines are parallel, perpendicular, or neither. Determine whether a figure has point symmetry, line symmetry, both, or neither. Given an image and preimage, identify the transformation that has taken place as a reflection, rotation, dilation, or translation. Apply the distance formula to find the length of a line segment when given the coordinates of the endpoints. Mathematics Standards of Learning Curriculum Framework 2009: Geometry 4

7 STANDARD G.4 The student will construct and justify the constructions of a) a line segment congruent to a given line segment; b) the perpendicular bisector of a line segment; c) a perpendicular to a given line from a point not on the line; d) a perpendicular to a given line at a given point on the line; e) the bisector of a given angle; f) an angle congruent to a given angle; and g) a line parallel to a given line through a point not on the given line. TOPIC: REASONING, LINES, AND TRANSFORMATIONS Construction techniques are used to solve real-world problems in engineering, architectural design, and building construction. Construction techniques include using a straightedge and compass, paper folding, and dynamic geometry software. Construct and justify the constructions of a line segment congruent to a given line segment; the perpendicular bisector of a line segment; a perpendicular to a given line from a point not on the line; a perpendicular to a given line at a point on the line; the bisector of a given angle; an angle congruent to a given angle; and a line parallel to a given line through a point not on the given line. Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle. Construct the inscribed and circumscribed circles of a triangle. Construct a tangent line from a point outside a given circle to the circle. Revised March 2011 Mathematics Standards of Learning Curriculum Framework 2009: Geometry 5

8 STANDARD G.5 The student, given information concerning the lengths of sides and/or measures of angles in triangles, will a) order the sides by length, given the angle measures; b) order the angles by degree measure, given the side lengths; c) determine whether a triangle exists; and d) determine the range in which the length of the third side must lie. These concepts will be considered in the context of real-world situations. TOPIC: TRIANGLES The longest side of a triangle is opposite the largest angle of the triangle and the shortest side is opposite the smallest angle. In a triangle, the length of two sides and the included angle determine the length of the side opposite the angle. In order for a triangle to exist, the length of each side must be within a range that is determined by the lengths of the other two sides. Order the sides of a triangle by their lengths when given the measures of the angles. Order the angles of a triangle by their measures when given the lengths of the sides. Given the lengths of three segments, determine whether a triangle could be formed. Given the lengths of two sides of a triangle, determine the range in which the length of the third side must lie. Solve real-world problems given information about the lengths of sides and/or measures of angles in triangles. Mathematics Standards of Learning Curriculum Framework 2009: Geometry 6

9 STANDARD G.6 TOPIC: TRIANGLES The student, given information in the form of a figure or statement, will prove two triangles are congruent, using algebraic and coordinate methods as well as deductive proofs. Congruence has real-world applications in a variety of areas, including art, architecture, and the sciences. Congruence does not depend on the position of the triangle. Concepts of logic can demonstrate congruence or similarity. Congruent figures are also similar, but similar figures are not necessarily congruent. Use definitions, postulates, and theorems to prove triangles congruent. Use coordinate methods, such as the distance formula and the slope formula, to prove two triangles are congruent. Use algebraic methods to prove two triangles are congruent. Mathematics Standards of Learning Curriculum Framework 2009: Geometry 7

10 STANDARD G.7 TOPIC: TRIANGLES The student, given information in the form of a figure or statement, will prove two triangles are similar, using algebraic and coordinate methods as well as deductive proofs. Similarity has real-world applications in a variety of areas, including art, architecture, and the sciences. Similarity does not depend on the position of the triangle. Congruent figures are also similar, but similar figures are not necessarily congruent. Use definitions, postulates, and theorems to prove triangles similar. Use algebraic methods to prove that triangles are similar. Use coordinate methods, such as the distance formula, to prove two triangles are similar. Mathematics Standards of Learning Curriculum Framework 2009: Geometry 8

11 STANDARD G.8 TOPIC: TRIANGLES The student will solve real-world problems involving right triangles by using the Pythagorean Theorem and its converse, properties of special right triangles, and right triangle trigonometry. The Pythagorean Theorem is essential for solving problems involving right triangles. Many historical and algebraic proofs of the Pythagorean Theorem exist. The relationships between the sides and angles of right triangles are useful in many applied fields. Some practical problems can be solved by choosing an efficient representation of the problem. 1 Another formula for the area of a triangle is A absin C. 2 The ratios of side lengths in similar right triangles (adjacent/hypotenuse or opposite/hypotenuse) are independent of the scale factor and depend only on the angle the hypotenuse makes with the adjacent side, thus justifying the definition and calculation of trigonometric functions using the ratios of side lengths for similar right triangles. Determine whether a triangle formed with three given lengths is a right triangle. Solve for missing lengths in geometric figures, using properties of triangles. Solve for missing lengths in geometric figures, using properties of triangles. Solve problems involving right triangles, using sine, cosine, and tangent ratios. Solve real-world problems, using right triangle trigonometry and properties of right triangles. Explain and use the relationship between the sine and cosine of complementary angles. Revised March 2011 Mathematics Standards of Learning Curriculum Framework 2009: Geometry 9

12 STANDARD G.9 TOPIC: POLYGONS AND CIRCLES The student will verify characteristics of quadrilaterals and use properties of quadrilaterals to solve real-world problems. The terms characteristics and properties can be used interchangeably to describe quadrilaterals. The term characteristics is used in elementary and middle school mathematics. Quadrilaterals have a hierarchical nature based on the relationships between their sides, angles, and diagonals. Characteristics of quadrilaterals can be used to identify the quadrilateral and to find the measures of sides and angles. Solve problems, including real-world problems, using the properties specific to parallelograms, rectangles, rhombi, squares, isosceles trapezoids, and trapezoids. Prove that quadrilaterals have specific properties, using coordinate and algebraic methods, such as the distance formula, slope, and midpoint formula. Prove the characteristics of quadrilaterals, using deductive reasoning, algebraic, and coordinate methods. Prove properties of angles for a quadrilateral inscribed in a circle. Revised March 2011 Mathematics Standards of Learning Curriculum Framework 2009: Geometry 10

13 STANDARD G.10 The student will solve real-world problems involving angles of polygons. TOPIC: POLYGONS AND CIRCLES A regular polygon will tessellate the plane if the measure of an interior angle is a factor of 360. Both regular and nonregular polygons can tessellate the plane. Two intersecting lines form angles with specific relationships. An exterior angle is formed by extending a side of a polygon. The exterior angle and the corresponding interior angle form a linear pair. The sum of the measures of the interior angles of a convex polygon may be found by dividing the interior of the polygon into nonoverlapping triangles. Solve real-world problems involving the measures of interior and exterior angles of polygons. Identify tessellations in art, construction, and nature. Find the sum of the measures of the interior and exterior angles of a convex polygon. Find the measure of each interior and exterior angle of a regular polygon. Find the number of sides of a regular polygon, given the measures of interior or exterior angles of the polygon. Mathematics Standards of Learning Curriculum Framework 2009: Geometry 11

