Multi-Plane Tomographic Phase Retrieval for 4D Cell Microscopy. Emrah Bostan Computational Imaging Lab UC Berkeley

Size: px
Start display at page:

Download "Multi-Plane Tomographic Phase Retrieval for 4D Cell Microscopy. Emrah Bostan Computational Imaging Lab UC Berkeley"

Transcription

1 Multi-Plane Tomographic Phase Retrieval for 4D Cell Microscopy Emrah Bostan Computational Imaging Lab UC Berkeley IMA Workshop Series: Phaseless Imaging in Theory and Practice University of Minnesota, August 18, 2017

2 Joint work with Laura Waller Michael Unser Theo Lasser

3 Joint work with Pascal Odermatt Benjamin Rappaz Theo Lasser

4 Bright-field image of a HeLa cell

5 3.55E+04 Intensity Profile 3.53E E E+04 Bright-field image of a HeLa cell

6 E. Bostan, Phase Retrieval in Bioimaging Low-contrast images under the conventional light microscope Phase Object

7 Bright-field image of a HeLa cell

8 Zernike phase contrast image [Zernike, 1942]

9 Di!erential interference contrast (DIC) image [Nomarski, 1955]

10 Looking at Unstained Cells Dedicated phase imaging modalities: Interferometry-based microscopes + Quantitative phase maps - Higher cost Courtesy of Phasics Courtesy of Lyncée tec Denis Gabor [Marquet et al., 2005] [Cotte et al., 2013] [Kim et al., 20016] Courtesy of TomoCube Courtesy of Nanolive E. Bostan, bostan@berkeley.edu

11 Defocus Microscopy

12 E. Bostan, Phase Retrieval in Bioimaging U(x,z) +z U(x,z)=U 0 (x,z)e jkz z R x =(x,y) R 2 y z x

13 E. Bostan, Phase Retrieval in Bioimaging U 0 z U 0(x,z) j 2k 2 U 0 (x,z)=0 k z I = I [Teague, 1983] 2kI 2 z = 1 2 I 2 I I 2 I ki 2 2

14 E. Bostan, Phase Retrieval in Bioimaging U 0 z U 0(x,z) j 2k 2 U 0 (x,z)=0 k z I = I [Teague, 1983] 2kI 2 z = 1 2 I 2 I I 2 I ki 2 2

15 E. Bostan, Transport-of-Intensity Approach x 1 defocus planes x 2 plane z infocus imaging system illumination source z z object plane image plane Phase Object

16 E. Bostan, Transport-of-Intensity Approach x 1 defocus planes x 2 plane z infocus imaging system illumination source z z object plane image plane Transport-of-Intensity Equation (TIE) k I(x,z) z I(x,z)= 2 (x,z) Phase Object z I(x,z) I(x,z + z) I(x,z z) 2 z

17 E. Bostan, Transport-of-Intensity Approach x 1 defocus planes x 2 plane z infocus imaging system illumination source z z object plane image plane ĥ 1 TIE TIE Forward Model (in Fourier domain) ˆb( )=4 2 2 z ˆ( ) ĥ TIE z =0.1 z = noise power spectrum = 632 1( 1 )

18

19 E. Bostan, Contrast Transfer Function I(x,z)= U 0 (x) p F (x,z) 2

20 E. Bostan, Contrast Transfer Function I(x,z)= U 0 (x) p F (x,z) 2 First-order assumptions: Absorption is negligible, Weak-phase object, U 0 =e j e j 1+j measured image at distance z I(x,z)= (1 + j ) p F (x,z) 2 = ((1 j ) p F (x,z)) ((1 + j ) p F (x,z)) We ignore the ignore second-order terms as phase is small.

21 E. Bostan, Contrast Transfer Function measured image at distance z (in Fourier domain) Î(w,z)=I (w) + 2 sin( z w 2 2 ˆ(w)) [Joachim, 1996] 0 z1 z2 -z2 -z1 300 µm 50 µm 0 50 µm 300 µm z

22 E. Bostan, Contrast Transfer Function CTF gives us a TIE-like equation: ˆb( ) = 4 sin( 2 z 2) ˆ( ) ĥ CTF 0 z1 z2 -z2 -z1 300 µm 50 µm 0 50 µm 300 µm z Finite Differences

23 E. Bostan, Analysis of Spatial Frequencies CTF Forward Model (in Fourier domain) ˆb( ) = 4 sin( 2 z 2) ˆ( ) ĥ CTF Large defocus Small defocus region 1 region ( 1 ) 0 max 1 2 1( 1 ) 0 max ĥ 1 TIE ĥ 1 CTF

24 E. Bostan, Regularized Phase Imaging [Bostan et al., 2016] = arg min 1 2 H 1 b H 2 b k [L ] k 2 TV regularization spectral weighting filters highly-modular building-blocks We can recover existing methods [Paganin et al., 2004] [Chou et al., 2007] [Tian et al., 2012] [Zuo et al., 2013] [Bostan et al., 2014] [Carranza et al., 2015] 0

25 E. Bostan, Regularized Phase Imaging 300 µm 50 µm 0 50 µm 300 µm z 300 µm 50 µm 0 50 µm 300 µm (a) z Tikhonov regularization (b) (c) (d) TV regularization (e) (f) (g) Small defocus measurements Large defocus measurements Small and large defocus measurements

26 Experimental Results

27 E. Bostan, Experiment Settings

28 E. Bostan, Experiment Results TIE-Tik Reconstruction (using 3 images) TIE-Tik Reconstruction (using 5 images) Bright-field image (infocus) TIE-TV Reconstruction (using 3 images) Proposed method

29 E. Bostan, Validation Results DHM image Bright-field image (infocus) DIC image (infocus) DHM (detail) TIE reconstruction TIE reconstruction [Bostan et al., 2015]

30 Segmentation Results Bright-field image (infocus) TIE Reconstruction Delineation Result (b)

31 Towards Multi-Modal Cell Imaging

32 E. Bostan, Multi-Modal Cell Imaging Super-resolution fluorescence microscopy: + High specificity + Unprecedented insight into subcellular structures - Complete morphology is harder to observe Phase (label-free) microscopy: + Complete morphology is observable - No specificity! [Hell and Wichmann, 1994] [Betzig et al., 2006] [Rust et al., 2006]

33 E. Bostan, Multi-Modal Cell Imaging SLOW DATA ACQUISITION! Super-resolution fluorescence microscopy: + High specificity + Unprecedented insight into subcellular structures - Complete morphology is harder to observe Phase (label-free) microscopy: + Complete morphology is observable - No specificity! FAST DATA ACQUISITION!

