Math 136 Exam 1 Practice Problems

Size: px
Start display at page:

Download "Math 136 Exam 1 Practice Problems"

Transcription

1 Math Exam Practice Problems. Find the surface area of the surface of revolution generated by revolving the curve given by around the x-axis? To solve this we use the equation: In this case this translates to the integral: π x t ln(t), y t, t, β (dx SA π y(t) α dt t (t t ) + dt π ) + ( ) dt dt t (t 8 + t + dt The trick to evaluate this integral is to recognize that the function inside the square root can be written as a complete square. t t (t + t ). Using this and the fact, we can write: SA π π t (t + t ) dt π t + dt ( ) π t + 8πt t(t + t )dt π π ()()π () + π 8π + π. The graph of the polar curve r θ, starting from θ is a outward spiral starting at the origin. Find the length of the portion of this spiral that is inside the circle r that starts at θ. To find the length of this spiral, one must first find where the spiral intersects the circle r. To do this we set θ and find that this is true for θ. Thus the length that we are after can be found by integrating: θ + θ dθ θ θ + dθ θ θ + dθ To compute this integral we can use a u-substitution with u θ +, and du θ. Thus our integral becomes: 8 8 u du u ) (8 8

2 . Find the area inside both curves r + cos(θ) and r + sin(θ). +sin(θ) +cos(θ) Looking at the graph we can identify that these two curves intersect when + cos(θ) + sin(θ) which happens when θ π/ and θ 5π/. (You can solve for these by setting the two equations equal and finding that tan(θ). Also, if we note that the area inside both curves is symmetric with respect to the line corresponding to θ π/, then we can compute the area by integrating from π/ to π/ of just the one curve r + sin(θ) and then doubling it to get the full area. Thus the area we want is: π/ π/ ( + sin(θ) ) dθ π/ π/ π/ π/ 9 + sin(θ) + sin (θ)dθ 9 + sin(θ) + cos(θ)dθ (θ cos(θ) sin(θ)) π/ π/ ( ( ) ) ( ( ) ) π π + π 7.58 If one did not recognize or was unsure that the graph was symmetric, you could instead compute the sum of the following two integrals: π/ π/ The result would be the same number. 5π/ ( + sin(θ) ) dθ + π/ ( + cos(θ) ) dθ

3 . A tank is constructed so that the top is a by meter rectangle. The depth of the tank is meters at the deep end and gradually increases to a depth of at the other end. A figure of the pool is below. What is the force due to hydrostatic pressure on one of the triangular sides of the tank assuming the tank is completely full? meters meters meters Look at the triangular side of the tank as a triangle with the lower left corner at the origin. Then consider a slice of height y at a height y. Either by writing down an equation for the line described by the hypotenuse of the triangle or by using similar triangles then the width of the slice is x y/. So the area of the slice is approximately a rectangle and is given by y y. Thus the force on this slice is approximately ρ g ( y) y y. Note that the depth is given by y. To calculate the entire force we integrate from y to y giving y-axis depth is -y width is Δy y x y(/)x x-axis ρ g y y ρ g ) (y y ρ g ( () / ) 7 Newtons

4 5. The parametric representation of a cycloid is given by x t + sin(t) and y + cos(t), what is the area bounded by the cycloid and the x axis for < t < π? The formula for the area bounded by a curve and the x-axis is given by:. Expanding this we have: β α y(t)x (t)dt π ( + cos(t))( + cos(t))dt π + 8 cos(t) + cos (t)dt π + 8 cos(t) + + cos(t)dt (t + 8 sin(t) + sin(t)) π π. Sketch a graph of each of the following polar graphs. Label at least three points on each graph (other than the origin). In the last two parts your points and your graph will depend on the values of the constants, a, b and c. (a) r cos(θ). (/, Π./) (, ) (-/, Π/)

5 (b) r sin(θ). (, Π/) (,) (c) r a + b cos(θ) where a b >. a, Π a, Π a, 5

6 (d) r c cos(θ) where c is a positive number. (c/, Π/) c, c, Π 7. Explain in complete sentences why the formulas x r cos(θ) and y r sin(θ) are the correct formulas for converting polar to cartesian coordinates. You may include a diagram to accompany your text. If we have a point P, which is given by (x, y) in cartesian coordinates and (r, θ) in polar coordinates then the values of are all parts of a right triangle with the longest side of the triangle (or the hypotenuse) having length r. The horizontal component of the triangle has length x and the vertical component is y. Or x is the side adjacent to the angle θ and y is the side opposite θ. This is illustrated in the diagram below: r y Θ x Since the angles are related in this way, then by definition of cos(θ) it is equal to the opposite side over the hypotenuse, or cos(θ) x/r. Solving for x gives x r cos(θ). Similarly we get y sin(θ). 8. Convert each of the following cartesian points to polar coordinates. (a) (/, /) Here r (/) + ( /) /. We also have that tan(θ) y/x. Thus our reference angle is π/. Since the point is in the fourth quadrant this gives us the correct angle and we can write the point as (/, π/) or as (/, 7π/). (b) (, ) Here r 9 +. We also have tan(θ) y/x. If we compute arctan( / ) we obtain π/. However, this angle is in the wrong quadrant. The angle we need is in the second quadrant and has a reference angle of π/. Thus, θ 5π/. Our point in polar coordinates is thus (, 5π/).