14 STANDARD G.11 The student will use angles, arcs, chords, tangents, and secants to a) investigate, verify, and apply properties of circles; b) solve real-world problems involving properties of circles; and c) find arc lengths and areas of sectors in circles. TOPIC: POLYGONS AND CIRCLES Many relationships exist between and among angles, arcs, secants, chords, and tangents of a circle. All circles are similar. A chord is part of a secant. Real-world applications may be drawn from architecture, art, and construction. Find lengths, angle measures, and arc measures associated with two intersecting chords; two intersecting secants; an intersecting secant and tangent; two intersecting tangents; and central and inscribed angles. Calculate the area of a sector and the length of an arc of a circle, using proportions. Solve real-world problems associated with circles, using properties of angles, lines, and arcs. Verify properties of circles, using deductive reasoning, algebraic, and coordinate methods. Mathematics Standards of Learning Curriculum Framework 2009: Geometry 12

15 STANDARD G.12 TOPIC: POLYGONS AND CIRCLES The student, given the coordinates of the center of a circle and a point on the circle, will write the equation of the circle. A circle is a locus of points equidistant from a given point, the center Standard form for the equation of a circle is x h y k r, where the coordinates of the center of the circle are ( hk, ) and r is the length of the radius. The circle is a conic section. Identify the center, radius, and diameter of a circle from a given standard equation. Use the distance formula to find the radius of a circle. Given the coordinates of the center and radius of the circle, identify a point on the circle. Given the equation of a circle in standard form, identify the coordinates of the center and find the radius of the circle. Given the coordinates of the endpoints of a diameter, find the equation of the circle. Given the coordinates of the center and a point on the circle, find the equation of the circle. Recognize that the equation of a circle of given center and radius is derived using the Pythagorean Theorem. Revised March 2011 Mathematics Standards of Learning Curriculum Framework 2009: Geometry 13

16 STANDARD G.13 TOPIC: THREE-DIMENSIONAL FIGURES The student will use formulas for surface area and volume of three-dimensional objects to solve real-world problems. The surface area of a three-dimensional object is the sum of the areas of all its faces. The volume of a three-dimensional object is the number of unit cubes that would fill the object. Find the total surface area of cylinders, prisms, pyramids, cones, and spheres, using the appropriate formulas. Calculate the volume of cylinders, prisms, pyramids, cones, and spheres, using the appropriate formulas. Solve problems, including real-world problems, involving total surface area and volume of cylinders, prisms, pyramids, cones, and spheres as well as combinations of three-dimensional figures. Calculators may be used to find decimal approximations for results. Mathematics Standards of Learning Curriculum Framework 2009: Geometry 14

17 STANDARD G.14 TOPIC: THREE-DIMENSIONAL FIGURES The student will use similar geometric objects in two- or three-dimensions to a) compare ratios between side lengths, perimeters, areas, and volumes; b) determine how changes in one or more dimensions of an object affect area and/or volume of the object; c) determine how changes in area and/or volume of an object affect one or more dimensions of the object; and d) solve real-world problems about similar geometric objects. A change in one dimension of an object results in predictable changes in area and/or volume. A constant ratio exists between corresponding lengths of sides of similar figures. Proportional reasoning is integral to comparing attribute measures in similar objects. Compare ratios between side lengths, perimeters, areas, and volumes, given two similar figures. Describe how changes in one or more dimensions affect other derived measures (perimeter, area, total surface area, and volume) of an object. Describe how changes in one or more measures (perimeter, area, total surface area, and volume) affect other measures of an object. Solve real-world problems involving measured attributes of similar objects. Mathematics Standards of Learning Curriculum Framework 2009: Trigonometry 1

18 TRIGONOMETRY STANDARD T.1 TOPIC: TRIANGULAR AND CIRCULAR TRIGONOMETRIC FUNCTIONS The student, given a point other than the origin on the terminal side of the angle, will use the definitions of the six trigonometric functions to find the sine, cosine, tangent, cotangent, secant, and cosecant of the angle in standard position. Trigonometric functions defined on the unit circle will be related to trigonometric functions defined in right triangles. Triangular trigonometric function definitions are related to circular trigonometric function definitions. Both degrees and radians are units for measuring angles. Drawing an angle in standard position will force the terminal side to lie in a specific quadrant. A point on the terminal side of an angle determines a reference triangle from which the values of the six trigonometric functions may be derived. Define the six triangular trigonometric functions of an angle in a right triangle. Define the six circular trigonometric functions of an angle in standard position. Make the connection between the triangular and circular trigonometric functions. Recognize and draw an angle in standard position. Show how a point on the terminal side of an angle determines a reference triangle. Mathematics Standards of Learning Curriculum Framework 2009: Trigonometry 2

19 TRIGONOMETRY STANDARD T.2 TOPIC: TRIANGULAR AND CIRCULAR TRIGONOMETRIC FUNCTIONS The student, given the value of one trigonometric function, will find the values of the other trigonometric functions, using the definitions and properties of the trigonometric functions. If one trigonometric function value is known, then a triangle can be formed to use in finding the other five trigonometric function values. Knowledge of the unit circle is a useful tool for finding all six trigonometric values for special angles. Given one trigonometric function value, find the other five trigonometric function values. Develop the unit circle, using both degrees and radians. Solve problems, using the circular function definitions and the properties of the unit circle. Recognize the connections between the coordinates of points on a unit circle and coordinate geometry; cosine and sine values; and lengths of sides of special right triangles ( and ). Mathematics Standards of Learning Curriculum Framework 2009: Trigonometry 3

20 TRIGONOMETRY STANDARD T.3 TOPIC: TRIANGULAR AND CIRCULAR TRIGONOMETRIC FUNCTIONS The student will find, without the aid of a calculator, the values of the trigonometric functions of the special angles and their related angles as found in the unit circle. This will include converting angle measures from radians to degrees and vice versa. Special angles are widely used in mathematics. Unit circle properties will allow special angle and related angle trigonometric values to be found without the aid of a calculator. Degrees and radians are units of angle measure. A radian is the measure of the central angle that is determined by an arc whose length is the same as the radius of the circle. Find trigonometric function values of special angles and their related angles in both degrees and radians. Apply the properties of the unit circle without using a calculator. Use a conversion factor to convert from radians to degrees and vice versa without using a calculator. Mathematics Standards of Learning Curriculum Framework 2009: Trigonometry 4

