Replacing f(x) with k f(x) and. Adapted from Walch Education

Size: px
Start display at page:

Download "Replacing f(x) with k f(x) and. Adapted from Walch Education"

Transcription

1 Replacing f(x) with k f(x) and f(k x) Adapted from Walch Education

2 Graphing and Points of Interest In the graph of a function, there are key points of interest that define the graph and represent the characteristics of the function. When a function is transformed, the key points of the graph define the transformation. The key points in the graph of a quadratic equation are the vertex and the roots, or x- intercepts : Replacing f(x) with k f(x) and f(k x) 2

3 Multiplying the Dependent Variable by a Constant, k: k f(x) In general, multiplying a function by a constant will stretch or shrink (compress) the graph of f vertically. If k > 1, the graph of f(x) will stretch vertically by a factor of k (so the parabola will appear narrower). A vertical stretch pulls the parabola and stretches it away from the x-axis. If 0 < k < 1, the graph of f(x) will shrink or compress vertically by a factor of k (so the parabola will appear wider) : Replacing f(x) with k f(x) and f(k x) 3

4 Key Concepts, continued. A vertical compression squeezes the parabola toward the x-axis. If k < 0, the parabola will be first stretched or compressed and then reflected over the x- axis. The x-intercepts (roots) will remain the same, as will the x-coordinate of the vertex (the axis of symmetry). While k f(x) = f(k x) can be true, generally k f(x) f(k x) : Replacing f(x) with k f(x) and f(k x) 4

5 Vertical Stretches Vertical stretches: when k > 1 in k f(x) The graph is stretched vertically by a factor of k. The x-coordinate of the vertex remains the same. The y-coordinate of the vertex changes. The x-intercepts remain the same : Replacing f(x) with k f(x) and f(k x) 5

6 Vertical Compressions Vertical compressions: when 0 < k < 1 in k f(x) The graph is compressed vertically by a factor of k. The x-coordinate of the vertex remains the same. The y-coordinate of the vertex changes. The x-intercepts remain the same : Replacing f(x) with k f(x) and f(k x) 6

7 Reflections over the x-axis Reflections over the x-axis: when k = 1 in k f(x) The parabola is reflected over the x-axis. The x-coordinate of the vertex remains the same. The y-coordinate of the vertex changes. The x-intercepts remain the same. When k < 0, first perform the vertical stretch or compression, and then reflect the function over the x-axis : Replacing f(x) with k f(x) and f(k x) 7

8 Multiplying the Independent Variable by a Constant, k: f(k x) In general, multiplying the independent variable in a function by a constant will stretch or shrink the graph of f horizontally. If k > 1, the graph of f(x) will shrink or compress horizontally by a factor of the parabola will appear narrower). (so A horizontal compression squeezes the parabola toward the y-axis. 1 k 5.8.2: Replacing f(x) with k f(x) and f(k x) 8

9 Key Concepts, continued. If 0 < k < 1, the graph of f(x) will stretch 1 horizontally by a factor of (so the k parabola will appear wider). A horizontal stretch pulls the parabola and stretches it away from the y-axis. If k < 0, the graph is first horizontally stretched or compressed and then reflected over the y-axis. The y-intercept remains the same, as does the y-coordinate of the vertex : Replacing f(x) with k f(x) and f(k x) 9

10 Key Concepts, continued. When a constant k is multiplied by the variable x of a function f(x), the interval of the intercepts of the function is increased or decreased depending on the value of k. The roots of the equation ax 2 + bx + c = 0 are given by the quadratic formula, x = -b ± b2-4ac. 2a Remember that in the standard form of an equation, ax 2 + bx + c, the only variable is x; a, b, and c represent constants : Replacing f(x) with k f(x) and f(k x) 10

11 Key Concepts, continued. If we were to multiply x in the equation ax 2 + bx + c by a constant k, we would arrive at the following: a( kx) 2 + b( kx) + c = ( ak 2 ) x 2 + ( bk ) x + c Use the quadratic formula to find the roots of ( ak 2 ) x 2 + bk ( ) x + c 5.8.2: Replacing f(x) with k f(x) and f(k x) 11

12 Horizontal Compressions Horizontal compressions: when k > 1 in f(k x) The graph is compressed horizontally 1 by a factor of k. The y-coordinate of the vertex remains the same. The x-coordinate of the vertex changes : Replacing f(x) with k f(x) and f(k x) 12

13 Horizontal Stretches Horizontal stretches: when 0 < k < 1 in f(k x) The graph is stretched horizontally by a factor of 1 k. The y-coordinate of the vertex remains the same. The x-coordinate of the vertex changes : Replacing f(x) with k f(x) and f(k x) 13

14 Reflections over the y-axis Reflections over the y-axis: when k = 1 in f(k x) The parabola is reflected over the y-axis. The y-coordinate of the vertex remains the same. The x-coordinate of the vertex changes. The y-intercept remains the same. When k < 0, first perform the horizontal compression or stretch, and then reflect the function over the y-axis : Replacing f(x) with k f(x) and f(k x) 14

15 Practice # 1 Consider the function f(x) = x 2, its graph, and the constant k = 2. What is k f(x)? How are the graphs of f(x) and k f(x) different? How are they the same? 5.8.2: Replacing f(x) with k f(x) and f(k x) 15

16 Substitute the value of k into the function. If f(x) = x 2 and k = 2, then k f(x) = 2 f(x) = 2x 2. Use a table of values to graph the functions. x f(x) k f(x) : Replacing f(x) with k f(x) and f(k x) 16