7 9. Find the length of the curve x y 8 + y between the two points ( 8, ) and (, ). This problem is set up to integrate in y so we will use the arc-length formula: d (dx ) (y L + ) y + Expanding what is under the radical we have: Replacing this in the radical gives: c ( y ) y + y + y + y + + ( y y + ) y L y (y + ) y + y ( ) y 8 y ) ( + ( 8 ). Find the equation of the tangent line to the polar curve r cos(θ) at the polar point (/, π/). Give the equation in cartesian coordinates. The formula for the derivative can be computed by first converting to x(θ) cos(θ) cos(θ) and y(θ) cos(θ) sin(θ). We then have: dx dθ dx dθ sin(θ) sin(θ) + cos(θ) cos(θ) sin(θ) cos(θ) cos(θ) sin(θ) ) If I evaluate this at θ π/ then I have sin(π/) sin(π/) + cos(π/) cos(π/) dx sin(π/) cos(π/) cos(π/) sin(π/) ( /) + ( /) ( /) (/) 7 Thus, the slope at this point is given by m 7. The cartesian coordinates at this point are x (/) cos(π/) and y (/) sin(π/) /. The equation of the tangent line can then be found using the point slope formula: y 7 ( x ) or y 7 x + 7 7

8 . True or False, If a parametric curve is given by x(t) and y(t) and x () y () then there is neither a vertical nor a horizontal tangent line when t. Explain your answer. False, If both /dt and dx/dt are then one must look at the limit lim t dx, to determine the slope at that point. Since this is a / type problem you will either have to try to use algebra to simplify or use L Hospitals rule to evaluate this limit. If the limit is then there is a horizontal tangent at t. If the limit is then there is a vertical tangent at this point. If the limit is some other number, then the slope is equal to this number at t.. Given the parametric equations x t + 9t t and y t 8t + t +, find all locations (give the x and y values) when the slope is horizontal. We begin by computing the following: dx dt t + 8t (t + t ) (t + )(t ), which is when t and t. Also, dt t t + t t(t t + ) t(t ), which is when t or t. Since we have that dx/dt and /dt when t, then there is a vertical tangent line or a cusp. Since we have that dx/dt and dx/dt when t then there is a horizontal tangent line here. At t both /dt and dx/dt, thus we must check the limit of /dx to decide what the slope is here. lim t dx lim /dt t dx/dt lim t(t ) t (t + )(t ) lim t(t ), t (t + ) Thus, we have a horizontal tangent at this point. 8

9 . Find the equation of a hyperbola with Foci F (, ) and F (7, ) and vertices V (, ), V (, ). Also give the equations of the asymptotic curves. The center is half way between either the foci or the vertices, so in this case is at (, ). The values a and c are the distances from the center to the vertices and the foci respectively and in this case they are a and c. Thus b c a 9 5. Consequently our equation is: (x ) (y ) 5 The asymptotes are given by y k ± (b/a)(x h) ± 5 (x ).. Decide if the equation x +x+y +y describes a circle, an ellipse, a parabola or a hyperbola. If it describes a circle find the center and radius. If it describes an ellipse find the center foci and vertices. If it describes a parabola find the focus, the vertex and the directrix. If it describes a hyperbola find the foci, vertices and the asymptotes. If we complete the squares from the equation above we have: (x + x + ) + (y + y + ) This simplifies to or Dividing both sides by 5 gives: (x + x + ) + (y + y + ) ( x + ) + (y + ) 5 ( x + ) (y + ) or ( x + 5 ) + (y + ) 5, Thus this is an ellipse. The center of the ellipse is at ( /, ) and since 5 is larger than 5/, then the major axis is parallel to the y-axis and is equal to x /. Here a 5 and b 5/. Thus c 5 5/ 5/. The foci are then ( /, ± 5/) and the vertices are ( /, ± 5). 9

10 Outline of Topics Covered. Chapter 9 (a) Section 9. Length of curves. Be able to compute the length of curves by integrating in either x or y. (b) Section 9. Surface areas of solids of revolution. Be able to compute the surface area of a surface generated by revolving a curve around either the x-axis or the y-axis. (c) Section 9. Applications of integration including hydrostatic force/pressure and center of mass.. Chapter (a) Section. Parametric Equations. Know what a parametric equation is and how to find its graph. (b) Section. Calculus of Parametric Equations. Know how to compute the arc length of a curve given parametrically. Know how to compute the area bounded between a parametric curve and the x-axis. Know how to find the /dx as a function of t for a parametric equation. Be able to find equations of tangent lines as well as points where parametric curves have horizontal or vertical tangent lines. Remember to check the limit of /dx if both /dt and dx/dt equal. (c) Section. Polar Coordinates. Understand how to find the graph of a polar curve. Be able to covert from polar to cartesian coordinates and from cartesian to polar. Given a set of polar coordinates be able to find a equivalent expression where the angle is in a certain range. (d) Section. Calculus with Polar coordinates. Be able to compute areas bounded inside polar curves (or inside one and outside another etc.). Be able to compute the length of polar curves. These problems often involves finding points of intersection of curves. Be able to find the slope of a polar curve by converting to a parametric equation (x(θ) r(θ) cos(θ), y(θ) r(θ) sin(θ)). Be able to find the equation of the tangent line (in cartesian coordinates). Also be able to find where the curve has horizontal and vertical tangents. Be careful to compute the limit at points where both dx/dθ and /dθ are both. (e) Section.5 Conic Sections. Know how to identify if an equation is a parabola, hyperbola or an ellipse (or not a conic section). Be able to find the equation of a parabola, ellipse or hyperbola given important points or equations (foci, vertices, directrix, etc.). Be able to take an equation and put it into standard form to identify the important parts of a conic (this often involves completing the square).