21 TRIGONOMETRY STANDARD T.4 TOPIC: INVERSE TRIGONOMETRIC FUNCTIONS The student will find, with the aid of a calculator, the value of any trigonometric function and inverse trigonometric function. The trigonometric function values of any angle can be found by using a calculator. The inverse trigonometric functions can be used to find angle measures whose trigonometric function values are known. Calculations of inverse trigonometric function values can be related to the triangular definitions of the trigonometric functions. Use a calculator to find the trigonometric function values of any angle in either degrees or radians. Define inverse trigonometric functions. Find angle measures by using the inverse trigonometric functions when the trigonometric function values are given. Mathematics Standards of Learning Curriculum Framework 2009: Trigonometry 5

22 TRIGONOMETRY STANDARD T.5 The student will verify basic trigonometric identities and make substitutions, using the basic identities. TOPIC: TRIGONOMETRIC IDENTITIES Trigonometric identities can be used to simplify trigonometric expressions, equations, or identities. Trigonometric identity substitutions can help solve trigonometric equations, verify another identity, or simplify trigonometric expressions. Use trigonometric identities to make algebraic substitutions to simplify and verify trigonometric identities. The basic trigonometric identities include reciprocal identities; Pythagorean identities; sum and difference identities; double-angle identities; and half-angle identities. Mathematics Standards of Learning Curriculum Framework 2009: Trigonometry 6

23 TRIGONOMETRY STANDARD T.6 TOPIC: TRIGONOMETRIC EQUATIONS, GRAPHS, AND PRACTICAL PROBLEMS The student, given one of the six trigonometric functions in standard form, will a) state the domain and the range of the function; b) determine the amplitude, period, phase shift, vertical shift, and asymptotes; c) sketch the graph of the function by using transformations for at least a two-period interval; and d) investigate the effect of changing the parameters in a trigonometric function on the graph of the function. The domain and range of a trigonometric function determine the scales of the axes for the graph of the trigonometric function. The amplitude, period, phase shift, and vertical shift are important characteristics of the graph of a trigonometric function, and each has a specific purpose in applications using trigonometric equations. The graph of a trigonometric function can be used to display information about the periodic behavior of a real-world situation, such as wave motion or the motion of a Ferris wheel. Determine the amplitude, period, phase shift, and vertical shift of a trigonometric function from the equation of the function and from the graph of the function. Describe the effect of changing A, B, C, or D in the standard form of a trigonometric equation {e.g., y = A sin (Bx + C) + D or y = A cos [B(x + C)] + D}. State the domain and the range of a function written in standard form {e.g., y = A sin (Bx + C) + D or y = A cos [B(x + C)] + D}. Sketch the graph of a function written in standard form {e.g., y = A sin (Bx + C) + D or y = A cos [B(x + C)] + D} by using transformations for at least one period or one cycle. Mathematics Standards of Learning Curriculum Framework 2009: Trigonometry 7

24 TRIGONOMETRY STANDARD T.7 TOPIC: INVERSE TRIGONOMETRIC FUNCTIONS The student will identify the domain and range of the inverse trigonometric functions and recognize the graphs of these functions. Restrictions on the domains of the inverse trigonometric functions will be included. Restrictions on the domains of some inverse trigonometric functions exist. Find the domain and range of the inverse trigonometric functions. Use the restrictions on the domains of the inverse trigonometric functions in finding the values of the inverse trigonometric functions. Identify the graphs of the inverse trigonometric functions. Mathematics Standards of Learning Curriculum Framework 2009: Trigonometry 8

25 TRIGONOMETRY STANDARD T.8 TOPIC: TRIGONOMETRIC EQUATIONS, GRAPHS, AND PRACTICAL PROBLEMS The student will solve trigonometric equations that include both infinite solutions and restricted domain solutions and solve basic trigonometric inequalities. Solutions for trigonometric equations will depend on the domains. A calculator can be used to find the solution of a trigonometric equation as the points of intersection of the graphs when one side of the equation is entered in the calculator as Y 1 and the other side is entered as Y 2. Solve trigonometric equations with restricted domains algebraically and by using a graphing utility. Solve trigonometric equations with infinite solutions algebraically and by using a graphing utility. Check for reasonableness of results, and verify algebraic solutions, using a graphing utility. Mathematics Standards of Learning Curriculum Framework 2009: Trigonometry 9

26 TOPIC: TRIGONOMETRIC EQUATIONS, GRAPHS, AND PRACTICAL PROBLEMS TRIGONOMETRY STANDARD T.9 The student will identify, create, and solve real-world problems involving triangles. Techniques will include using the trigonometric functions, the Pythagorean Theorem, the Law of Sines, and the Law of Cosines. A real-world problem may be solved by using one of a variety of techniques associated with triangles. The student will use problem solving, mathematical communication, mathematical reasoning, connections, and representations to Write a real-world problem involving triangles. Solve real-world problems involving triangles. Use the trigonometric functions, Pythagorean Theorem, Law of Sines, and Law of Cosines to solve real-world problems. Use the trigonometric functions to model real-world situations. Identify a solution technique that could be used with a given problem. Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems. March 2011 Revised Mathematics Standards of Learning Curriculum Framework 2009: Trigonometry 10

27 Mathematics Standards of Learning Curriculum Framework 2009: Trigonometry 11

All rights reserved. Reproduction of these materials for instructional purposes in public school classrooms in Virginia is permitted.

All rights reserved. Reproduction of these materials for instructional purposes in public school classrooms in Virginia is permitted. Geometry Copyright 2009 by the Virginia Department of Education P.O. Box 2120 Richmond, Virginia 23218-2120 http://www.doe.virginia.gov All rights reserved. Reproduction of these materials for instructional

More information

Geometry Curriculum Guide Lunenburg County Public Schools June 2014

Geometry Curriculum Guide Lunenburg County Public Schools June 2014 Marking Period: 1 Days: 4 Reporting Category/Strand: Reasoning, Lines, and Transformations SOL G.1 The student will construct and judge the validity of a logical argument consisting of a set of premises

More information

Curriculum & Pacing Guide

Curriculum & Pacing Guide Curriculum & Pacing Guide Geometry Martinsville City Public Schools By: Barry Lingerfelt Martinsville City Public Schools Plan of Action The Curriculum Guides represent Martinsville City Public Schools

More information

Geometry. Pacing Guide. Kate Collins Middle School

Geometry. Pacing Guide. Kate Collins Middle School Geometry Pacing Guide Kate Collins Middle School 2016-2017 Points, Lines, Planes, and Angles 8/24 9/4 Geometry Pacing Chart 2016 2017 First Nine Weeks 1.1 Points, Lines, and Planes 1.2 Linear Measure and