34 Multi-Modal Cell Imaging + Super-resolution optical fluctuation imaging (SOFI) already uses multi-plane system. [Dertinger et al., 2009] [Geissbuehler et al., 2014] Multi-plane Imaging for Phase + Fluorescence - Sample stability! - Partial coherence for 3D objects!

35 Multi-Modal Cell Imaging PRISM (Phase Retrieval Instrument with Super- resolution Microscopy)

36 Multi-Modal Cell Imaging Defocus Phase Imaging Super-Resolution Optical Fluctuation Imaging + Simultaneous 8 defocus measurements are acquired + The image acquisition up to 200 Hz + Quantification of membrane fluctuations

37 Phase Image Fluorescence Image Courtesy of P. Odermatt

38 3D Forward Model Cross-spectral density between the scattered and the incident field (,t = 0) = 0 U s (,v),u i (,v) dv ( )=jf( )H( ) U s (,v)=j F ( ) A (, z n) n(v/c) 2 2 Monochromatic scattering (under Born approximation) I(x) =I DC + (x)+ (x) Single-scattering object assumption [Born and Wolf, 1996] [Sheppard et al., 1994] [McCutchen, 2002]

39

40

41

42

43 Conclusion 4D cell imaging is feasible via multi-plane model. Linearized models can be valid for single cell imaging.

44 Acknowledgements

45 Thanks!

PHASE RETRIEVAL BY USING TRANSPORT-OF-INTENSITY EQUATION AND DIFFERENTIAL INTERFERENCE CONTRAST MICROSCOPY

PHASE RETRIEVAL BY USING TRANSPORT-OF-INTENSITY EQUATION AND DIFFERENTIAL INTERFERENCE CONTRAST MICROSCOPY PHASE RETRIEVAL BY USING TRANSPORT-OF-INTENSITY EQUATION AND DIFFERENTIAL INTERFERENCE CONTRAST MICROSCOPY Emrah Bostan, Emmanuel Froustey, Benjamin Rappaz, Etienne Shaffer, Daniel Sage, and Michael Unser

More information

Advances in Phase Contrast Microscopy

Advances in Phase Contrast Microscopy Advances in Phase Contrast Microscopy Colin Sheppard, SS Kou & S Mehta Division of Bioengineering National University of Singapore colin@nus.edu.sg Perfect imaging Object amplitude transmission a(x, y)

More information

Quantitative Phase Imaging in Microscopy

Quantitative Phase Imaging in Microscopy Invited Paper Quantitative Phase Imaging in Microscopy Colin JR Sheppard, Shan S Kou and Shalin Mehta Division of Bioengineering National University of Singapore Singapore 117574 1 Introduction There are

More information

QUANTITATIVE PHASE IMAGING OF BIOLOGICAL CELLS USING OFF-AXIS METHOD OF WIDE FIELD DIGITAL INTERFERENCE MICROSCOPY (WFDIM)

QUANTITATIVE PHASE IMAGING OF BIOLOGICAL CELLS USING OFF-AXIS METHOD OF WIDE FIELD DIGITAL INTERFERENCE MICROSCOPY (WFDIM) http:// QUANTITATIVE PHASE IMAGING OF BIOLOGICAL CELLS USING OFF-AXIS METHOD OF WIDE FIELD DIGITAL INTERFERENCE MICROSCOPY (WFDIM) Pradeep Kumar Behera 1, Dalip Singh Mehta 2 1,2 Physics,Indian Institute

More information

A SUPER-RESOLUTION MICROSCOPY WITH STANDING EVANESCENT LIGHT AND IMAGE RECONSTRUCTION METHOD

A SUPER-RESOLUTION MICROSCOPY WITH STANDING EVANESCENT LIGHT AND IMAGE RECONSTRUCTION METHOD A SUPER-RESOLUTION MICROSCOPY WITH STANDING EVANESCENT LIGHT AND IMAGE RECONSTRUCTION METHOD Hiroaki Nishioka, Satoru Takahashi Kiyoshi Takamasu Department of Precision Engineering, The University of Tokyo,

More information

Illumination for the microscope

Illumination for the microscope Illumination for the microscope Köhler illumination: is a Method of specimen illumination used for transmitted and reflected light. Purpose of Koehler Illumination 1. To obtain even specimen illumination

More information

THREE-DIMENSIONAL MODELING AND RECONSTRUCTION FOR MULTIMODALITY PHASE MICROSCOPY

THREE-DIMENSIONAL MODELING AND RECONSTRUCTION FOR MULTIMODALITY PHASE MICROSCOPY THREE-DIMENSIONAL MODELING AND RECONSTRUCTION FOR MULTIMODALITY PHASE MICROSCOPY A Dissertation Presented by Heidy Sierra to The Department of Electrical and Computer Engineering in partial fulfillment

More information

3D differential phase contrast microscopy

3D differential phase contrast microscopy Boston University OpenBU Electrical and Computer Engineering http://open.bu.edu BU Open Access Articles 2016-10-01 3D differential phase contrast microscopy Chen, Michael Optical Society of America Michael

More information

Principles of Light Microscopy

Principles of Light Microscopy Monday 8 August 2011 Principles of Light Microscopy 09:00 09:30 Introduction 09:30 10:15 The story of the microscope / 10:15 Coffee 10:30 12:45 Limitations of the eye. Resolution, contrast, magnification.