Chapter 11. Parametric Equations And Polar Coordinates

Chapter 11. Parametric Equations And Polar Coordinates Instructor: Prof. Dr. Ayman H. Sakka Chapter 11 Parametric Equations And Polar Coordinates In this chapter we study new ways to define curves in the plane, give geometric definitions of parabolas, ellipses,

More information

Polar Coordinates. Calculus 2 Lia Vas. If P = (x, y) is a point in the xy-plane and O denotes the origin, let

Polar Coordinates. Calculus 2 Lia Vas. If P = (x, y) is a point in the xy-plane and O denotes the origin, let Calculus Lia Vas Polar Coordinates If P = (x, y) is a point in the xy-plane and O denotes the origin, let r denote the distance from the origin O to the point P = (x, y). Thus, x + y = r ; θ be the angle

More information

MATH 1020 WORKSHEET 10.1 Parametric Equations

MATH 1020 WORKSHEET 10.1 Parametric Equations MATH WORKSHEET. Parametric Equations If f and g are continuous functions on an interval I, then the equations x ft) and y gt) are called parametric equations. The parametric equations along with the graph

More information

Chapter 10 Homework: Parametric Equations and Polar Coordinates

Chapter 10 Homework: Parametric Equations and Polar Coordinates Chapter 1 Homework: Parametric Equations and Polar Coordinates Name Homework 1.2 1. Consider the parametric equations x = t and y = 3 t. a. Construct a table of values for t =, 1, 2, 3, and 4 b. Plot the

More information

10.2 Calculus with Parametric Curves

10.2 Calculus with Parametric Curves CHAPTER 1. PARAMETRIC AND POLAR 91 1.2 Calculus with Parametric Curves Example 1. Return to the parametric equations in Example 2 from the previous section: x t + sin() y t + cos() (a) Find the Cartesian

More information

Name: Date: 1. Match the equation with its graph. Page 1

Name: Date: 1. Match the equation with its graph. Page 1 Name: Date: 1. Match the equation with its graph. y 6x A) C) Page 1 D) E) Page . Match the equation with its graph. ( x3) ( y3) A) C) Page 3 D) E) Page 4 3. Match the equation with its graph. ( x ) y 1

More information

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations.

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations. Objectives Sketch the graph of a curve given by a set of parametric equations. Eliminate the parameter in a set of parametric equations. Find a set of parametric equations to represent a curve. Understand

More information

Chapter 10: Parametric And Polar Curves; Conic Sections

Chapter 10: Parametric And Polar Curves; Conic Sections 206 Chapter 10: Parametric And Polar Curves; Conic Sections Summary: This chapter begins by introducing the idea of representing curves using parameters. These parametric equations of the curves can then

More information

MA 114 Worksheet #17: Average value of a function

MA 114 Worksheet #17: Average value of a function Spring 2019 MA 114 Worksheet 17 Thursday, 7 March 2019 MA 114 Worksheet #17: Average value of a function 1. Write down the equation for the average value of an integrable function f(x) on [a, b]. 2. Find

More information

10.1 Curves Defined by Parametric Equations

10.1 Curves Defined by Parametric Equations 10.1 Curves Defined by Parametric Equations Ex: Consider the unit circle from Trigonometry. What is the equation of that circle? There are 2 ways to describe it: x 2 + y 2 = 1 and x = cos θ y = sin θ When

More information

9.1 Parametric Curves

9.1 Parametric Curves Math 172 Chapter 9A notes Page 1 of 20 9.1 Parametric Curves So far we have discussed equations in the form. Sometimes and are given as functions of a parameter. Example. Projectile Motion Sketch and axes,

More information

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA:

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA: MA 114 Exam 3 Spring 217 Exam 3 Name: Section and/or TA: Last Four Digits of Student ID: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test.