More information

SOL Chapter Due Date

SOL Chapter Due Date Name: Block: Date: Geometry SOL Review SOL Chapter Due Date G.1 2.2-2.4 G.2 3.1-3.5 G.3 1.3, 4.8, 6.7, 9 G.4 N/A G.5 5.5 G.6 4.1-4.7 G.7 6.1-6.6 G.8 7.1-7.7 G.9 8.2-8.6 G.10 1.6, 8.1 G.11 10.1-10.6, 11.5,

More information

Thomas Jefferson High School for Science and Technology Program of Studies TJ Math 1

Thomas Jefferson High School for Science and Technology Program of Studies TJ Math 1 Course Description: This course is designed for students who have successfully completed the standards for Honors Algebra I. Students will study geometric topics in depth, with a focus on building critical

More information

Geometry. (F) analyze mathematical relationships to connect and communicate mathematical ideas; and

Geometry. (F) analyze mathematical relationships to connect and communicate mathematical ideas; and (1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is (A) apply mathematics to problems arising in everyday life,

More information

Mathematics Scope & Sequence Geometry

Mathematics Scope & Sequence Geometry Mathematics Scope & Sequence 2016-17 Geometry Revised: June 21, 2016 First Grading Period (24 ) Readiness Standard(s) G.5A investigate patterns to make conjectures about geometric relationships, including

More information

ALLEGHANY COUNTY SCHOOLS CURRICULUM GUIDE

ALLEGHANY COUNTY SCHOOLS CURRICULUM GUIDE GRADE/COURSE: Geometry GRADING PERIOD: 1 Year Course Time SEMESTER 1: 1 ST SIX WEEKS Pre-Test, Class Meetings, Homeroom Chapter 1 12 days Lines and Angles Point Line AB Ray AB Segment AB Plane ABC Opposite

More information

MCPS Geometry Pacing Guide Jennifer Mcghee

MCPS Geometry Pacing Guide Jennifer Mcghee Units to be covered 1 st Semester: Units to be covered 2 nd Semester: Tools of Geometry; Logic; Constructions; Parallel and Perpendicular Lines; Relationships within Triangles; Similarity of Triangles

More information

104, 107, 108, 109, 114, 119, , 129, 139, 141, , , , , 180, , , 128 Ch Ch1-36

104, 107, 108, 109, 114, 119, , 129, 139, 141, , , , , 180, , , 128 Ch Ch1-36 111.41. Geometry, Adopted 2012 (One Credit). (c) Knowledge and skills. Student Text Practice Book Teacher Resource: Activities and Projects (1) Mathematical process standards. The student uses mathematical

More information

Prentice Hall CME Project Geometry 2009

Prentice Hall CME Project Geometry 2009 Prentice Hall CME Project Geometry 2009 Geometry C O R R E L A T E D T O from March 2009 Geometry G.1 Points, Lines, Angles and Planes G.1.1 Find the length of line segments in one- or two-dimensional

More information

CORRELATION TO GEORGIA QUALITY CORE CURRICULUM FOR GEOMETRY (GRADES 9-12)

CORRELATION TO GEORGIA QUALITY CORE CURRICULUM FOR GEOMETRY (GRADES 9-12) CORRELATION TO GEORGIA (GRADES 9-12) SUBJECT AREA: Mathematics COURSE: 27. 06300 TEXTBOOK TITLE: PUBLISHER: Geometry: Tools for a Changing World 2001 Prentice Hall 1 Solves problems and practical applications

More information

Geometry. Instructional Activities:

Geometry. Instructional Activities: GEOMETRY Instructional Activities: Geometry Assessment: A. Direct Instruction A. Quizzes B. Cooperative Learning B. Skill Reviews C. Technology Integration C. Test Prep Questions D. Study Guides D. Chapter

More information

Prentice Hall Mathematics Geometry, Foundations Series 2011

Prentice Hall Mathematics Geometry, Foundations Series 2011 Prentice Hall Mathematics Geometry, Foundations Series 2011 Geometry C O R R E L A T E D T O from March 2009 Geometry G.1 Points, Lines, Angles and Planes G.1.1 Find the length of line segments in one-

More information

South Carolina College- and Career-Ready (SCCCR) Geometry Overview

South Carolina College- and Career-Ready (SCCCR) Geometry Overview South Carolina College- and Career-Ready (SCCCR) Geometry Overview In South Carolina College- and Career-Ready (SCCCR) Geometry, students build on the conceptual knowledge and skills they mastered in previous

More information

West Windsor-Plainsboro Regional School District Basic Geometry Grades 9-12

West Windsor-Plainsboro Regional School District Basic Geometry Grades 9-12 West Windsor-Plainsboro Regional School District Basic Geometry Grades 9-12 Unit 1: Basics of Geometry Content Area: Mathematics Course & Grade Level: Basic Geometry, 9 12 Summary and Rationale This unit

More information

LT 1.2 Linear Measure (*) LT 1.3 Distance and Midpoints (*) LT 1.4 Angle Measure (*) LT 1.5 Angle Relationships (*) LT 1.6 Two-Dimensional Figures (*)

LT 1.2 Linear Measure (*) LT 1.3 Distance and Midpoints (*) LT 1.4 Angle Measure (*) LT 1.5 Angle Relationships (*) LT 1.6 Two-Dimensional Figures (*) PS1 Tools of Geometry: Students will be able to find distances between points and midpoints of line segments; identify angle relationships; and find perimeters, areas, surface areas and volumes. LT 1.1

More information

Use throughout the course: for example, Parallel and Perpendicular Lines Proving Lines Parallel. Polygons and Parallelograms Parallelograms

Use throughout the course: for example, Parallel and Perpendicular Lines Proving Lines Parallel. Polygons and Parallelograms Parallelograms Geometry Correlated to the Texas Essential Knowledge and Skills TEKS Units Lessons G.1 Mathematical Process Standards The student uses mathematical processes to acquire and demonstrate mathematical understanding.

More information

Carnegie Learning High School Math Series: Geometry Indiana Standards Worktext Correlations

Carnegie Learning High School Math Series: Geometry Indiana Standards Worktext Correlations Carnegie Learning High School Math Series: Logic and Proofs G.LP.1 Understand and describe the structure of and relationships within an axiomatic system (undefined terms, definitions, axioms and postulates,

More information

Course: Geometry PAP Prosper ISD Course Map Grade Level: Estimated Time Frame 6-7 Block Days. Unit Title

Course: Geometry PAP Prosper ISD Course Map Grade Level: Estimated Time Frame 6-7 Block Days. Unit Title Unit Title Unit 1: Geometric Structure Estimated Time Frame 6-7 Block 1 st 9 weeks Description of What Students will Focus on on the terms and statements that are the basis for geometry. able to use terms

More information

Amarillo ISD Math Curriculum

Amarillo ISD Math Curriculum Amarillo Independent School District follows the Texas Essential Knowledge and Skills (TEKS). All of AISD curriculum and documents and resources are aligned to the TEKS. The State of Texas State Board

More information

All rights reserved. Reproduction of these materials for instructional purposes in public school classrooms in Virginia is permitted.