More information

Phase contrast microscopy

Phase contrast microscopy Phase contrast microscopy CJR Sheppard Division of Bioengineering National University of Singapore 9 Engineering Drive 1 Singapore 117576 Synopsis Many biological specimens behave as phase objects, that

More information

Coherent Microscopy and Optical Coherence Tomography for Biomedical Applications

Coherent Microscopy and Optical Coherence Tomography for Biomedical Applications Coherent Microscopy and Optical Coherence Tomography for Biomedical Applications Jeremy M. Coupland Tel.: ++44 (0)1509 227506; Fax: ++44 (0)1509 227502; Email: j.m.coupland@lboro.ac.uk Wolfson School of

More information

Silicon Avalanche Photodiodes in Dynamic Light Scattering

Silicon Avalanche Photodiodes in Dynamic Light Scattering Silicon Avalanche Photodiodes in Dynamic Light Scattering August 2016 Introduction This application note describes the use of the ID100 single photon counting detector for the measurement of light scattered

More information

University of Lübeck, Medical Laser Center Lübeck GmbH Optical Coherence Tomography

University of Lübeck, Medical Laser Center Lübeck GmbH Optical Coherence Tomography University of Lübeck, Medical Laser Center Lübeck GmbH Optical Coherence Tomography. Theory Dr. Gereon Hüttmann / 009 What is OCT? ( for the MD ) Lichtquelle Probe Detektor Display OCT is Ultrasound with

More information

Real-time quantitative differential interference contrast (DIC) microscopy implemented via novel liquid crystal prisms

Real-time quantitative differential interference contrast (DIC) microscopy implemented via novel liquid crystal prisms Real-time quantitative differential interference contrast (DIC) microscopy implemented via novel liquid crystal prisms Ramzi N. Zahreddine a, Robert H. Cormack a, Hugh Masterson b, Sharon V. King b, Carol

More information

Compact, common path quantitative phase microscopic techniques for imaging cell dynamics

Compact, common path quantitative phase microscopic techniques for imaging cell dynamics PRAMANA c Indian Academy of Sciences Vol. 82, No. 1 journal of January 2014 physics pp. 71 78 Compact, common path quantitative phase microscopic techniques for imaging cell dynamics A ANAND 1,,PVORA 1,

More information

WORCESTER POLYTECHNIC INSTITUTE

WORCESTER POLYTECHNIC INSTITUTE WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT Optical Metrology and NDT ME-593L, C 2018 Introduction: Wave Optics January 2018 Wave optics: coherence Temporal coherence Review interference

More information

Digitalna Holografija i Primjene

Digitalna Holografija i Primjene Digitalna Holografija i Primjene Hrvoje Skenderović Institut za fiziku 5. PIF Radionica, IRB, 16.12.2014. Holography Dennis Gabor invented holography in 1948 as a method for recording and reconstructing

More information

CFIM MICROSCOPY COURSE TIMETABLE PRINCIPLES OF MICROSCOPY MONDAY 6 TH OF JANUARY 2014 FRIDAY 10 TH OF JANUARY 2014

CFIM MICROSCOPY COURSE TIMETABLE PRINCIPLES OF MICROSCOPY MONDAY 6 TH OF JANUARY 2014 FRIDAY 10 TH OF JANUARY 2014 MICROSCOPY COURSE TIMETABLE PRINCIPLES OF MICROSCOPY MONDAY 6 TH OF JANUARY 2014 FRIDAY 10 TH OF JANUARY 2014 CONFOCAL AND FLUORESCENCE MICROSCOPY MONDAY 20 TH OF JANUARY 2014 FRIDAY 24 TH OF JANUARY 2014

More information

Mu lt i s p e c t r a l

Mu lt i s p e c t r a l Viewing Angle Analyser Revolutionary system for full spectral and polarization measurement in the entire viewing angle EZContrastMS80 & EZContrastMS88 ADVANCED LIGHT ANALYSIS by Field iris Fourier plane

More information

Coherent Diffraction Imaging with Nano- and Microbeams

Coherent Diffraction Imaging with Nano- and Microbeams Diffraction Imaging with Nano- and Microbeams Why does lensless need? Mark A Pfeifer Cornell High Energy Synchrotron Source Cornell University Ithaca, NY 14850 map322@cornell.edu XLD 2011 June 28, 2011

More information

Chapter 4 Microscopy

Chapter 4 Microscopy Chapter 4 Microscopy Gabriel Popescu University of Illinois at Urbana Champaign Beckman Institute Quantitative Light Imaging Laboratory http://light.ece.uiuc.edu Principles of Optical Imaging Electrical

More information

Microscope)Imaging) Colin)Sheppard) Nano5Physics)Department) Italian)Ins:tute)of)Technology)(IIT)) Genoa,)Italy)

Microscope)Imaging) Colin)Sheppard) Nano5Physics)Department) Italian)Ins:tute)of)Technology)(IIT)) Genoa,)Italy) Microscope)Imaging) Colin)Sheppard) Nano5Physics)Department) Italian)Ins:tute)of)Technology)(IIT)) Genoa,)Italy) colinjrsheppard@gmail.com) Objec:ve)lens) Op:cal)microscope) Numerical)aperture)(n)sin)α)"

More information

BioImaging facility update: from multi-photon in vivo imaging to highcontent high-throughput image-based screening. Alex Laude The BioImaging Unit