More information

The diagram above shows a sketch of the curve C with parametric equations

The diagram above shows a sketch of the curve C with parametric equations 1. The diagram above shows a sketch of the curve C with parametric equations x = 5t 4, y = t(9 t ) The curve C cuts the x-axis at the points A and B. (a) Find the x-coordinate at the point A and the x-coordinate

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6 Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

Rewrite the equation in the left column into the format in the middle column. The answers are in the third column. 1. y 4y 4x 4 0 y k 4p x h y 2 4 x 0

Rewrite the equation in the left column into the format in the middle column. The answers are in the third column. 1. y 4y 4x 4 0 y k 4p x h y 2 4 x 0 Pre-Calculus Section 1.1 Completing the Square Rewrite the equation in the left column into the format in the middle column. The answers are in the third column. 1. y 4y 4x 4 0 y k 4p x h y 4 x 0. 3x 3y

More information

Pre-Calculus Guided Notes: Chapter 10 Conics. A circle is

Pre-Calculus Guided Notes: Chapter 10 Conics. A circle is Name: Pre-Calculus Guided Notes: Chapter 10 Conics Section Circles A circle is _ Example 1 Write an equation for the circle with center (3, ) and radius 5. To do this, we ll need the x1 y y1 distance formula:

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below:

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below: Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46 Polar Coordinates Polar Coordinates: Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ)

More information

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions Calculus III Math Spring 7 In-term exam April th. Suggested solutions This exam contains sixteen problems numbered through 6. Problems 5 are multiple choice problems, which each count 5% of your total

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45 : Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ) Chapter 10: Parametric Equations

More information

Updated: August 24, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University

Updated: August 24, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University Updated: August 24, 216 Calculus III Section 1.2 Math 232 Calculus III Brian Veitch Fall 215 Northern Illinois University 1.2 Calculus with Parametric Curves Definition 1: First Derivative of a Parametric

More information

Chapter 10. Exploring Conic Sections

Chapter 10. Exploring Conic Sections Chapter 10 Exploring Conic Sections Conics A conic section is a curve formed by the intersection of a plane and a hollow cone. Each of these shapes are made by slicing the cone and observing the shape

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Put your initials on the top of every page, in case the pages become separated.

Put your initials on the top of every page, in case the pages become separated. Math 1201, Fall 2016 Name (print): Dr. Jo Nelson s Calculus III Practice for 1/2 of Final, Midterm 1 Material Time Limit: 90 minutes DO NOT OPEN THIS BOOKLET UNTIL INSTRUCTED TO DO SO. This exam contains

More information

Conic Sections. College Algebra

Conic Sections. College Algebra Conic Sections College Algebra Conic Sections A conic section, or conic, is a shape resulting from intersecting a right circular cone with a plane. The angle at which the plane intersects the cone determines

More information

ALGEBRA II UNIT X: Conic Sections Unit Notes Packet

ALGEBRA II UNIT X: Conic Sections Unit Notes Packet Name: Period: ALGEBRA II UNIT X: Conic Sections Unit Notes Packet Algebra II Unit 10 Plan: This plan is subject to change at the teacher s discretion. Section Topic Formative Work Due Date 10.3 Circles

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES A coordinate system represents a point in the plane by an ordered pair of numbers called coordinates. PARAMETRIC EQUATIONS

More information

10 Polar Coordinates, Parametric Equations

10 Polar Coordinates, Parametric Equations Polar Coordinates, Parametric Equations ½¼º½ ÈÓÐ Ö ÓÓÖ Ò Ø Coordinate systems are tools that let us use algebraic methods to understand geometry While the rectangular (also called Cartesian) coordinates

More information

12 Polar Coordinates, Parametric Equations

12 Polar Coordinates, Parametric Equations 54 Chapter Polar Coordinates, Parametric Equations Polar Coordinates, Parametric Equations Just as we describe curves in the plane using equations involving x and y, so can we describe curves using equations

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 33 Notes These notes correspond to Section 9.3 in the text. Polar Coordinates Throughout this course, we have denoted a point in the plane by an ordered

More information

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT:

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT: CALCULUS WITH PARAMETERIZED CURVES In calculus I we learned how to differentiate and integrate functions. In the chapter covering the applications of the integral, we learned how to find the length of

More information

10.2 Calculus with Parametric Curves

10.2 Calculus with Parametric Curves CHAPTER 1. PARAMETRIC AND POLAR 1 1.2 Calculus with Parametric Curves Example 1. Return to the parametric equations in Example 2 from the previous section: x t +sin() y t + cos() (a) Find the cartesian

More information

Math 142 Fall 2000 Rotation of Axes. In section 11.4, we found that every equation of the form. (1) Ax 2 + Cy 2 + Dx + Ey + F =0,

Math 142 Fall 2000 Rotation of Axes. In section 11.4, we found that every equation of the form. (1) Ax 2 + Cy 2 + Dx + Ey + F =0, Math 14 Fall 000 Rotation of Axes In section 11.4, we found that every equation of the form (1) Ax + Cy + Dx + Ey + F =0, with A and C not both 0, can be transformed by completing the square into a standard

More information

Multivariable Calculus

Multivariable Calculus Multivariable Calculus Chapter 10 Topics in Analytic Geometry (Optional) 1. Inclination of a line p. 5. Circles p. 4 9. Determining Conic Type p. 13. Angle between lines p. 6. Parabolas p. 5 10. Rotation