All rights reserved. Reproduction of these materials for instructional purposes in public school classrooms in Virginia is permitted. Copyright 2016 by the Virginia Department of Education P.O. Box 2120 Richmond, Virginia 23218-2120 http://www.doe.virginia.gov All rights reserved. Reproduction of these materials for instructional purposes

More information

Nine Week SOL Time Allotment

Nine Week SOL Time Allotment 6/5/2018 Nine Week SOL Time Allotment 1 G.3cd Transformations Determine Line and Point Symmetry Determine Transformation Using Coordinate Methods Reflections Translations Rotations Dilations G.3a G.4abef

More information

Mathematics Scope & Sequence Geometry

Mathematics Scope & Sequence Geometry Mathematics Scope & Sequence Geometry Readiness Standard(s) First Six Weeks (29 ) Coordinate Geometry G.7.B use slopes and equations of lines to investigate geometric relationships, including parallel

More information

The Research- Driven Solution to Raise the Quality of High School Core Courses. Geometry. Course Outline

The Research- Driven Solution to Raise the Quality of High School Core Courses. Geometry. Course Outline The Research- Driven Solution to Raise the Quality of High School Core Courses Course Outline Course Outline Page 2 of 5 0 1 2 3 4 5 ACT Course Standards A. Prerequisites 1. Skills Acquired by Students

More information

Pearson Mathematics Geometry

Pearson Mathematics Geometry A Correlation of Pearson Mathematics Geometry Indiana 2017 To the INDIANA ACADEMIC STANDARDS Mathematics (2014) Geometry The following shows where all of the standards that are part of the Indiana Mathematics

More information

HS Geometry Mathematics CC

HS Geometry Mathematics CC Course Description This course involves the integration of logical reasoning and spatial visualization skills. It includes a study of deductive proofs and applications from Algebra, an intense study of

More information

NFC ACADEMY COURSE OVERVIEW

NFC ACADEMY COURSE OVERVIEW NFC ACADEMY COURSE OVERVIEW Geometry Honors is a full year, high school math course for the student who has successfully completed the prerequisite course, Algebra I. The course focuses on the skills and

More information

correlated to the Utah 2007 Secondary Math Core Curriculum Geometry

correlated to the Utah 2007 Secondary Math Core Curriculum Geometry correlated to the Utah 2007 Secondary Math Core Curriculum Geometry McDougal Littell Geometry: Concepts and Skills 2005 correlated to the Utah 2007 Secondary Math Core Curriculum Geometry The main goal

More information

Course: Geometry Level: Regular Date: 11/2016. Unit 1: Foundations for Geometry 13 Days 7 Days. Unit 2: Geometric Reasoning 15 Days 8 Days

Course: Geometry Level: Regular Date: 11/2016. Unit 1: Foundations for Geometry 13 Days 7 Days. Unit 2: Geometric Reasoning 15 Days 8 Days Geometry Curriculum Chambersburg Area School District Course Map Timeline 2016 Units *Note: unit numbers are for reference only and do not indicate the order in which concepts need to be taught Suggested

More information

Basic Course Information

Basic Course Information Basic Course Information Title: A-G Geometry Transcript abbreviations: Geo A / Geo B Length of course: Full Year Subject area: Mathematics ("c") / Geometry UC honors designation? No Prerequisites: None

More information

Madison County Schools Suggested Geometry Pacing Guide,

Madison County Schools Suggested Geometry Pacing Guide, Madison County Schools Suggested Geometry Pacing Guide, 2016 2017 Domain Abbreviation Congruence G-CO Similarity, Right Triangles, and Trigonometry G-SRT Modeling with Geometry *G-MG Geometric Measurement

More information

High School Geometry

High School Geometry High School Geometry This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence to meet curricular

More information

Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts

Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts interpreting a schematic drawing, estimating the amount of

More information

Course Name - Strategic Math - Geometry Qtr./Mon. Content HSCE Essential Skills Assessment Vocabulary

Course Name - Strategic Math - Geometry Qtr./Mon. Content HSCE Essential Skills Assessment Vocabulary Sem. 1 Sept. Points & Lines G1.1.6 Recognize Euclidean geometry as an axiom system. Know the key axioms and understand the meaning of and distinguish between undefined terms, axioms, definitions, and theorems.

More information

NEW YORK GEOMETRY TABLE OF CONTENTS

NEW YORK GEOMETRY TABLE OF CONTENTS NEW YORK GEOMETRY TABLE OF CONTENTS CHAPTER 1 POINTS, LINES, & PLANES {G.G.21, G.G.27} TOPIC A: Concepts Relating to Points, Lines, and Planes PART 1: Basic Concepts and Definitions...1 PART 2: Concepts

More information

Michigan Edition. correlated to the. Michigan Merit Curriculum Course / Credit Requirements Geometry

Michigan Edition. correlated to the. Michigan Merit Curriculum Course / Credit Requirements Geometry Michigan Edition correlated to the Michigan Merit Curriculum Course / Credit Requirements Geometry McDougal Littell Geometry 2008 (Michigan Edition) correlated to the Michigan Merit Curriuclum Course /

More information

Dover- Sherborn High School Mathematics Curriculum Geometry Level 2/CP

Dover- Sherborn High School Mathematics Curriculum Geometry Level 2/CP Mathematics Curriculum A. DESCRIPTION This is the traditional geometry course with emphasis on the student s understanding of the characteristics and properties of two- and three- dimensional geometry.

More information

Amarillo ISD Math Curriculum

Amarillo ISD Math Curriculum Amarillo Independent School District follows the Texas Essential Knowledge and Skills (TEKS). All of AISD curriculum and documents and resources are aligned to the TEKS. The State of Texas State Board

More information

GEOMETRY CURRICULUM MAP

GEOMETRY CURRICULUM MAP 2017-2018 MATHEMATICS GEOMETRY CURRICULUM MAP Department of Curriculum and Instruction RCCSD Congruence Understand congruence in terms of rigid motions Prove geometric theorems Common Core Major Emphasis

More information

, Geometry, Quarter 1

, Geometry, Quarter 1 2017.18, Geometry, Quarter 1 The following Practice Standards and Literacy Skills will be used throughout the course: Standards for Mathematical Practice Literacy Skills for Mathematical Proficiency 1.