BioImaging facility update: from multi-photon in vivo imaging to highcontent high-throughput image-based screening. Alex Laude The BioImaging Unit BioImaging facility update: from multi-photon in vivo imaging to highcontent high-throughput image-based screening Alex Laude The BioImaging Unit Multi-dimensional, multi-modal imaging at the sub-cellular

More information

New Olympus FV3000RS Laser Scanning Confocal System. Quotation Number V2

New Olympus FV3000RS Laser Scanning Confocal System. Quotation Number V2 New Olympus FV3000RS Laser Scanning Confocal System Quotation Number 00056013 V2 Quotation Date: 08/08/2018 Revised Date: 07/09/2018 Quotation number: 00056013 Quotation Expiry: 07/11/2018 Macquarie University

More information

Optical Topography Measurement of Patterned Wafers

Optical Topography Measurement of Patterned Wafers Optical Topography Measurement of Patterned Wafers Xavier Colonna de Lega and Peter de Groot Zygo Corporation, Laurel Brook Road, Middlefield CT 6455, USA xcolonna@zygo.com Abstract. We model the measurement

More information

Simulation study of phase retrieval for hard X-ray in-line phase contrast imaging

Simulation study of phase retrieval for hard X-ray in-line phase contrast imaging 450 Science in China Ser. G Physics, Mechanics & Astronomy 2005 Vol.48 No.4 450 458 Simulation study of phase retrieval for hard X-ray in-line phase contrast imaging YU Bin 1,2, PENG Xiang 1,2, TIAN Jindong

More information

X-TRACT: software for simulation and reconstruction of X-ray phase-contrast CT

X-TRACT: software for simulation and reconstruction of X-ray phase-contrast CT X-TRACT: software for simulation and reconstruction of X-ray phase-contrast CT T.E.Gureyev, Ya.I.Nesterets, S.C.Mayo, A.W.Stevenson, D.M.Paganin, G.R.Myers and S.W.Wilkins CSIRO Materials Science and Engineering

More information

Compressed Sensing for Electron Tomography

Compressed Sensing for Electron Tomography University of Maryland, College Park Department of Mathematics February 10, 2015 1/33 Outline I Introduction 1 Introduction 2 3 4 2/33 1 Introduction 2 3 4 3/33 Tomography Introduction Tomography - Producing

More information

Ultrafast Ultrasound Localization Microscopy. Olivier Couture Institut Langevin Wave Physics for Medicine Team. January 20 th 2017

Ultrafast Ultrasound Localization Microscopy. Olivier Couture Institut Langevin Wave Physics for Medicine Team. January 20 th 2017 Ultrafast Ultrasound Localization Microscopy Olivier Couture Institut Langevin Wave Physics for Medicine Team January 20 th 2017 The trade-off between resolution and penetration is often seen as incompressible

More information

3. Image formation, Fourier analysis and CTF theory. Paula da Fonseca

3. Image formation, Fourier analysis and CTF theory. Paula da Fonseca 3. Image formation, Fourier analysis and CTF theory Paula da Fonseca EM course 2017 - Agenda - Overview of: Introduction to Fourier analysis o o o o Sine waves Fourier transform (simple examples of 1D

More information

Phase problem and the Radon transform

Phase problem and the Radon transform Phase problem and the Radon transform Andrei V. Bronnikov Bronnikov Algorithms The Netherlands The Radon transform and applications Inverse problem of phase-contrast CT Fundamental theorem Image reconstruction

More information

Experimental Observation of Invariance of Spectral Degree of Coherence. with Change in Bandwidth of Light

Experimental Observation of Invariance of Spectral Degree of Coherence. with Change in Bandwidth of Light Experimental Observation of Invariance of Spectral Degree of Coherence with Change in Bandwidth of Light Bhaskar Kanseri* and Hem Chandra Kandpal Optical Radiation Standards, National Physical Laboratory,

More information

Emerging Light. α C y. Shear Specimen Plane. Entering Light

Emerging Light. α C y. Shear Specimen Plane. Entering Light Published in the J. Opt. Soc. Am. A/Vol. 16, No. 9, 1999. Theoretical Development and Experimental Evaluation of Imaging Models for Dierential Interference Contrast Microscopy Chrysanthe Preza, Donald

More information

OPTICAL COHERENCE TOMOGRAPHY:SIGNAL PROCESSING AND ALGORITHM

OPTICAL COHERENCE TOMOGRAPHY:SIGNAL PROCESSING AND ALGORITHM OPTICAL COHERENCE TOMOGRAPHY:SIGNAL PROCESSING AND ALGORITHM OCT Medical imaging modality with 1-10 µ m resolutions and 1-2 mm penetration depths High-resolution, sub-surface non-invasive or minimally

More information

SCDI for EUV photomask metrology RESCAN - Reflective EUV Mask Scanning Lensless Imaging Tool

SCDI for EUV photomask metrology RESCAN - Reflective EUV Mask Scanning Lensless Imaging Tool EUV Litho Workshop 2017 WIR SCHAFFEN WISSEN HEUTE FÜR MORGEN P. Helfenstein a, I. Mochi a, R. Rajendran a, S. Fernandez a, S. Yoshitake b, Y. Ekinci a a Paul Scherrer Institut, Switzerland b NuFlare Technology

More information

Conversion of evanescent waves into propagating waves by vibrating knife edge

Conversion of evanescent waves into propagating waves by vibrating knife edge 1 Conversion of evanescent waves into propagating waves by vibrating knife edge S. Samson, A. Korpel and H.S. Snyder Department of Electrical and Computer Engineering, 44 Engineering Bldg., The University

More information

Fast Z-stacking 3D Microscopy Extended Depth of Field Autofocus Z Depth Measurement 3D Surface Analysis

Fast Z-stacking 3D Microscopy Extended Depth of Field Autofocus Z Depth Measurement 3D Surface Analysis MICROSCOPE 3D ADD-ON FAST PRECISE AFFORDABLE 3D ADD-ON FOR MICROSCOPY Fast Z-stacking 3D Microscopy Extended Depth of Field Autofocus Z Depth Measurement 3D Surface Analysis Compatible With Transmitted

More information

Leica Microsystems Intelligent Structured Illumination Microscopy

Leica Microsystems Intelligent Structured Illumination Microscopy Widefield Mouse kidney section. Maximum projection of a stack containing 65 planes. Green: glomeruli and convoluted tubules (wheat germ agglutinin Alexa Fluor 488) Blue: Nuclei (DAPI). Structured Illumination

More information

Fresnel and Fourier digital holography architectures: a comparison.