More information

Unit 4. Applications of integration

Unit 4. Applications of integration Unit 4. Applications of integration 4A. Areas between curves. 4A-1 Find the area between the following curves a) y = 2x 2 and y = 3x 1 b) y = x 3 and y = ax; assume a > 0 c) y = x + 1/x and y = 5/2. d)

More information

Name: Signature: Section and TA:

Name: Signature: Section and TA: Name: Signature: Section and TA: Math 7. Lecture 00 (V. Reiner) Midterm Exam I Thursday, February 8, 00 This is a 50 minute exam. No books, notes, calculators, cell phones or other electronic devices are

More information

9.1 POLAR COORDINATES

9.1 POLAR COORDINATES 9. Polar Coordinates Contemporary Calculus 9. POLAR COORDINATES The rectangular coordinate system is immensely useful, but it is not the only way to assign an address to a point in the plane and sometimes

More information

Study Guide for Test 2

Study Guide for Test 2 Study Guide for Test Math 6: Calculus October, 7. Overview Non-graphing calculators will be allowed. You will need to know the following:. Set Pieces 9 4.. Trigonometric Substitutions (Section 7.).. Partial

More information

Area and Volume. where x right and x left are written in terms of y.

Area and Volume. where x right and x left are written in terms of y. Area and Volume Area between two curves Sketch the region and determine the points of intersection. Draw a small strip either as dx or dy slicing. Use the following templates to set up a definite integral:

More information

Chapter 9 Topics in Analytic Geometry

Chapter 9 Topics in Analytic Geometry Chapter 9 Topics in Analytic Geometry What You ll Learn: 9.1 Introduction to Conics: Parabolas 9.2 Ellipses 9.3 Hyperbolas 9.5 Parametric Equations 9.6 Polar Coordinates 9.7 Graphs of Polar Equations 9.1

More information

Math 265 Exam 3 Solutions

Math 265 Exam 3 Solutions C Roettger, Fall 16 Math 265 Exam 3 Solutions Problem 1 Let D be the region inside the circle r 5 sin θ but outside the cardioid r 2 + sin θ. Find the area of D. Note that r and θ denote polar coordinates.

More information

AP Calculus. Areas and Volumes. Student Handout

AP Calculus. Areas and Volumes. Student Handout AP Calculus Areas and Volumes Student Handout 016-017 EDITION Use the following link or scan the QR code to complete the evaluation for the Study Session https://www.surveymonkey.com/r/s_sss Copyright

More information

Unit 12 Topics in Analytic Geometry - Classwork

Unit 12 Topics in Analytic Geometry - Classwork Unit 1 Topics in Analytic Geometry - Classwork Back in Unit 7, we delved into the algebra and geometry of lines. We showed that lines can be written in several forms: a) the general form: Ax + By + C =

More information

MA 154 PRACTICE QUESTIONS FOR THE FINAL 11/ The angles with measures listed are all coterminal except: 5π B. A. 4

MA 154 PRACTICE QUESTIONS FOR THE FINAL 11/ The angles with measures listed are all coterminal except: 5π B. A. 4 . If θ is in the second quadrant and sinθ =.6, find cosθ..7.... The angles with measures listed are all coterminal except: E. 6. The radian measure of an angle of is: 7. Use a calculator to find the sec

More information

Volumes of Solids of Revolution Lecture #6 a

Volumes of Solids of Revolution Lecture #6 a Volumes of Solids of Revolution Lecture #6 a Sphereoid Parabaloid Hyperboloid Whateveroid Volumes Calculating 3-D Space an Object Occupies Take a cross-sectional slice. Compute the area of the slice. Multiply

More information

Polar Coordinates. 2, π and ( )

Polar Coordinates. 2, π and ( ) Polar Coordinates Up to this point we ve dealt exclusively with the Cartesian (or Rectangular, or x-y) coordinate system. However, as we will see, this is not always the easiest coordinate system to work

More information

Log1 Contest Round 2 Theta Circles, Parabolas and Polygons. 4 points each

Log1 Contest Round 2 Theta Circles, Parabolas and Polygons. 4 points each Name: Units do not have to be included. 016 017 Log1 Contest Round Theta Circles, Parabolas and Polygons 4 points each 1 Find the value of x given that 8 x 30 Find the area of a triangle given that it

More information

MATHEMATICS FOR ENGINEERING TRIGONOMETRY

MATHEMATICS FOR ENGINEERING TRIGONOMETRY MATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL SOME MORE RULES OF TRIGONOMETRY This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves

More information

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations Lecture 15 Lecturer: Prof. Sergei Fedotov 10131 - Calculus and Vectors Length of a Curve and Parametric Equations Sergei Fedotov (University of Manchester) MATH10131 2011 1 / 5 Lecture 15 1 Length of a

More information

Section Parametrized Surfaces and Surface Integrals. (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals

Section Parametrized Surfaces and Surface Integrals. (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals Section 16.4 Parametrized Surfaces and Surface Integrals (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals MATH 127 (Section 16.4) Parametrized Surfaces and Surface Integrals

More information

MATH 261 EXAM III PRACTICE PROBLEMS

MATH 261 EXAM III PRACTICE PROBLEMS MATH 6 EXAM III PRACTICE PROBLEMS These practice problems are pulled from actual midterms in previous semesters. Exam 3 typically has 5 (not 6!) problems on it, with no more than one problem of any given

More information

CALCULUS II. Parametric Equations and Polar Coordinates. Paul Dawkins

CALCULUS II. Parametric Equations and Polar Coordinates. Paul Dawkins CALCULUS II Parametric Equations and Polar Coordinates Paul Dawkins Table of Contents Preface... ii Parametric Equations and Polar Coordinates... 3 Introduction... 3 Parametric Equations and Curves...