17 Graph f(x) = x 2 and k f(x) = 2 f(x) = 2x : Replacing f(x) with k f(x) and f(k x) 17

18 Compare the graphs. Notice the position of the vertex has not changed in the transformation of f(x). Therefore, both equations have same root, x = 0. However, notice the inner graph, 2x 2, is more narrow than x 2 because the value of 2 f(x) is increasing twice as fast as the value of f(x). Since k > 1, the graph of f(x) will stretch vertically by a factor of 2. The parabola appears narrower : Replacing f(x) with k f(x) and f(k x) 18

19 Dr. Dambreville THANKS FOR WATCHING!

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables Guided Practice Example 1 Find the y-intercept and vertex of the function f(x) = 2x 2 + x + 3. Determine whether the vertex is a minimum or maximum point on the graph. 1. Determine the y-intercept. The

More information

Writing Equivalent Forms of Quadratic Functions Adapted from Walch Education

Writing Equivalent Forms of Quadratic Functions Adapted from Walch Education Writing Equivalent Forms of Quadratic Functions Adapted from Walch Education Recall The standard form, or general form, of a quadratic function is written as f(x) = ax 2 + bx + c, where a is the coefficient

More information

F.BF.B.3: Graphing Polynomial Functions

F.BF.B.3: Graphing Polynomial Functions F.BF.B.3: Graphing Polynomial Functions 1 Given the graph of the line represented by the equation f(x) = 2x + b, if b is increased by 4 units, the graph of the new line would be shifted 4 units 1) right

More information

Warm-Up Exercises. Find the x-intercept and y-intercept 1. 3x 5y = 15 ANSWER 5; y = 2x + 7 ANSWER ; 7

Warm-Up Exercises. Find the x-intercept and y-intercept 1. 3x 5y = 15 ANSWER 5; y = 2x + 7 ANSWER ; 7 Warm-Up Exercises Find the x-intercept and y-intercept 1. 3x 5y = 15 ANSWER 5; 3 2. y = 2x + 7 7 2 ANSWER ; 7 Chapter 1.1 Graph Quadratic Functions in Standard Form A quadratic function is a function that

More information

Quadratic Equations. Learning Objectives. Quadratic Function 2. where a, b, and c are real numbers and a 0

Quadratic Equations. Learning Objectives. Quadratic Function 2. where a, b, and c are real numbers and a 0 Quadratic Equations Learning Objectives 1. Graph a quadratic function using transformations. Identify the vertex and axis of symmetry of a quadratic function 3. Graph a quadratic function using its vertex,

More information

3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS

3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS 3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS Finding the Zeros of a Quadratic Function Examples 1 and and more Find the zeros of f(x) = x x 6. Solution by Factoring f(x) = x x 6 = (x 3)(x + )

More information

Properties of Quadratic functions

Properties of Quadratic functions Name Today s Learning Goals: #1 How do we determine the axis of symmetry and vertex of a quadratic function? Properties of Quadratic functions Date 5-1 Properties of a Quadratic Function A quadratic equation

More information

Transformations with Quadratic Functions KEY

Transformations with Quadratic Functions KEY Algebra Unit: 05 Lesson: 0 TRY THIS! Use a calculator to generate a table of values for the function y = ( x 3) + 4 y = ( x 3) x + y 4 Next, simplify the function by squaring, distributing, and collecting

More information

2.2 Transformers: More Than Meets the y s

2.2 Transformers: More Than Meets the y s 10 SECONDARY MATH II // MODULE 2 STRUCTURES OF EXPRESSIONS 2.2 Transformers: More Than Meets the y s A Solidify Understanding Task Writetheequationforeachproblembelow.Useasecond representationtocheckyourequation.

More information

UNIT 8: SOLVING AND GRAPHING QUADRATICS. 8-1 Factoring to Solve Quadratic Equations. Solve each equation:

UNIT 8: SOLVING AND GRAPHING QUADRATICS. 8-1 Factoring to Solve Quadratic Equations. Solve each equation: UNIT 8: SOLVING AND GRAPHING QUADRATICS 8-1 Factoring to Solve Quadratic Equations Zero Product Property For all numbers a & b Solve each equation: If: ab 0, 1. (x + 3)(x 5) = 0 Then one of these is true:

More information

KEY Algebra: Unit 10 Graphing Quadratic Equations & other Relations

KEY Algebra: Unit 10 Graphing Quadratic Equations & other Relations Name: KEY Algebra: Unit 10 Graphing Quadratic Equations & other Relations Date: Test Bank Part I: Answer all 15 questions in this part. Each correct answer will receive credits. No partial credit will

More information

Section 6.2: Properties of Graphs of Quadratic Functions. Vertex:

Section 6.2: Properties of Graphs of Quadratic Functions. Vertex: Section 6.2: Properties of Graphs of Quadratic Functions determine the vertex of a quadratic in standard form sketch the graph determine the y intercept, x intercept(s), the equation of the axis of symmetry,

More information

Exploring Quadratic Graphs

Exploring Quadratic Graphs Exploring Quadratic Graphs The general quadratic function is y=ax 2 +bx+c It has one of two basic graphs shapes, as shown below: It is a symmetrical "U"-shape or "hump"-shape, depending on the sign of

More information

Name: Chapter 7 Review: Graphing Quadratic Functions

Name: Chapter 7 Review: Graphing Quadratic Functions Name: Chapter Review: Graphing Quadratic Functions A. Intro to Graphs of Quadratic Equations: = ax + bx+ c A is a function that can be written in the form = ax + bx+ c where a, b, and c are real numbers