Fresnel and Fourier digital holography architectures: a comparison. Fresnel and Fourier digital holography architectures: a comparison. Damien P., David S. Monaghan, Nitesh Pandey, Bryan M. Hennelly. Department of Computer Science, National University of Ireland, Maynooth,

More information

Overview of techniques applicable to self-interference incoherent digital holography

Overview of techniques applicable to self-interference incoherent digital holography J. Europ. Opt. Soc. Rap. Public. 8, 13077 (2013) www.jeos.org Overview of techniques applicable to self-interference incoherent digital holography J. Hong jisoohong@mail.usf.edu Department of Physics,

More information

Digital Holographic Microscopy

Digital Holographic Microscopy Digital Holographic Microscopy A Thesis Presented by Yujuan(Janice) Cheng to The Department of Electrical and Computer Engineering in partial fulfillment of the requirements for the degree of Doctor of

More information

TN425: A study of fluorescence standards confirms that OptiGrid confocal images are suitable for quantitative microscopy

TN425: A study of fluorescence standards confirms that OptiGrid confocal images are suitable for quantitative microscopy TN425: A study of fluorescence standards confirms that OptiGrid confocal images are suitable for quantitative microscopy Introduction The OptiGrid converts the illumination system of a conventional wide

More information

Find the Correspondences

Find the Correspondences Advanced Topics in BioImage Analysis - 3. Find the Correspondences from Registration to Motion Estimation CellNetworks Math-Clinic Qi Gao 03.02.2017 Math-Clinic core facility Provide services on bioinformatics

More information

DeltaVision OMX SR super-resolution microscope. Super-resolution doesn t need to be complicated

DeltaVision OMX SR super-resolution microscope. Super-resolution doesn t need to be complicated DeltaVision OMX SR super-resolution microscope Super-resolution doesn t need to be complicated Live-cell super-resolution microscopy DeltaVision OMX SR is a compact super-resolution microscope system optimized

More information

mag.x system 125 High Resolution Wide Field Micro-Inspection System

mag.x system 125 High Resolution Wide Field Micro-Inspection System mag.x system 125 High Resolution Wide Field Micro-Inspection System High Resolution Micro-Inspection System Modular System 02 High resolution inspection is being used in many applications. Each application

More information

MEASUREMENT OF SMALL TRANSVERSE BEAM SIZE USING INTERFEROMETRY

MEASUREMENT OF SMALL TRANSVERSE BEAM SIZE USING INTERFEROMETRY MEASUREMENT OF SMALL TRANSVERSE BEAM SIZE USING INTERFEROMETRY T. Mitsuhashi High Energy Accelerator Research Organisation, Oho, Tsukuba, Ibaraki, 35-81 Japan Abstract The principle of measurement of the

More information

High spatial resolution measurement of volume holographic gratings

High spatial resolution measurement of volume holographic gratings High spatial resolution measurement of volume holographic gratings Gregory J. Steckman, Frank Havermeyer Ondax, Inc., 8 E. Duarte Rd., Monrovia, CA, USA 9116 ABSTRACT The conventional approach for measuring

More information

Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes

Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes Zhong Jingshan, 1,2, Rene A. Claus, 3 Justin Dauwels, 1 Lei Tian, 2 and Laura Waller 2 1 School

More information

COLOCALISATION. Alexia Ferrand. Imaging Core Facility Biozentrum Basel

COLOCALISATION. Alexia Ferrand. Imaging Core Facility Biozentrum Basel COLOCALISATION Alexia Ferrand Imaging Core Facility Biozentrum Basel OUTLINE Introduction How to best prepare your samples for colocalisation How to acquire the images for colocalisation How to analyse

More information

Analysis of Phase Retrieval from Multiple Images

Analysis of Phase Retrieval from Multiple Images Analysis of Phase Retrieval from Multiple Images Graham N Craik Submitted for the degree of Doctor of Philosophy Heriot Watt University School of Engineering and Physical Science December 1 The copyright

More information

Towards an Estimation of Acoustic Impedance from Multiple Ultrasound Images

Towards an Estimation of Acoustic Impedance from Multiple Ultrasound Images Towards an Estimation of Acoustic Impedance from Multiple Ultrasound Images Christian Wachinger 1, Ramtin Shams 2, Nassir Navab 1 1 Computer Aided Medical Procedures (CAMP), Technische Universität München

More information

THREE-DIMENSIONA L ELECTRON MICROSCOP Y OF MACROMOLECULAR ASSEMBLIE S. Visualization of Biological Molecules in Their Native Stat e.

THREE-DIMENSIONA L ELECTRON MICROSCOP Y OF MACROMOLECULAR ASSEMBLIE S. Visualization of Biological Molecules in Their Native Stat e. THREE-DIMENSIONA L ELECTRON MICROSCOP Y OF MACROMOLECULAR ASSEMBLIE S Visualization of Biological Molecules in Their Native Stat e Joachim Frank CHAPTER 1 Introduction 1 1 The Electron Microscope and

More information

From Eye to Insight. Leica DMC2900. Digital microscope camera for easy, efficient documentation and presentation in industry and research

From Eye to Insight. Leica DMC2900. Digital microscope camera for easy, efficient documentation and presentation in industry and research From Eye to Insight Leica DMC2900 Digital microscope camera for easy, efficient documentation and presentation in industry and research 3 High Speed Imaging Leica DMC2900 with USB 3.0 interface for highest

More information

AP* Optics Free Response Questions

AP* Optics Free Response Questions AP* Optics Free Response Questions 1978 Q5 MIRRORS An object 6 centimeters high is placed 30 centimeters from a concave mirror of focal length 10 centimeters as shown above. (a) On the diagram above, locate

More information

What is Frequency Domain Analysis?