More information

Curriculum Catalog

Curriculum Catalog 2017-2018 Curriculum Catalog 2017 Glynlyon, Inc. Table of Contents GEOMETRY COURSE OVERVIEW...1 UNIT 1: INTRODUCTION... 1 UNIT 2: LOGIC... 1 UNIT 3: ANGLES AND PARALLELS... 2 UNIT 4: CONGRUENT TRIANGLES

More information

Geometry. Geometry. Domain Cluster Standard. Congruence (G CO)

Geometry. Geometry. Domain Cluster Standard. Congruence (G CO) Domain Cluster Standard 1. Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance

More information

Honors Geometry Pacing Guide Honors Geometry Pacing First Nine Weeks

Honors Geometry Pacing Guide Honors Geometry Pacing First Nine Weeks Unit Topic To recognize points, lines and planes. To be able to recognize and measure segments and angles. To classify angles and name the parts of a degree To recognize collinearity and betweenness of

More information

MADISON ACADEMY GEOMETRY PACING GUIDE

MADISON ACADEMY GEOMETRY PACING GUIDE MADISON ACADEMY GEOMETRY PACING GUIDE 2018-2019 Standards (ACT included) ALCOS#1 Know the precise definitions of angle, circle, perpendicular line, parallel line, and line segment based on the undefined

More information

Texas High School Geometry

Texas High School Geometry Texas High School Geometry This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence to meet

More information

Mathematics High School Geometry

Mathematics High School Geometry Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts interpreting a schematic drawing, estimating the amount of

More information

Geometry Year-Long. September 2014

Geometry Year-Long. September 2014 St. Michael-Albertville High School Teacher: Nick Steve Geometry Year-Long September 2014 NOTE: The topics covered in Geometry and in Advanced Geometry are basically the same. However, the Advanced Geometry

More information

Geometry Pacing Guide Lynchburg City Schools

Geometry Pacing Guide Lynchburg City Schools Grading Period: 1 st Nine Weeks Total Days to Teach = 44 days SOL & Enabling Objectives: Description Text Recommended Activities Time Frame Begin the school year with relationship building activities continue

More information

Curriculum Catalog

Curriculum Catalog 2017-2018 Curriculum Catalog 2017 Glynlyon, Inc. Table of Contents GEOMETRY COURSE OVERVIEW... 1 UNIT 1: INTRODUCTION... 1 UNIT 2: LOGIC... 2 UNIT 3: ANGLES AND PARALLELS... 2 UNIT 4: CONGRUENT TRIANGLES

More information

This image cannot currently be displayed. Course Catalog. Geometry Glynlyon, Inc.

This image cannot currently be displayed. Course Catalog. Geometry Glynlyon, Inc. This image cannot currently be displayed. Course Catalog Geometry 2016 Glynlyon, Inc. Table of Contents COURSE OVERVIEW... 1 UNIT 1: INTRODUCTION... 1 UNIT 2: LOGIC... 1 UNIT 3: ANGLES AND PARALLELS...

More information

PASS. 5.2.b Use transformations (reflection, rotation, translation) on geometric figures to solve problems within coordinate geometry.

PASS. 5.2.b Use transformations (reflection, rotation, translation) on geometric figures to solve problems within coordinate geometry. Geometry Name Oklahoma cademic tandards for Oklahoma P PRCC odel Content Frameworks Current ajor Curriculum Topics G.CO.01 Experiment with transformations in the plane. Know precise definitions of angle,

More information

Aldine ISD Benchmark Targets /Geometry SUMMER 2004

Aldine ISD Benchmark Targets /Geometry SUMMER 2004 ASSURANCES: By the end of Geometry, the student will be able to: 1. Use properties of triangles and quadrilaterals to solve problems. 2. Identify, classify, and draw two and three-dimensional objects (prisms,

More information

Instructional Unit CPM Geometry Unit Content Objective Performance Indicator Performance Task State Standards Code:

Instructional Unit CPM Geometry Unit Content Objective Performance Indicator Performance Task State Standards Code: 306 Instructional Unit Area 1. Areas of Squares and The students will be -Find the amount of carpet 2.4.11 E Rectangles able to determine the needed to cover various plane 2. Areas of Parallelograms and

More information

Pearson Mathematics Geometry Common Core 2015

Pearson Mathematics Geometry Common Core 2015 A Correlation of Pearson Mathematics Geometry Common Core 2015 to the Common Core State Standards for Bid Category 13-040-10 A Correlation of Pearson, Common Core Pearson Geometry Congruence G-CO Experiment

More information

Ganado Unified School District Geometry

Ganado Unified School District Geometry Ganado Unified School District Geometry PACING Guide SY 2016-2017 Timeline & Resources 1st Quarter Unit 1 AZ & ELA Standards Essential Question Learning Goal Vocabulary CC.9-12.G.CO. Transformations and

More information

Suggested List of Mathematical Language. Geometry

Suggested List of Mathematical Language. Geometry Suggested List of Mathematical Language Geometry Problem Solving A additive property of equality algorithm apply constraints construct discover explore generalization inductive reasoning parameters reason

More information

Geometry Advanced (Master) Content Skills Learning Targets Assessment Resources & Technology. A: The Tools of Geometry

Geometry Advanced (Master) Content Skills Learning Targets Assessment Resources & Technology. A: The Tools of Geometry St. Michael Albertville High School Teacher: Nick Steve Geometry Advanced (Master) September 2015 Content Skills Learning Targets Assessment Resources & Technology CEQ: What are the properties of the basic

More information

Correlation of Discovering Geometry 5th Edition to Florida State Standards

Correlation of Discovering Geometry 5th Edition to Florida State Standards Correlation of 5th Edition to Florida State s MAFS content is listed under three headings: Introduced (I), Developed (D), and Applied (A). Developed standards are the focus of the lesson, and are being

More information

Unit Activity Correlations to Common Core State Standards. Geometry. Table of Contents. Geometry 1 Statistics and Probability 8

Unit Activity Correlations to Common Core State Standards. Geometry. Table of Contents. Geometry 1 Statistics and Probability 8 Unit Activity Correlations to Common Core State Standards Geometry Table of Contents Geometry 1 Statistics and Probability 8 Geometry Experiment with transformations in the plane 1. Know precise definitions

More information

Standards to Topics. Common Core State Standards 2010 Geometry

Standards to Topics. Common Core State Standards 2010 Geometry Standards to Topics G-CO.01 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance

More information

Northern York County School District Curriculum

Northern York County School District Curriculum Course Name Keystone Geometry (1.03 / 1.06 / 1.10) Grade Level Grade 10 Northern York County School District Curriculum Module Instructional Procedures Module 1: Geometric Properties and Reasoning Course

More information

Introduction to Geometry

Introduction to Geometry Introduction to Geometry This course covers the topics outlined below. You can customize the scope and sequence of this course to meet your curricular needs. Curriculum (211 topics + 6 additional topics)

More information

The Research- Driven Solution to Raise the Quality of High School Core Courses. Geometry. Instructional Units Plan

The Research- Driven Solution to Raise the Quality of High School Core Courses. Geometry. Instructional Units Plan The Research- Driven Solution to Raise the Quality of High School Core Courses Instructional Units Plan Instructional Units Plan This set of plans presents the topics and selected for ACT s rigorous course.