More information

MAC Rev.S Learning Objectives. Learning Objectives (Cont.) Module 4 Quadratic Functions and Equations

MAC Rev.S Learning Objectives. Learning Objectives (Cont.) Module 4 Quadratic Functions and Equations MAC 1140 Module 4 Quadratic Functions and Equations Learning Objectives Upon completing this module, you should be able to 1. understand basic concepts about quadratic functions and their graphs.. complete

More information

More Ways to Solve & Graph Quadratics The Square Root Property If x 2 = a and a R, then x = ± a

More Ways to Solve & Graph Quadratics The Square Root Property If x 2 = a and a R, then x = ± a More Ways to Solve & Graph Quadratics The Square Root Property If x 2 = a and a R, then x = ± a Example: Solve using the square root property. a) x 2 144 = 0 b) x 2 + 144 = 0 c) (x + 1) 2 = 12 Completing

More information

Unit 3, Lesson 3.1 Creating and Graphing Equations Using Standard Form

Unit 3, Lesson 3.1 Creating and Graphing Equations Using Standard Form Unit 3, Lesson 3.1 Creating and Graphing Equations Using Standard Form Imagine the path of a basketball as it leaves a player s hand and swooshes through the net. Or, imagine the path of an Olympic diver

More information

3.1 Quadratic Functions and Models

3.1 Quadratic Functions and Models 3.1 Quadratic Functions and Models Objectives: 1. Identify the vertex & axis of symmetry of a quadratic function. 2. Graph a quadratic function using its vertex, axis and intercepts. 3. Use the maximum

More information

Algebra II Quadratic Functions

Algebra II Quadratic Functions 1 Algebra II Quadratic Functions 2014-10-14 www.njctl.org 2 Ta b le o f C o n te n t Key Terms click on the topic to go to that section Explain Characteristics of Quadratic Functions Combining Transformations

More information

9.1: GRAPHING QUADRATICS ALGEBRA 1

9.1: GRAPHING QUADRATICS ALGEBRA 1 9.1: GRAPHING QUADRATICS ALGEBRA 1 OBJECTIVES I will be able to graph quadratics: Given in Standard Form Given in Vertex Form Given in Intercept Form What does the graph of a quadratic look like? https://www.desmos.com/calculator

More information

Vertex maximum or minimum Axis of Symmetry OPENS: UP MINIMUM

Vertex maximum or minimum Axis of Symmetry OPENS: UP MINIMUM 5.1 GRAPHING QUADRATIC FUNCTIONS IN STANDARD FORM & MUTIPLYING BINOMIALS Standard Form of a Quadratic: y ax bx c or f x ax bx c ex. y x 5x 13 a= b= c=. Every function/graph in the Quadratic family originates

More information

GSE Algebra 1 Name Date Block. Unit 3b Remediation Ticket

GSE Algebra 1 Name Date Block. Unit 3b Remediation Ticket Unit 3b Remediation Ticket Question: Which function increases faster, f(x) or g(x)? f(x) = 5x + 8; two points from g(x): (-2, 4) and (3, 10) Answer: In order to compare the rate of change (roc), you must

More information

WK # Given: f(x) = ax2 + bx + c

WK # Given: f(x) = ax2 + bx + c Alg2H Chapter 5 Review 1. Given: f(x) = ax2 + bx + c Date or y = ax2 + bx + c Related Formulas: y-intercept: ( 0, ) Equation of Axis of Symmetry: x = Vertex: (x,y) = (, ) Discriminant = x-intercepts: When

More information

Graph each function. State the domain, the vertex (min/max point), the range, the x intercepts, and the axis of symmetry.

Graph each function. State the domain, the vertex (min/max point), the range, the x intercepts, and the axis of symmetry. HW Worksheet Name: Graph each function. State the domain, the vertex (min/max point), the range, the x intercepts, and the axis of smmetr..) f(x)= x + - - - - x - - - - Vertex: Max or min? Axis of smmetr:.)

More information

6.4 Vertex Form of a Quadratic Function

6.4 Vertex Form of a Quadratic Function 6.4 Vertex Form of a Quadratic Function Recall from 6.1 and 6.2: Standard Form The standard form of a quadratic is: f(x) = ax 2 + bx + c or y = ax 2 + bx + c where a, b, and c are real numbers and a 0.

More information

QUADRATIC FUNCTIONS. PROTOTYPE: f(x) = ax 2 + bx + c. (1) The leading coefficient a 0 is called the shape parameter.

QUADRATIC FUNCTIONS. PROTOTYPE: f(x) = ax 2 + bx + c. (1) The leading coefficient a 0 is called the shape parameter. QUADRATIC FUNCTIONS PROTOTYPE: f(x) = ax 2 + bx + c. (1) The leading coefficient a 0 is called the shape parameter. SHAPE-VERTEX FORMULA One can write any quadratic function (1) as f(x) = a(x h) 2 + k,

More information

Quadratic Functions. *These are all examples of polynomial functions.