What is Frequency Domain Analysis? R&D Technical Bulletin P. de Groot 9/3/93 What is Frequency Domain Analysis? Abstract: The Zygo NewView is a scanning white-light interferometer that uses frequency domain analysis (FDA) to generate quantitative

More information

Introduction to Computer Vision. Week 8, Fall 2010 Instructor: Prof. Ko Nishino

Introduction to Computer Vision. Week 8, Fall 2010 Instructor: Prof. Ko Nishino Introduction to Computer Vision Week 8, Fall 2010 Instructor: Prof. Ko Nishino Midterm Project 2 without radial distortion correction with radial distortion correction Light Light Light! How do you recover

More information

Super-Resolved Spatial Light Interference Microscopy

Super-Resolved Spatial Light Interference Microscopy BOSTON UNIVERSITY Department of Electrical and Computer Engineering RPC Report Super-Resolved Spatial Light Interference Microscopy by OGUZHAN AVCI B.S., Bilkent University, 2012 Submitted in partial fulfillment

More information

3D Energy Dispersive Spectroscopy Elemental Tomography in the Scanning Transmission Electron Microscope

3D Energy Dispersive Spectroscopy Elemental Tomography in the Scanning Transmission Electron Microscope 3D Energy Dispersive Spectroscopy Elemental Tomography in the Scanning Transmission Electron Microscope Brian Van Devener Topics 1.Introduction to EDS in the STEM 2.Extending EDS into three dimensions

More information

Bioimage Informatics

Bioimage Informatics Bioimage Informatics Lecture 10, Spring 2012 Bioimage Data Analysis (II): Applications of Point Feature Detection Techniques: Super Resolution Fluorescence Microscopy Bioimage Data Analysis (III): Edge

More information

Live-cell 3D super-resolution imaging in thick biological samples

Live-cell 3D super-resolution imaging in thick biological samples Nature Methods Live-cell 3D super-resolution imaging in thick biological samples Francesca Cella Zanacchi, Zeno Lavagnino, Michela Perrone Donnorso, Alessio Del Bue, Lauria Furia, Mario Faretta & Alberto

More information

Coherent Gradient Sensing Microscopy: Microinterferometric Technique. for Quantitative Cell Detection

Coherent Gradient Sensing Microscopy: Microinterferometric Technique. for Quantitative Cell Detection Coherent Gradient Sensing Microscopy: Microinterferometric Technique for Quantitative Cell Detection Proceedings of the SEM Annual Conference June 7-10, 010 Indianapolis, Indiana USA 010 Society for Experimental

More information

Handling and Processing Big Data for Biomedical Discovery with MATLAB

Handling and Processing Big Data for Biomedical Discovery with MATLAB Handling and Processing Big Data for Biomedical Discovery with MATLAB Raphaël Thierry, PhD Image processing and analysis Software development Facility for Advanced Microscopy and Imaging 23 th June 2016

More information

PHASE DERIVATIVE MICROSCOPY OF BIOLOGICAL CELLS AND TISSUES

PHASE DERIVATIVE MICROSCOPY OF BIOLOGICAL CELLS AND TISSUES PHASE DERIVATIVE MICROSCOPY OF BIOLOGICAL CELLS AND TISSUES BY TAE WOO KIM THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical and Computer Engineering

More information

Transmitted light contrasting techniques: BF, DF, PC, pol, DIC. Light Microscopy

Transmitted light contrasting techniques: BF, DF, PC, pol, DIC. Light Microscopy Transmitted light contrasting techniques: BF, DF, PC, pol, DIC McGill Systems Biology Program Second Annual Introduction to Light Microscopy December 7th 2010 Judith Lacoste, Ph.D. Light Microscopy Transmitted

More information

12/7/2012. Biomolecular structure. Diffraction, X-ray crystallography, light- and electron microscopy. CD spectroscopy, mass spectrometry

12/7/2012. Biomolecular structure. Diffraction, X-ray crystallography, light- and electron microscopy. CD spectroscopy, mass spectrometry phase difference at a given distance constructive/destructive interference Biomolecular structure. Diffraction, X-ray crystallography, light- and electron microscopy. CD spectroscopy, mass spectrometry

More information

Supporting Information. Super Resolution Imaging of Nanoparticles Cellular Uptake and Trafficking

Supporting Information. Super Resolution Imaging of Nanoparticles Cellular Uptake and Trafficking Supporting Information Super Resolution Imaging of Nanoparticles Cellular Uptake and Trafficking Daan van der Zwaag 1,2, Nane Vanparijs 3, Sjors Wijnands 1,4, Riet De Rycke 5, Bruno G. De Geest 2* and

More information

Wavelength scanning interferometry for measuring transparent films of the fusion targets

Wavelength scanning interferometry for measuring transparent films of the fusion targets Wavelength scanning interferometry for measuring transparent films of the fusion targets F. Gao *, X. Jiang, H. Muhamedsalih and H. Martin Centre for precision Technologies, University of Huddersfield,

More information

3D OPTICAL PROFILER MODEL 7503

3D OPTICAL PROFILER MODEL 7503 3D Optical Profiler MODEL 7503 Features: 3D OPTICAL PROFILER MODEL 7503 Chroma 7503 is a sub-nano 3D Optical Profiler developed using the technology of white light interference to measure and analyze the

More information

arxiv: v1 [eess.sp] 9 Mar 2018

arxiv: v1 [eess.sp] 9 Mar 2018 Accelerated Wirtinger Flow for Multiplexed Fourier Ptychographic Microscopy arxiv:1803.03714v1 [eess.sp] 9 Mar 2018 Emrah Bostan, Mahdi Soltanolkotabi, David Ren, and Laura Waller Abstract Fourier ptychographic

More information

Hyperspectral Microscope based on Imaging Fourier transform Spectrometry. Dr. Li Jianping, Claude. Copyright: Claude.