More information

Sequence of Geometry Modules Aligned with the Standards

Sequence of Geometry Modules Aligned with the Standards Sequence of Geometry Modules Aligned with the Standards Module 1: Congruence, Proof, and Constructions Module 2: Similarity, Proof, and Trigonometry Module 3: Extending to Three Dimensions Module 4: Connecting

More information

Geometry Syllabus Holt McDougal Geometry (Aligned with SCCCR Standards) Ridgeland Hardeeville High School

Geometry Syllabus Holt McDougal Geometry (Aligned with SCCCR Standards) Ridgeland Hardeeville High School Geometry Syllabus 2016-2017 Holt McDougal Geometry (Aligned with SCCCR Standards) Ridgeland Hardeeville High School TOPIC SCCCR STANDARD DAYS REQUIRED BASICS OF GEOMETRY: About points, lines, planes angles

More information

WAYNESBORO AREA SCHOOL DISTRICT CURRICULUM ACCELERATED GEOMETRY (June 2014)

WAYNESBORO AREA SCHOOL DISTRICT CURRICULUM ACCELERATED GEOMETRY (June 2014) UNIT: Chapter 1 Essentials of Geometry UNIT : How do we describe and measure geometric figures? Identify Points, Lines, and Planes (1.1) How do you name geometric figures? Undefined Terms Point Line Plane

More information

High School Mathematics Geometry Vocabulary Word Wall Cards

High School Mathematics Geometry Vocabulary Word Wall Cards High School Mathematics Geometry Vocabulary Word Wall Cards Table of Contents Reasoning, Lines, and Transformations Basics of Geometry 1 Basics of Geometry 2 Geometry Notation Logic Notation Set Notation

More information

Geometry Foundations Pen Argyl Area High School 2018

Geometry Foundations Pen Argyl Area High School 2018 Geometry emphasizes the development of logical thinking as it relates to geometric problems. Topics include using the correct language and notations of geometry, developing inductive and deductive reasoning,

More information

Table of Contents TABLE OF CONTENTS. Section 1: Lessons 1 10, Investigation 1. Section 1 Overview

Table of Contents TABLE OF CONTENTS. Section 1: Lessons 1 10, Investigation 1. Section 1 Overview Section 1: Lessons 1 10, Investigation 1 Section 1 Overview 2A 1 Points, Lines, and Planes 2 2 Segments 7 3 Angles 13 LAB 1 Construction: Congruent Segments and Angles 19 4 Postulates and Theorems About

More information

-Student must complete all assignment s even if they are not graded (it is their way of practicing)

-Student must complete all assignment s even if they are not graded (it is their way of practicing) Geometry 2014-2015 Mrs. K Smith The Purpose of the geometry curriculum is to encourage student awareness of the importance of mathematics in the modern world. The course includes among other things, properties

More information

Sequenced Units for Arizona s College and Career Ready Standards MA32 Honors Geometry

Sequenced Units for Arizona s College and Career Ready Standards MA32 Honors Geometry Sequenced Units for Arizona s College and Career Ready Standards MA32 Honors Geometry Year at a Glance Semester 1 Semester 2 Unit 1: Basics of Geometry (12 days) Unit 2: Reasoning and Proofs (13 days)

More information

Pacing Guide. Geometry Year Long. Robert E. Lee High School Staunton City Schools Staunton, Virginia June 2006

Pacing Guide. Geometry Year Long. Robert E. Lee High School Staunton City Schools Staunton, Virginia June 2006 Pacing Guide Geometry Year Long Robert E. Lee High School Staunton City Schools Staunton, Virginia June 2006 Geometry Semester I (1st 9-weeks) Week(s) Organizing Topics Related Standards of Learning Inverse,

More information

CURRICULUM GUIDE. Honors Geometry

CURRICULUM GUIDE. Honors Geometry CURRICULUM GUIDE Honors Geometry This level of Geometry is approached at an accelerated pace. Topics of postulates, theorems and proofs are discussed both traditionally and with a discovery approach. The

More information

Geometry Curriculum Map

Geometry Curriculum Map Geometry Curriculum Map Unit 1 st Quarter Content/Vocabulary Assessment AZ Standards Addressed Essentials of Geometry 1. What are points, lines, and planes? 1. Identify Points, Lines, and Planes 1. Observation

More information

Mathematics Standards for High School Geometry

Mathematics Standards for High School Geometry Mathematics Standards for High School Geometry Geometry is a course required for graduation and course is aligned with the College and Career Ready Standards for Mathematics in High School. Throughout

More information

Agile Mind Geometry Scope and Sequence, Common Core State Standards for Mathematics

Agile Mind Geometry Scope and Sequence, Common Core State Standards for Mathematics Students began their study of geometric concepts in middle school mathematics. They studied area, surface area, and volume and informally investigated lines, angles, and triangles. Students in middle school

More information

CURRICULUM CATALOG. Geometry ( ) TX

CURRICULUM CATALOG. Geometry ( ) TX 2018-19 CURRICULUM CATALOG Table of Contents GEOMETRY (03100700) TX COURSE OVERVIEW... 1 UNIT 1: INTRODUCTION... 1 UNIT 2: LOGIC... 1 UNIT 3: ANGLES AND PARALLELS... 2 UNIT 4: CONGRUENT TRIANGLES AND QUADRILATERALS...

More information

MANHATTAN HUNTER SCIENCE HIGH SCHOOL GEOMETRY CURRICULUM

MANHATTAN HUNTER SCIENCE HIGH SCHOOL GEOMETRY CURRICULUM COORDINATE Geometry Plotting points on the coordinate plane. Using the Distance Formula: Investigate, and apply the Pythagorean Theorem as it relates to the distance formula. (G.GPE.7, 8.G.B.7, 8.G.B.8)

More information

Geometry GEOMETRY. Congruence

Geometry GEOMETRY. Congruence Geometry Geometry builds on Algebra I concepts and increases students knowledge of shapes and their properties through geometry-based applications, many of which are observable in aspects of everyday life.