Quadratic Functions. *These are all examples of polynomial functions. Look at: f(x) = 4x-7 f(x) = 3 f(x) = x 2 + 4 Quadratic Functions *These are all examples of polynomial functions. Definition: Let n be a nonnegative integer and let a n, a n 1,..., a 2, a 1, a 0 be real

More information

Unit 1 Quadratic Functions

Unit 1 Quadratic Functions Unit 1 Quadratic Functions This unit extends the study of quadratic functions to include in-depth analysis of general quadratic functions in both the standard form f ( x) = ax + bx + c and in the vertex

More information

Graphing Absolute Value Functions

Graphing Absolute Value Functions Graphing Absolute Value Functions To graph an absolute value equation, make an x/y table and plot the points. Graph y = x (Parent graph) x y -2 2-1 1 0 0 1 1 2 2 Do we see a pattern? Desmos activity: 1.

More information

Properties of Graphs of Quadratic Functions

Properties of Graphs of Quadratic Functions H e i g h t (f t ) Lesson 2 Goal: Properties of Graphs of Quadratic Functions Identify the characteristics of graphs of quadratic functions: Vertex Intercepts Domain and Range Axis of Symmetry and use

More information

2. From General Form: y = ax 2 + bx + c # of x-intercepts determined by the, D =

2. From General Form: y = ax 2 + bx + c # of x-intercepts determined by the, D = Alg2H 5-3 Using the Discriminant, x-intercepts, and the Quadratic Formula WK#6 Lesson / Homework --Complete without calculator Read p.181-p.186. Textbook required for reference as well as to check some

More information

Section a) f(x-3)+4 = (x 3) the (-3) in the parenthesis moves right 3, the +4 moves up 4

Section a) f(x-3)+4 = (x 3) the (-3) in the parenthesis moves right 3, the +4 moves up 4 Section 4.3 1a) f(x-3)+4 = (x 3) 2 + 4 the (-3) in the parenthesis moves right 3, the +4 moves up 4 Answer 1a: f(x-3)+4 = (x 3) 2 + 4 The graph has the same shape as f(x) = x 2, except it is shifted right

More information

Quadratic Functions (Section 2-1)

Quadratic Functions (Section 2-1) Quadratic Functions (Section 2-1) Section 2.1, Definition of Polynomial Function f(x) = a is the constant function f(x) = mx + b where m 0 is a linear function f(x) = ax 2 + bx + c with a 0 is a quadratic

More information

This is called the vertex form of the quadratic equation. To graph the equation

This is called the vertex form of the quadratic equation. To graph the equation Name Period Date: Topic: 7-5 Graphing ( ) Essential Question: What is the vertex of a parabola, and what is its axis of symmetry? Standard: F-IF.7a Objective: Graph linear and quadratic functions and show

More information

9.1 Linear Inequalities in Two Variables Date: 2. Decide whether to use a solid line or dotted line:

9.1 Linear Inequalities in Two Variables Date: 2. Decide whether to use a solid line or dotted line: 9.1 Linear Inequalities in Two Variables Date: Key Ideas: Example Solve the inequality by graphing 3y 2x 6. steps 1. Rearrange the inequality so it s in mx ± b form. Don t forget to flip the inequality

More information

Today is the last day to register for CU Succeed account AND claim your account. Tuesday is the last day to register for my class

Today is the last day to register for CU Succeed account AND claim your account. Tuesday is the last day to register for my class Today is the last day to register for CU Succeed account AND claim your account. Tuesday is the last day to register for my class Back board says your name if you are on my roster. I need parent financial

More information

Chapter 2. Polynomial and Rational Functions. 2.2 Quadratic Functions

Chapter 2. Polynomial and Rational Functions. 2.2 Quadratic Functions Chapter 2 Polynomial and Rational Functions 2.2 Quadratic Functions 1 /27 Chapter 2 Homework 2.2 p298 1, 5, 17, 31, 37, 41, 43, 45, 47, 49, 53, 55 2 /27 Chapter 2 Objectives Recognize characteristics of

More information

CHAPTER 6 Quadratic Functions

CHAPTER 6 Quadratic Functions CHAPTER 6 Quadratic Functions Math 1201: Linear Functions is the linear term 3 is the leading coefficient 4 is the constant term Math 2201: Quadratic Functions Math 3201: Cubic, Quartic, Quintic Functions

More information

1. Answer: x or x. Explanation Set up the two equations, then solve each equation. x. Check

1. Answer: x or x. Explanation Set up the two equations, then solve each equation. x. Check Thinkwell s Placement Test 5 Answer Key If you answered 7 or more Test 5 questions correctly, we recommend Thinkwell's Algebra. If you answered fewer than 7 Test 5 questions correctly, we recommend Thinkwell's

More information

2. The diagram shows part of the graph of y = a (x h) 2 + k. The graph has its vertex at P, and passes through the point A with coordinates (1, 0).

2. The diagram shows part of the graph of y = a (x h) 2 + k. The graph has its vertex at P, and passes through the point A with coordinates (1, 0). Quadratics Vertex Form 1. Part of the graph of the function y = d (x m) + p is given in the diagram below. The x-intercepts are (1, 0) and (5, 0). The vertex is V(m, ). (a) Write down the value of (i)

More information

Standard Form of Quadratic Functions

Standard Form of Quadratic Functions Math Objectives Students will be able to predict how a specific change in the value of a will affect the shape of the graph of the quadratic ax bx c. Students will be able to predict how a specific change

More information

Warm Up. Factor the following numbers and expressions. Multiply the following factors using either FOIL or Box Method

Warm Up. Factor the following numbers and expressions. Multiply the following factors using either FOIL or Box Method Warm Up Factor the following numbers and expressions 1. 36 2. 36x 3 + 48x 2 + 24x Multiply the following factors using either FOIL or Box Method 3. (3x 2)(x 1) 4. (x 2)(x + 3) Objectives Recognize standard

More information

Obtaining Information from a Function s Graph.