Hyperspectral Microscope based on Imaging Fourier transform Spectrometry. Dr. Li Jianping, Claude. Copyright: Claude. The Claude Research Group Hyperspectral Microscope based on Imaging Fourier transform Spectrometry Dr. Li Jianping, Claude jp.li@siat.ac.cn June 2017 Outline Spectral Imaging Fourier transform Imaging

More information

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Phys 531 Lecture 8 20 September 2005 Ray Optics I Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Today shift gears, start applying

More information

Extreme Ultraviolet Phase Contrast Imaging

Extreme Ultraviolet Phase Contrast Imaging Extreme Ultraviolet Phase Contrast Imaging Gregory Denbeaux 1, Rashi Garg 1, Andy Aquila 2, Anton Barty 3, Kenneth Goldberg 2, Eric Gullikson 2, Yanwei Liu 2, Obert Wood 4 1, University at Albany, Albany,

More information

REAL-TIME QUANTITATIVE PHASE IMAGING FOR CELL STUDIES HOA VINH PHAM DISSERTATION

REAL-TIME QUANTITATIVE PHASE IMAGING FOR CELL STUDIES HOA VINH PHAM DISSERTATION 2013 Hoa Vinh Pham REAL-TIME QUANTITATIVE PHASE IMAGING FOR CELL STUDIES BY HOA VINH PHAM DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical

More information

Spectrographs. C. A. Griffith, Class Notes, PTYS 521, 2016 Not for distribution.

Spectrographs. C. A. Griffith, Class Notes, PTYS 521, 2016 Not for distribution. Spectrographs C A Griffith, Class Notes, PTYS 521, 2016 Not for distribution 1 Spectrographs and their characteristics A spectrograph is an instrument that disperses light into a frequency spectrum, which

More information

Diffraction and Interference of Plane Light Waves

Diffraction and Interference of Plane Light Waves 1 Diffraction and Interference of Plane Light Waves Introduction In this experiment you will become familiar with diffraction patterns created when a beam of light scatters from objects placed in its path.

More information

Quantitative 3D Imaging of Nanomaterials by Using Coherent X-rays

Quantitative 3D Imaging of Nanomaterials by Using Coherent X-rays Quantitative 3D Imaging of Nanomaterials by Using Coherent X-rays Jianwei (John) Miao Dept. of Physics & Astronomy and California NanoSystems Institute University of California, Los Angeles Workshop on

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information Compact spectrometer based on a disordered photonic chip Brandon Redding, Seng Fatt Liew, Raktim Sarma, Hui Cao* Department of Applied Physics, Yale University, New Haven, CT

More information

MAT 17C - DISCUSSION #4, Counting Proteins

MAT 17C - DISCUSSION #4, Counting Proteins MAT 17C - DISCUSSION #4, Counting Proteins Visualization of molecules inside a living cell is one of the most important tools of molecular biology in the 21 st century. In fact, it was the subject of the

More information

Control of Light. Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 2007

Control of Light. Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 2007 Control of Light Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 007 Spectro-radiometry Spectral Considerations Chromatic dispersion

More information

Simulation of X-ray in-line phase contrast

Simulation of X-ray in-line phase contrast Simulation of X-ray in-line phase contrast M. Langer, Z. Cen, L. Weber, J. M. Letang, S. Rit, F. Peyrin Université de Lyon, CREATIS ; CNRS UMR 5220 ; Inserm U1044 ; INSA-Lyon ; Université Lyon 1, Villeurbanne,

More information

Lens Design I. Lecture 11: Imaging Herbert Gross. Summer term

Lens Design I. Lecture 11: Imaging Herbert Gross. Summer term Lens Design I Lecture 11: Imaging 2015-06-29 Herbert Gross Summer term 2015 www.iap.uni-jena.de 2 Preliminary Schedule 1 13.04. Basics 2 20.04. Properties of optical systrems I 3 27.05. 4 04.05. Properties

More information

S93-8 Page 1 TOMOGRAPHIC APPROACHES TO NONWOVENS STRUCTURE DEFINITION

S93-8 Page 1 TOMOGRAPHIC APPROACHES TO NONWOVENS STRUCTURE DEFINITION S93-8 Page 1 TOMOGRAPHIC APPROACHES TO NONWOVENS STRUCTURE DEFINITION PIs: T. Gilmore, H. Davis, Z. Mi, North Carolina State University Code: S93-8 Date of Report: 9/94 RELEVANCE TO NTC MISSION AND GOALS:

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

COLOCALISATION. Alexia Loynton-Ferrand. Imaging Core Facility Biozentrum Basel

COLOCALISATION. Alexia Loynton-Ferrand. Imaging Core Facility Biozentrum Basel COLOCALISATION Alexia Loynton-Ferrand Imaging Core Facility Biozentrum Basel OUTLINE Introduction How to best prepare your samples for colocalisation How to acquire the images for colocalisation How to

More information

Depth-variant blind restoration with pupil-phase constraints for 3D confocal microscopy

Depth-variant blind restoration with pupil-phase constraints for 3D confocal microscopy Journal of Physics: Conference Series OPEN ACCESS Depth-variant blind restoration with pupil-phase constraints for 3D confocal microscopy To cite this article: Saima Ben Hadj et al 2013 J. Phys.: Conf.