More information

Milford Public Schools Curriculum. Department: Mathematics Course Name: Geometry Level 3. UNIT 1 Unit Title: Coordinate Algebra and Geometry

Milford Public Schools Curriculum. Department: Mathematics Course Name: Geometry Level 3. UNIT 1 Unit Title: Coordinate Algebra and Geometry Milford Public Schools Curriculum Department: Mathematics Course Name: Geometry Level 3 UNIT 1 Unit Title: Coordinate Algebra and Geometry The correspondence between numerical coordinates and geometric

More information

Geometry. Cluster: Experiment with transformations in the plane. G.CO.1 G.CO.2. Common Core Institute

Geometry. Cluster: Experiment with transformations in the plane. G.CO.1 G.CO.2. Common Core Institute Geometry Cluster: Experiment with transformations in the plane. G.CO.1: Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of

More information

Assignment List. Chapter 1 Essentials of Geometry. Chapter 2 Reasoning and Proof. Chapter 3 Parallel and Perpendicular Lines

Assignment List. Chapter 1 Essentials of Geometry. Chapter 2 Reasoning and Proof. Chapter 3 Parallel and Perpendicular Lines Geometry Assignment List Chapter 1 Essentials of Geometry 1.1 Identify Points, Lines, and Planes 5 #1, 4-38 even, 44-58 even 27 1.2 Use Segments and Congruence 12 #4-36 even, 37-45 all 26 1.3 Use Midpoint

More information

FLORIDA GEOMETRY EOC TOOLKIT

FLORIDA GEOMETRY EOC TOOLKIT FLORIDA GEOMETRY EOC TOOLKIT CORRELATION Correlated to the Geometry End-of-Course Benchmarks For more information, go to etacuisenaire.com\florida 78228IS ISBN 978-0-7406-9565-0 MA.912.D.6.2 Find the converse,

More information

Dover- Sherborn High School Mathematics Curriculum Geometry Honors

Dover- Sherborn High School Mathematics Curriculum Geometry Honors Mathematics Curriculum A. DESCRIPTION This course represents an accelerated, rigorous approach to the topics of the traditional geometry course. Enrichment is gained through student projects and presentations,

More information

High School Geometry

High School Geometry High School Geometry This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence to meet curricular

More information

JOHN F. KENNEDY HIGH SCHOOL GEOMETRY COURSE SYLLABUS DEPARTMENT OF MATHEMATICS

JOHN F. KENNEDY HIGH SCHOOL GEOMETRY COURSE SYLLABUS DEPARTMENT OF MATHEMATICS JOHN F. KENNEDY HIGH SCHOOL GEOMETRY COURSE SYLLABUS DEPARTMENT OF MATHEMATICS 1. COURSE NUMBER, TITLE, UNITS AND PRINCIPAL/DEPARTMENT APPROVED DESCRIPTION MGS252-14 GEOMETRY PL/S 10.0 UNITS According

More information

Geometry Honors Course Syllabus Middleboro High School, Ms. Miles

Geometry Honors Course Syllabus Middleboro High School, Ms. Miles Course Overview Geometry is a branch of mathematics that uses logic and reasoning to establish the mathematical relationships between points, lines, angles, figures, and solids. Honors Geometry introduces

More information

Common Core Specifications for Geometry

Common Core Specifications for Geometry 1 Common Core Specifications for Geometry Examples of how to read the red references: Congruence (G-Co) 2-03 indicates this spec is implemented in Unit 3, Lesson 2. IDT_C indicates that this spec is implemented

More information

Common Core Cluster. Experiment with transformations in the plane. Unpacking What does this standard mean that a student will know and be able to do?

Common Core Cluster. Experiment with transformations in the plane. Unpacking What does this standard mean that a student will know and be able to do? Congruence G.CO Experiment with transformations in the plane. G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point,

More information

Unit Number of Days Dates. 1 Angles, Lines and Shapes 14 8/2 8/ Reasoning and Proof with Lines and Angles 14 8/22 9/9

Unit Number of Days Dates. 1 Angles, Lines and Shapes 14 8/2 8/ Reasoning and Proof with Lines and Angles 14 8/22 9/9 8 th Grade Geometry Curriculum Map Overview 2016-2017 Unit Number of Days Dates 1 Angles, Lines and Shapes 14 8/2 8/19 2 - Reasoning and Proof with Lines and Angles 14 8/22 9/9 3 - Congruence Transformations

More information

Pacing Guide. Geometry. Quarter 1

Pacing Guide. Geometry. Quarter 1 1 Start-Up/ Review ***************** ***** Note: Reteaching from Ready to Go On Quizzes indicate time built in for Intervention lessons/ student mastery of previously taught material. Wk 2 1.1: Understanding

More information

Geometry CP Pen Argyl Area High School 2018

Geometry CP Pen Argyl Area High School 2018 Geometry emphasizes the development of logical thinking as it relates to geometric problems. Topics include using the correct language and notations of geometry, developing inductive and deductive reasoning,

More information

Beal City High School Geometry Curriculum and Alignment

Beal City High School Geometry Curriculum and Alignment Beal City High School Geometry Curriculum and Alignment UNIT 1 Geometry Basics (Chapter 1) 1. Points, lines and planes (1-1, 1-2) 2. Axioms (postulates), theorems, definitions (Ch 1) 3. Angles (1-3) 4.

More information

correlated to the Michigan High School Content Expectations Geometry

correlated to the Michigan High School Content Expectations Geometry correlated to the Michigan High School Content Expectations Geometry McDougal Littell Integrated Mathematics 2 2005 correlated to the Michigan High School Content Expectations Geometry STANDARD L1: REASONING

More information

Geometry I Can Statements I can describe the undefined terms: point, line, and distance along a line in a plane I can describe the undefined terms:

Geometry I Can Statements I can describe the undefined terms: point, line, and distance along a line in a plane I can describe the undefined terms: Geometry I Can Statements I can describe the undefined terms: point, line, and distance along a line in a plane I can describe the undefined terms: point, line, and distance along a line in a plane I can

More information

High School Geometry. Correlation of the ALEKS course High School Geometry to the ACT College Readiness Standards for Mathematics

High School Geometry. Correlation of the ALEKS course High School Geometry to the ACT College Readiness Standards for Mathematics High School Geometry Correlation of the ALEKS course High School Geometry to the ACT College Readiness Standards for Mathematics Standard 5 : Graphical Representations = ALEKS course topic that addresses

More information

GEOMETRY. Background Knowledge/Prior Skills. Knows ab = a b. b =

GEOMETRY. Background Knowledge/Prior Skills. Knows ab = a b. b = GEOMETRY Numbers and Operations Standard: 1 Understands and applies concepts of numbers and operations Power 1: Understands numbers, ways of representing numbers, relationships among numbers, and number

More information

1 Reasoning with Shapes

1 Reasoning with Shapes 1 Reasoning with Shapes Topic 1: Using a Rectangular Coordinate System Lines, Rays, Segments, and Angles Naming Lines, Rays, Segments, and Angles Working with Measures of Segments and Angles Students practice

More information