Obtaining Information from a Function s Graph. Obtaining Information from a Function s Graph Summary about using closed dots, open dots, and arrows on the graphs 1 A closed dot indicate that the graph does not extend beyond this point and the point

More information

Section 1.6 & 1.7 Parent Functions and Transformations

Section 1.6 & 1.7 Parent Functions and Transformations Math 150 c Lynch 1 of 8 Section 1.6 & 1.7 Parent Functions and Transformations Piecewise Functions Example 1. Graph the following piecewise functions. 2x + 3 if x < 0 (a) f(x) = x if x 0 1 2 (b) f(x) =

More information

QUESTIONS 1 10 MAY BE DONE WITH A CALCULATOR QUESTIONS ARE TO BE DONE WITHOUT A CALCULATOR. Name

QUESTIONS 1 10 MAY BE DONE WITH A CALCULATOR QUESTIONS ARE TO BE DONE WITHOUT A CALCULATOR. Name QUESTIONS 1 10 MAY BE DONE WITH A CALCULATOR QUESTIONS 11 5 ARE TO BE DONE WITHOUT A CALCULATOR Name 2 CALCULATOR MAY BE USED FOR 1-10 ONLY Use the table to find the following. x -2 2 5-0 7 2 y 12 15 18

More information

CHAPTER 9: Quadratic Equations and Functions

CHAPTER 9: Quadratic Equations and Functions Notes # CHAPTER : Quadratic Equations and Functions -: Exploring Quadratic Graphs A. Intro to Graphs of Quadratic Equations: = ax + bx + c A is a function that can be written in the form = ax + bx + c

More information

2.1 Quadraticsnts.notebook. September 10, 2018

2.1 Quadraticsnts.notebook. September 10, 2018 1 A quadratic function is a polynomial function of second degree. The graph of a quadratic function is called a parabola. 2 Standard Form: Intercept Form: Vertex Form: f(x) = a(x h) 2 + k vertex: (h, k)

More information

Review for Quarter 3 Cumulative Test

Review for Quarter 3 Cumulative Test Review for Quarter 3 Cumulative Test I. Solving quadratic equations (LT 4.2, 4.3, 4.4) Key Facts To factor a polynomial, first factor out any common factors, then use the box method to factor the quadratic.

More information

Warm Up Grab your calculator Find the vertex: y = 2x x + 53 (-5, 3)

Warm Up Grab your calculator Find the vertex: y = 2x x + 53 (-5, 3) Warm Up Grab your calculator Find the vertex: y = 2x 2 + 20x + 53 (-5, 3) Quiz will be next Tuesday, folks. Check HW/ New Section Another useful form of writing quadratic functions is the standard form.

More information

Notes Rules for Transformations of Functions If f x is the original functions, a > 0 and c > 0.

Notes Rules for Transformations of Functions If f x is the original functions, a > 0 and c > 0. 9.1.2 Parabola Investigation Do Now 1. Vertical means and horizontal is. 2. Another word for compress is. 3. Given the statement 0 < a < 1, a represents numbers like 4. Given the statement a > 1, a represents

More information

4.3 Quadratic functions and their properties

4.3 Quadratic functions and their properties 4.3 Quadratic functions and their properties A quadratic function is a function defined as f(x) = ax + x + c, a 0 Domain: the set of all real numers x-intercepts: Solutions of ax + x + c = 0 y-intercept:

More information

Sections 3.5, : Quadratic Functions

Sections 3.5, : Quadratic Functions Week 7 Handout MAC 1105 Professor Niraj Wagh J Sections 3.5, 4.3-4.4: Quadratic Functions A function that can be written in the form f(x)= ax 2 +bx+c for real numbers a, b, and c, with a not equal to zero,

More information

A function: A mathematical relationship between two variables (x and y), where every input value (usually x) has one output value (usually y)

A function: A mathematical relationship between two variables (x and y), where every input value (usually x) has one output value (usually y) SESSION 9: FUNCTIONS KEY CONCEPTS: Definitions & Terminology Graphs of Functions - Straight line - Parabola - Hyperbola - Exponential Sketching graphs Finding Equations Combinations of graphs TERMINOLOGY

More information

Algebra II Chapter 4: Quadratic Functions and Factoring Part 1

Algebra II Chapter 4: Quadratic Functions and Factoring Part 1 Algebra II Chapter 4: Quadratic Functions and Factoring Part 1 Chapter 4 Lesson 1 Graph Quadratic Functions in Standard Form Vocabulary 1 Example 1: Graph a Function of the Form y = ax 2 Steps: 1. Make

More information

Section 7.2 Characteristics of Quadratic Functions

Section 7.2 Characteristics of Quadratic Functions Section 7. Characteristics of Quadratic Functions A QUADRATIC FUNCTION is a function of the form " # $ N# 1 & ;# & 0 Characteristics Include:! Three distinct terms each with its own coefficient:! An x

More information

+ bx + c = 0, you can solve for x by using The Quadratic Formula. x

+ bx + c = 0, you can solve for x by using The Quadratic Formula. x Math 33B Intermediate Algebra Fall 01 Name Study Guide for Exam 4 The exam will be on Friday, November 9 th. You are allowed to use one 3" by 5" index card on the exam as well as a scientific calculator.