More information

Optical Sectioning. Bo Huang. Pharmaceutical Chemistry

Optical Sectioning. Bo Huang. Pharmaceutical Chemistry Optical Sectioning Bo Huang Pharmaceutical Chemistry Approaches to 3D imaging Physical cutting Technical difficulty Highest resolution Highest sensitivity Optical sectioning Simple sample prep. No physical

More information

Presentation and analysis of multidimensional data sets

Presentation and analysis of multidimensional data sets Presentation and analysis of multidimensional data sets Overview 1. 3D data visualisation Multidimensional images Data pre-processing Visualisation methods Multidimensional images wavelength time 3D image

More information

HOLOGRAPHIC SCANNING LASER ACOUSTIC MICROSCOPY (HOLOSLAM): A NEW QNDE TOOL. A. C. Wey, and L. W. Kessler

HOLOGRAPHIC SCANNING LASER ACOUSTIC MICROSCOPY (HOLOSLAM): A NEW QNDE TOOL. A. C. Wey, and L. W. Kessler HOLOGRAPHIC SCANNING LASER ACOUSTIC MICROSCOPY (HOLOSLAM): A NEW QNDE TOOL A. C. Wey, and L. W. Kessler Sonoscan, Inc. 530 E. Green Street Bensenville, Illinois INTRODUCTION Acoustic microscopy is the

More information

picoemerald Tunable Two-Color ps Light Source Microscopy & Spectroscopy CARS SRS

picoemerald Tunable Two-Color ps Light Source Microscopy & Spectroscopy CARS SRS picoemerald Tunable Two-Color ps Light Source Microscopy & Spectroscopy CARS SRS 1 picoemerald Two Colors in One Box Microscopy and Spectroscopy with a Tunable Two-Color Source CARS and SRS microscopy

More information

Marcel Worring Intelligent Sensory Information Systems

Marcel Worring Intelligent Sensory Information Systems Marcel Worring worring@science.uva.nl Intelligent Sensory Information Systems University of Amsterdam Information and Communication Technology archives of documentaries, film, or training material, video

More information

Image restoration by deconvolution

Image restoration by deconvolution Image restoration by deconvolution chong.zhang@bioquant.uni-heidelberg.de 17/12/2014 (part) Slides courtesy: Sébastien Tosi (IRB Barcelona) A few concepts related to the topic Convolution Deconvolution

More information

Synthesis Imaging. Claire Chandler, Sanjay Bhatnagar NRAO/Socorro

Synthesis Imaging. Claire Chandler, Sanjay Bhatnagar NRAO/Socorro Synthesis Imaging Claire Chandler, Sanjay Bhatnagar NRAO/Socorro Michelson Summer Workshop Caltech, July 24-28, 2006 Synthesis Imaging 2 Based on the van Cittert-Zernike theorem: The complex visibility

More information

Analysis of Planar Anisotropy of Fibre Systems by Using 2D Fourier Transform

Analysis of Planar Anisotropy of Fibre Systems by Using 2D Fourier Transform Maroš Tunák, Aleš Linka Technical University in Liberec Faculty of Textile Engineering Department of Textile Materials Studentská 2, 461 17 Liberec 1, Czech Republic E-mail: maros.tunak@tul.cz ales.linka@tul.cz

More information

Nikon T1-E microscope with A1 confocal and STORM super-resolution Zeiss LSM510/Meta confocal microscope.

Nikon T1-E microscope with A1 confocal and STORM super-resolution Zeiss LSM510/Meta confocal microscope. Nikon T1-E microscope with A1 confocal and STORM super-resolution. This system allows for the imaging of cells and tissues labeled with fluorescent probes using live or fixed specimens to obtain 3D images

More information

SI8000 Cell Motion Imaging System

SI8000 Cell Motion Imaging System SI8000 Cell Motion Imaging System New Product Award Sony Biotechnology Inc. SI8000 Cell Motion Imaging System The Sony SI8000 Cell Motion System uses high speed video microscopy to detect and record cell

More information

Dragonfly Pro. Visual Pathway to Quantitative Answers ORS. Exclusive to ZEISS OBJECT RESEARCH SYSTEMS

Dragonfly Pro. Visual Pathway to Quantitative Answers ORS. Exclusive to ZEISS OBJECT RESEARCH SYSTEMS Dragonfly Pro Exclusive to ZEISS Visual Pathway to Quantitative Answers ORS OBJECT RESEARCH SYSTEMS Visualization and analysis software without bounds Dragonfly Pro by Object Research Systems (ORS) is

More information

CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION

CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION Frank Dong, PhD, DABR Diagnostic Physicist, Imaging Institute Cleveland Clinic Foundation and Associate Professor of Radiology

More information

BSI scmos. High Quantum Efficiency. Cooled Scientific CMOS Camera

BSI scmos. High Quantum Efficiency. Cooled Scientific CMOS Camera 95 BSI scmos High Quantum Efficiency Cooled Scientific CMOS Camera Backside-illuminated scmos technology Opening a new era of high sensitivity imaging applications! The Dhyana 95 is a highly sensitive

More information

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier Computer Vision 2 SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung Computer Vision 2 Dr. Benjamin Guthier 1. IMAGE PROCESSING Computer Vision 2 Dr. Benjamin Guthier Content of this Chapter Non-linear

More information

2011 Optical Science & Engineering PhD Qualifying Examination Optical Sciences Track: Advanced Optics Time allowed: 90 minutes

2011 Optical Science & Engineering PhD Qualifying Examination Optical Sciences Track: Advanced Optics Time allowed: 90 minutes 2011 Optical Science & Engineering PhD Qualifying Examination Optical Sciences Track: Advanced Optics Time allowed: 90 minutes Answer all four questions. All questions count equally. 3(a) A linearly polarized

More information