More information

5. y 2 + z 2 + 4z = 0 correct. 6. z 2 + x 2 + 2x = a b = 4 π

5. y 2 + z 2 + 4z = 0 correct. 6. z 2 + x 2 + 2x = a b = 4 π M408D (54690/95/00), Midterm #2 Solutions Multiple choice questions (20 points) See last two pages. Question #1 (25 points) Dene the vector-valued function r(t) = he t ; 2; 3e t i: a) At what point P (x

More information

CK 12 Algebra II with Trigonometry Concepts 1

CK 12 Algebra II with Trigonometry Concepts 1 10.1 Parabolas with Vertex at the Origin Answers 1. up 2. left 3. down 4.focus: (0, 0.5), directrix: y = 0.5 5.focus: (0.0625, 0), directrix: x = 0.0625 6.focus: ( 1.25, 0), directrix: x = 1.25 7.focus:

More information

f sin the slope of the tangent line is given by f sin f cos cos sin , but it s also given by 2. So solve the DE with initial condition: sin cos

f sin the slope of the tangent line is given by f sin f cos cos sin , but it s also given by 2. So solve the DE with initial condition: sin cos Math 414 Activity 1 (Due by end of class August 1) 1 Four bugs are placed at the four corners of a square with side length a The bugs crawl counterclockwise at the same speed and each bug crawls directly

More information

The point (x, y) lies on the circle of radius r and center (h, k) iff. x h y k r

The point (x, y) lies on the circle of radius r and center (h, k) iff. x h y k r NOTES +: ANALYTIC GEOMETRY NAME LESSON. GRAPHS OF EQUATIONS IN TWO VARIABLES (CIRCLES). Standard form of a Circle The point (x, y) lies on the circle of radius r and center (h, k) iff x h y k r Center:

More information

Parametric Surfaces. Substitution

Parametric Surfaces. Substitution Calculus Lia Vas Parametric Surfaces. Substitution Recall that a curve in space is given by parametric equations as a function of single parameter t x = x(t) y = y(t) z = z(t). A curve is a one-dimensional

More information

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane?

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane? Math 4 Practice Problems for Midterm. A unit vector that is perpendicular to both V =, 3, and W = 4,, is (a) V W (b) V W (c) 5 6 V W (d) 3 6 V W (e) 7 6 V W. In three dimensions, the graph of the equation

More information

CLEP Pre-Calculus. Section 1: Time 30 Minutes 50 Questions. 1. According to the tables for f(x) and g(x) below, what is the value of [f + g]( 1)?

CLEP Pre-Calculus. Section 1: Time 30 Minutes 50 Questions. 1. According to the tables for f(x) and g(x) below, what is the value of [f + g]( 1)? CLEP Pre-Calculus Section : Time 0 Minutes 50 Questions For each question below, choose the best answer from the choices given. An online graphing calculator (non-cas) is allowed to be used for this section..

More information

PLANE TRIGONOMETRY Exam I September 13, 2007

PLANE TRIGONOMETRY Exam I September 13, 2007 Name Rec. Instr. Rec. Time PLANE TRIGONOMETRY Exam I September 13, 2007 Page 1 Page 2 Page 3 Page 4 TOTAL (10 pts.) (30 pts.) (30 pts.) (30 pts.) (100 pts.) Below you will find 10 problems, each worth

More information

Summary of Formulas: see

Summary of Formulas: see To review the Conic Sections, Identify them and sketch them from the given equations, watch the following set of YouTube videos. They are followed by several practice problems for you to try, covering

More information

Module 3: Stand Up Conics

Module 3: Stand Up Conics MATH55 Module 3: Stand Up Conics Main Math concepts: Conic Sections (i.e. Parabolas, Ellipses, Hyperbolas), nd degree equations Auxilliary ideas: Analytic vs. Co-ordinate-free Geometry, Parameters, Calculus.

More information

Unit 2: Trigonometry. This lesson is not covered in your workbook. It is a review of trigonometry topics from previous courses.