More information

Unit #3: Quadratic Functions Lesson #13: The Almighty Parabola. Day #1

Unit #3: Quadratic Functions Lesson #13: The Almighty Parabola. Day #1 Algebra I Unit #3: Quadratic Functions Lesson #13: The Almighty Parabola Name Period Date Day #1 There are some important features about the graphs of quadratic functions we are going to explore over the

More information

Section 4.1 Review of Quadratic Functions and Graphs (3 Days)

Section 4.1 Review of Quadratic Functions and Graphs (3 Days) Integrated Math 3 Name What can you remember before Chapter 4? Section 4.1 Review of Quadratic Functions and Graphs (3 Days) I can determine the vertex of a parabola and generate its graph given a quadratic

More information

Final Exam Review Algebra Semester 1

Final Exam Review Algebra Semester 1 Final Exam Review Algebra 015-016 Semester 1 Name: Module 1 Find the inverse of each function. 1. f x 10 4x. g x 15x 10 Use compositions to check if the two functions are inverses. 3. s x 7 x and t(x)

More information

ALGEBRA 1 INTRO TO QUADRATICS TEST REVIEW

ALGEBRA 1 INTRO TO QUADRATICS TEST REVIEW Name: ate: Period: LGER 1 INTRO TO QURTIS TEST REVIEW (.9) I can identify the characteristics of the quadratic function from a graph, including axis of symmetry, vertex, y and x-intercepts and maximum

More information

Algebra II Notes Transformations Unit 1.1. Math Background

Algebra II Notes Transformations Unit 1.1. Math Background Lesson. - Parent Functions and Transformations Math Background Previously, you Studied linear, absolute value, exponential and quadratic equations Graphed linear, absolute value, exponential and quadratic

More information

March 22, Aim: To review for Quarterly #3 Homework: Study Review Materials. Do Now

March 22, Aim: To review for Quarterly #3 Homework: Study Review Materials. Do Now Aim: To review for Quarterly #3 Homework: Study Review Materials Do Now The value of Jenny's financial account has depreciated by 8% each year. If the account was worth $5000 in 2012 when she first opened

More information

Chapter 6 Practice Test

Chapter 6 Practice Test MPM2D Mr. Jensen Chapter 6 Practice Test Name: Standard Form 2 y= ax + bx+ c Factored Form y= a( x r)( x s) Vertex Form 2 y= a( x h) + k Quadratic Formula ± x = 2 b b 4ac 2a Section 1: Multiply Choice

More information

Sit in your seat number with the group I have you in. Sep 14 7:45 PM

Sit in your seat number with the group I have you in. Sep 14 7:45 PM Wednesday, September 20 Sit in your seat number with the group I have you in. Get your calculator Sep 14 7:45 PM Bell Work Find two numbers that multiply together to get the top number and add to give

More information

Investigating Transformations With DESMOS

Investigating Transformations With DESMOS MPM D0 Date: Investigating Transformations With DESMOS INVESTIGATION Part A: What if we add a constant to the x in y = x? 1. Use DESMOS to graph the following quadratic functions on the same grid. Graph

More information

NO CALCULATOR ON ANYTHING EXCEPT WHERE NOTED

NO CALCULATOR ON ANYTHING EXCEPT WHERE NOTED Algebra II (Wilsen) Midterm Review NO CALCULATOR ON ANYTHING EXCEPT WHERE NOTED Remember: Though the problems in this packet are a good representation of many of the topics that will be on the exam, this

More information

Section 3.3. Analyzing Graphs of Quadratic Functions

Section 3.3. Analyzing Graphs of Quadratic Functions Section 3.3 Analyzing Graphs of Quadratic Functions Introduction Definitions A quadratic function is a function with the form f (x) = ax 2 + bx + c, where a 0. Definitions A quadratic function is a function

More information

But a vertex has two coordinates, an x and a y coordinate. So how would you find the corresponding y-value?

But a vertex has two coordinates, an x and a y coordinate. So how would you find the corresponding y-value? We will work with the vertex, orientation, and x- and y-intercepts of these functions. Intermediate algebra Class notes More Graphs of Quadratic Functions (section 11.6) In the previous section, we investigated

More information

Laboratory One Distance and Time

Laboratory One Distance and Time Laboratory One Distance and Time Student Laboratory Description Distance and Time I. Background When an object is propelled upwards, its distance above the ground as a function of time is described by

More information

WARM UP DESCRIBE THE TRANSFORMATION FROM F(X) TO G(X)

WARM UP DESCRIBE THE TRANSFORMATION FROM F(X) TO G(X) WARM UP DESCRIBE THE TRANSFORMATION FROM F(X) TO G(X) 2 5 5 2 2 2 2 WHAT YOU WILL LEARN HOW TO GRAPH THE PARENT FUNCTIONS OF VARIOUS FUNCTIONS. HOW TO IDENTIFY THE KEY FEATURES OF FUNCTIONS. HOW TO TRANSFORM

More information

Quadratics. March 18, Quadratics.notebook. Groups of 4:

Quadratics. March 18, Quadratics.notebook. Groups of 4: Quadratics Groups of 4: For your equations: a) make a table of values b) plot the graph c) identify and label the: i) vertex ii) Axis of symmetry iii) x- and y-intercepts Group 1: Group 2 Group 3 1 What

More information

Quadratic Functions CHAPTER. 1.1 Lots and Projectiles Introduction to Quadratic Functions p. 31

Quadratic Functions CHAPTER. 1.1 Lots and Projectiles Introduction to Quadratic Functions p. 31 CHAPTER Quadratic Functions Arches are used to support the weight of walls and ceilings in buildings. Arches were first used in architecture by the Mesopotamians over 4000 years ago. Later, the Romans

More information

Algebra 1 STAAR EOC Review #9 Reporting Category 5: Quadratic and Other Nonlinear Functions

Algebra 1 STAAR EOC Review #9 Reporting Category 5: Quadratic and Other Nonlinear Functions Name Class Date RC9 A.09B Algebra 1 STAAR EOC Review #9 Reporting Category 5: Quadratic and Other Nonlinear Functions 1. Which shows the functions correctly listed in order from widest to narrowest graph?

More information

Standard Form v. Vertex Form

Standard Form v. Vertex Form Standard Form v. Vertex Form The Standard Form of a quadratic equation is:. The Vertex Form of a quadratic equation is where represents the vertex of an equation and is the same a value used in the Standard

More information

Algebra II: Strand 3. Quadratic Functions; Topic 2. Digging Deeper; Task 3.2.1

Algebra II: Strand 3. Quadratic Functions; Topic 2. Digging Deeper; Task 3.2.1 1 TASK 3..1: PUTTING IT TOGETHER Solutions 1. Each of the following quadratic functions is given in standard form ( y = ax + bx + c ). For each function: Transform the function to the form y = a(x h) +

More information

QUADRATIC FUNCTIONS TEST REVIEW NAME: SECTION 1: FACTORING Factor each expression completely. 1. 3x p 2 16p. 3. 6x 2 13x 5 4.

QUADRATIC FUNCTIONS TEST REVIEW NAME: SECTION 1: FACTORING Factor each expression completely. 1. 3x p 2 16p. 3. 6x 2 13x 5 4. QUADRATIC FUNCTIONS TEST REVIEW NAME: SECTION 1: FACTORING Factor each expression completely. 1. 3x 2 48 2. 25p 2 16p 3. 6x 2 13x 5 4. 9x 2 30x + 25 5. 4x 2 + 81 6. 6x 2 14x + 4 7. 4x 2 + 20x 24 8. 4x

More information

Quadratics and their Properties

Quadratics and their Properties Algebra 2 Quadratics and their Properties Name: Ms. Williams/Algebra 2 Pd: 1 Table of Contents Day 1: COMPLETING THE SQUARE AND SHIFTING PARABOLAS SWBAT: Write a quadratic from standard form to vertex

More information

Amplifying an Instructional Task Algebra II Example

Amplifying an Instructional Task Algebra II Example Original Task The student is expected to write the equation of a parabola using given attributes, including vertex, focus, directrix, axis of symmetry, and direction of opening. A(4)(B) Write the equations

More information

5.3 Vertex Form of Quadratics 2017.notebook. October 20, Homework Answers:

5.3 Vertex Form of Quadratics 2017.notebook. October 20, Homework Answers: Homework Answers: 21. 23. 25. 27. 52. 69. 70. 71. 50. a. Vertex (315, 630) b. Domain: (0, 630) Range: (0, 630) c. 360 ft d. 630ft 1 Graph WARM UP 1) Find the vertex of the quadratic function: 2) Complete

More information

Algebra I. Slide 1 / 137. Slide 2 / 137. Slide 3 / 137. Quadratic & Non-Linear Functions. Table of Contents

Algebra I. Slide 1 / 137. Slide 2 / 137. Slide 3 / 137. Quadratic & Non-Linear Functions. Table of Contents Slide 1 / 137 Slide 2 / 137 Algebra I Quadratic & Non-Linear Functions 2015-11-04 www.njctl.org Table of Contents Slide 3 / 137 Click on the topic to go to that section Key Terms Explain Characteristics

More information

The x-intercept can be found by setting y = 0 and solving for x: 16 3, 0

The x-intercept can be found by setting y = 0 and solving for x: 16 3, 0 y=-3/4x+4 and y=2 x I need to graph the functions so I can clearly describe the graphs Specifically mention any key points on the graphs, including intercepts, vertex, or start/end points. What is the

More information

Yimin Math Centre. Year 10 Term 2 Homework. 3.1 Graphs in the number plane The minimum and maximum value of a quadratic function...

Yimin Math Centre. Year 10 Term 2 Homework. 3.1 Graphs in the number plane The minimum and maximum value of a quadratic function... Year 10 Term 2 Homework Student Name: Grade: Date: Score: Table of contents 3 Year 10 Term 2 Week 3 Homework 1 3.1 Graphs in the number plane................................. 1 3.1.1 The parabola....................................

More information

x 2 + 8x - 12 = 0 Aim: To review for Quadratic Function Exam #1 Homework: Study Review Materials

x 2 + 8x - 12 = 0 Aim: To review for Quadratic Function Exam #1 Homework: Study Review Materials Aim: To review for Quadratic Function Exam #1 Homework: Study Review Materials Do Now - Solve using any strategy. If irrational, express in simplest radical form x 2 + 8x - 12 = 0 Review Topic Index 1.

More information

Module 3: Graphing Quadratic Functions

Module 3: Graphing Quadratic Functions Haberman MTH 95 Section V Quadratic Equations and Functions Module 3 Graphing Quadratic Functions In this module, we'll review the graphing quadratic functions (you should have studied the graphs of quadratic

More information

Investigating Transformations of Quadratics Open Google Chrome. Go to desmos.com, and click the big red button labelled Launch Calculator.