Unit 2: Trigonometry. This lesson is not covered in your workbook. It is a review of trigonometry topics from previous courses. Unit 2: Trigonometry This lesson is not covered in your workbook. It is a review of trigonometry topics from previous courses. Pythagorean Theorem Recall that, for any right angled triangle, the square

More information

Polar Coordinates

Polar Coordinates Polar Coordinates 7-7-2 Polar coordinates are an alternative to rectangular coordinates for referring to points in the plane. A point in the plane has polar coordinates r,θ). r is roughly) the distance

More information

MATH 104 First Midterm Exam - Fall (d) A solid has as its base the region in the xy-plane the region between the curve y = 1 x2

MATH 104 First Midterm Exam - Fall (d) A solid has as its base the region in the xy-plane the region between the curve y = 1 x2 MATH 14 First Midterm Exam - Fall 214 1. Find the area between the graphs of y = x 2 + x + 5 and y = 2x 2 x. 1. Find the area between the graphs of y = x 2 + 4x + 6 and y = 2x 2 x. 1. Find the area between

More information

Plane Curve [Parametric Equation]

Plane Curve [Parametric Equation] Plane Curve [Parametric Equation] Bander Almutairi King Saud University December 1, 2015 Bander Almutairi (King Saud University) Plane Curve [Parametric Equation] December 1, 2015 1 / 8 1 Parametric Equation

More information

Name. Center axis. Introduction to Conic Sections

Name. Center axis. Introduction to Conic Sections Name Introduction to Conic Sections Center axis This introduction to conic sections is going to focus on what they some of the skills needed to work with their equations and graphs. year, we will only

More information

PreCalculus Chapter 9 Practice Test Name:

PreCalculus Chapter 9 Practice Test Name: This ellipse has foci 0,, and therefore has a vertical major axis. The standard form for an ellipse with a vertical major axis is: 1 Note: graphs of conic sections for problems 1 to 1 were made with the

More information

Algebra II. Slide 1 / 181. Slide 2 / 181. Slide 3 / 181. Conic Sections Table of Contents

Algebra II. Slide 1 / 181. Slide 2 / 181. Slide 3 / 181. Conic Sections Table of Contents Slide 1 / 181 Algebra II Slide 2 / 181 Conic Sections 2015-04-21 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 181 Review of Midpoint and Distance Formulas Introduction

More information

Unit 4. Applications of integration

Unit 4. Applications of integration 18.01 EXERCISES Unit 4. Applications of integration 4A. Areas between curves. 4A-1 Find the area between the following curves a) y = 2x 2 and y = 3x 1 b) y = x 3 and y = ax; assume a > 0 c) y = x + 1/x

More information

Look up partial Decomposition to use for problems #65-67 Do Not solve problems #78,79

Look up partial Decomposition to use for problems #65-67 Do Not solve problems #78,79 Franklin Township Summer Assignment 2017 AP calculus AB Summer assignment Students should use the Mathematics summer assignment to identify subject areas that need attention in preparation for the study

More information

Calculus IV. Exam 2 November 13, 2003

Calculus IV. Exam 2 November 13, 2003 Name: Section: Calculus IV Math 1 Fall Professor Ben Richert Exam November 1, Please do all your work in this booklet and show all the steps. Calculators and note-cards are not allowed. Problem Possible

More information

Polar (BC Only) They are necessary to find the derivative of a polar curve in x- and y-coordinates. The derivative

Polar (BC Only) They are necessary to find the derivative of a polar curve in x- and y-coordinates. The derivative Polar (BC Only) Polar coordinates are another way of expressing points in a plane. Instead of being centered at an origin and moving horizontally or vertically, polar coordinates are centered at the pole

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

Multiple Integrals. max x i 0

Multiple Integrals. max x i 0 Multiple Integrals 1 Double Integrals Definite integrals appear when one solves Area problem. Find the area A of the region bounded above by the curve y = f(x), below by the x-axis, and on the sides by

More information

Practice Test - Chapter 7

Practice Test - Chapter 7 Write an equation for an ellipse with each set of characteristics. 1. vertices (7, 4), ( 3, 4); foci (6, 4), ( 2, 4) The distance between the vertices is 2a. 2a = 7 ( 3) a = 5; a 2 = 25 The distance between

More information

Chapter 6 Some Applications of the Integral

Chapter 6 Some Applications of the Integral Chapter 6 Some Applications of the Integral More on Area More on Area Integrating the vertical separation gives Riemann Sums of the form More on Area Example Find the area A of the set shaded in Figure

More information

A lg e b ra II. Trig o n o m e tric F u n c tio

A lg e b ra II. Trig o n o m e tric F u n c tio 1 A lg e b ra II Trig o n o m e tric F u n c tio 2015-12-17 www.njctl.org 2 Trig Functions click on the topic to go to that section Radians & Degrees & Co-terminal angles Arc Length & Area of a Sector

More information

Version 001 Polar Curve Review rittenhouse (RittBCblock2) correct

Version 001 Polar Curve Review rittenhouse (RittBCblock2) correct Version 1 Polar Curve Review rittenhouse (RittBCblock 1 This print-out should have 9 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. BC 1993

More information

Double Integrals over Polar Coordinate

Double Integrals over Polar Coordinate 1. 15.4 DOUBLE INTEGRALS OVER POLAR COORDINATE 1 15.4 Double Integrals over Polar Coordinate 1. Polar Coordinates. The polar coordinates (r, θ) of a point are related to the rectangular coordinates (x,y)