Investigating Transformations of Quadratics Open Google Chrome. Go to desmos.com, and click the big red button labelled Launch Calculator. Investigating Transformations of Quadratics Open Google Chrome. Go to desmos.com, and click the big red button labelled Launch Calculator. Optional: You can create an account or sign into Desmos. This

More information

Unit 2: Functions and Graphs

Unit 2: Functions and Graphs AMHS Precalculus - Unit 16 Unit : Functions and Graphs Functions A function is a rule that assigns each element in the domain to exactly one element in the range. The domain is the set of all possible

More information

Section 4.4: Parabolas

Section 4.4: Parabolas Objective: Graph parabolas using the vertex, x-intercepts, and y-intercept. Just as the graph of a linear equation y mx b can be drawn, the graph of a quadratic equation y ax bx c can be drawn. The graph

More information

Mission 1 Graph Quadratic Functions in Standard Form

Mission 1 Graph Quadratic Functions in Standard Form Algebra Unit 4 Graphing Quadratics Name Quest Mission 1 Graph Quadratic Functions in Standard Form Objectives: Graph functions expressed symbolically by hand and show key features of the graph, including

More information

Quadratic Functions In Standard Form In Factored Form In Vertex Form Transforming Graphs. Math Background

Quadratic Functions In Standard Form In Factored Form In Vertex Form Transforming Graphs. Math Background Graphing In Standard Form In Factored Form In Vertex Form Transforming Graphs Math Background Previousl, ou Identified and graphed linear functions Applied transformations to parent functions Graphed quadratic

More information

y 1 ) 2 Mathematically, we write {(x, y)/! y = 1 } is the graph of a parabola with 4c x2 focus F(0, C) and directrix with equation y = c.

y 1 ) 2 Mathematically, we write {(x, y)/! y = 1 } is the graph of a parabola with 4c x2 focus F(0, C) and directrix with equation y = c. Ch. 10 Graphing Parabola Parabolas A parabola is a set of points P whose distance from a fixed point, called the focus, is equal to the perpendicular distance from P to a line, called the directrix. Since

More information

Graphing Techniques. Domain (, ) Range (, ) Squaring Function f(x) = x 2 Domain (, ) Range [, ) f( x) = x 2

Graphing Techniques. Domain (, ) Range (, ) Squaring Function f(x) = x 2 Domain (, ) Range [, ) f( x) = x 2 Graphing Techniques In this chapter, we will take our knowledge of graphs of basic functions and expand our ability to graph polynomial and rational functions using common sense, zeros, y-intercepts, stretching

More information

Stretching the Quads TEACHER NOTES. About the Lesson. Vocabulary. Teacher Preparation and Notes. Activity Materials

Stretching the Quads TEACHER NOTES. About the Lesson. Vocabulary. Teacher Preparation and Notes. Activity Materials About the Lesson In this activity, students will use the Transformational Graphing Application to stretch and translate the parabola given by y = x 2. As a result, students will: Determine the effects

More information

MAC Learning Objectives. Module 4. Quadratic Functions and Equations. - Quadratic Functions - Solving Quadratic Equations

MAC Learning Objectives. Module 4. Quadratic Functions and Equations. - Quadratic Functions - Solving Quadratic Equations MAC 1105 Module 4 Quadratic Functions and Equations Learning Objectives Upon completing this module, you should be able to: 1. Understand basic concepts about quadratic functions and their graphs. 2. Complete

More information

Unit 2 Day 5. Characteristics of Quadratic Functions

Unit 2 Day 5. Characteristics of Quadratic Functions Unit 2 Day 5 Characteristics of Quadratic Functions 1 Warm Up 1.) Jason and Jim jumped off a cliff into the ocean in Acapulco while vacationing. Jason s height as a function of time could be modeled by

More information

Algebra II Chapter 5

Algebra II Chapter 5 Algebra II Chapter 5 5.1 Quadratic Functions The graph of a quadratic function is a parabola, as shown at rig. Standard Form: f ( x) = ax2 + bx + c vertex: b 2a, f b 2a a < 0 graph opens down a > 0 graph

More information

POLYNOMIALS Graphing Polynomial Functions Common Core Standard

POLYNOMIALS Graphing Polynomial Functions Common Core Standard K Polynomials, Lesson 6, Graphing Polynomial Functions (r. 2018) POLYNOMIALS Graphing Polynomial Functions Common Core Standard Next Generation Standard F-BF.3 Identify the effect on the graph of replacing

More information

It is than the graph of y= x if a > 1.

It is than the graph of y= x if a > 1. Chapter 8 Quadratic Functions and Equations Name: Instructor: 8.1 Quadratic Functions and Their Graphs Graphs of Quadratic Functions Basic Transformations of Graphs More About Graphing Quadratic Functions

More information

Chapter 3 Practice Test

Chapter 3 Practice Test 1. Complete parts a c for each quadratic function. a. Find the y-intercept, the equation of the axis of symmetry, and the x-coordinate of the vertex. b. Make a table of values that includes the vertex.

More information

I. Function Characteristics

I. Function Characteristics I. Function Characteristics Interval of possible x values for a given function. (Left,Right) Interval of possible y values for a given function. (down, up) What is happening at the far ends of the graph?

More information

Graphing Techniques and Transformations. Learning Objectives. Remarks

Graphing Techniques and Transformations. Learning Objectives. Remarks Graphing Techniques and Transformations Learning Objectives 1. Graph functions using vertical and horizontal shifts 2. Graph functions using compressions and stretches. Graph functions using reflections

More information