More information

CHAPTER 8 QUADRATIC RELATIONS AND CONIC SECTIONS

CHAPTER 8 QUADRATIC RELATIONS AND CONIC SECTIONS CHAPTER 8 QUADRATIC RELATIONS AND CONIC SECTIONS Big IDEAS: 1) Writing equations of conic sections ) Graphing equations of conic sections 3) Solving quadratic systems Section: Essential Question 8-1 Apply

More information

NAME: Section # SSN: X X X X

NAME: Section # SSN: X X X X Math 155 FINAL EXAM A May 5, 2003 NAME: Section # SSN: X X X X Question Grade 1 5 (out of 25) 6 10 (out of 25) 11 (out of 20) 12 (out of 20) 13 (out of 10) 14 (out of 10) 15 (out of 16) 16 (out of 24)

More information

Part I. There are 5 problems in Part I, each worth 5 points. No partial credit will be given, so be careful. Circle the correct answer.

Part I. There are 5 problems in Part I, each worth 5 points. No partial credit will be given, so be careful. Circle the correct answer. Math 109 Final Exam-Spring 016 Page 1 Part I. There are 5 problems in Part I, each worth 5 points. No partial credit will be given, so be careful. Circle the correct answer. 1) Determine an equivalent

More information

Math 124 Final Examination Autumn Turn off all cell phones, pagers, radios, mp3 players, and other similar devices.

Math 124 Final Examination Autumn Turn off all cell phones, pagers, radios, mp3 players, and other similar devices. Math 124 Final Examination Autumn 2016 Your Name Your Signature Student ID # Quiz Section Professor s Name TA s Name Turn off all cell phones, pagers, radios, mp3 players, and other similar devices. This

More information

Mid-Chapter Quiz: Lessons 7-1 through 7-3

Mid-Chapter Quiz: Lessons 7-1 through 7-3 Write an equation for and graph a parabola with the given focus F and vertex V 1. F(1, 5), V(1, 3) Because the focus and vertex share the same x coordinate, the graph is vertical. The focus is (h, k +

More information

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations 1 Definition of polar coordinates Let us first recall the definition of Cartesian coordinates: to each point in the plane we can

More information

Pre-Calculus. 2) Find the equation of the circle having (2, 5) and (-2, -1) as endpoints of the diameter.

Pre-Calculus. 2) Find the equation of the circle having (2, 5) and (-2, -1) as endpoints of the diameter. Pre-Calculus Conic Review Name Block Date Circles: 1) Determine the center and radius of each circle. a) ( x 5) + ( y + 6) = 11 b) x y x y + 6 + 16 + 56 = 0 ) Find the equation of the circle having (,

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

1.) Write the equation of a circle in standard form with radius 3 and center (-3,4). Then graph the circle.

1.) Write the equation of a circle in standard form with radius 3 and center (-3,4). Then graph the circle. Welcome to the world of conic sections! http://www.youtube.com/watch?v=bfonicn4bbg Some examples of conics in the real world: Parabolas Ellipse Hyperbola Your Assignment: Circle -Find at least four pictures

More information

Algebra II. Slide 1 / 162. Slide 2 / 162. Slide 3 / 162. Trigonometric Functions. Trig Functions

Algebra II. Slide 1 / 162. Slide 2 / 162. Slide 3 / 162. Trigonometric Functions. Trig Functions Slide 1 / 162 Algebra II Slide 2 / 162 Trigonometric Functions 2015-12-17 www.njctl.org Trig Functions click on the topic to go to that section Slide 3 / 162 Radians & Degrees & Co-terminal angles Arc

More information

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

1. Let be a point on the terminal side of θ. Find the 6 trig functions of θ. (Answers need not be rationalized). b. P 1,3. ( ) c. P 10, 6.

1. Let be a point on the terminal side of θ. Find the 6 trig functions of θ. (Answers need not be rationalized). b. P 1,3. ( ) c. P 10, 6. Q. Right Angle Trigonometry Trigonometry is an integral part of AP calculus. Students must know the basic trig function definitions in terms of opposite, adjacent and hypotenuse as well as the definitions

More information

Math 2412 Activity 4(Due with Final Exam)

Math 2412 Activity 4(Due with Final Exam) Math Activity (Due with Final Exam) Use properties of similar triangles to find the values of x and y x y 7 7 x 5 x y 7 For the angle in standard position with the point 5, on its terminal side, find the

More information

Multivariate Calculus: Review Problems for Examination Two

Multivariate Calculus: Review Problems for Examination Two Multivariate Calculus: Review Problems for Examination Two Note: Exam Two is on Tuesday, August 16. The coverage is multivariate differential calculus and double integration. You should review the double

More information

Chapter 10 Test Review

Chapter 10 Test Review Name: Class: Date: Chapter 10 Test Review Short Answer 1. Write an equation of a parabola with a vertex at the origin and a focus at ( 2, 0). 2. Write an equation of a parabola with a vertex at the origin

More information

13.1 2/20/2018. Conic Sections. Conic Sections: Parabolas and Circles

13.1 2/20/2018. Conic Sections. Conic Sections: Parabolas and Circles 13 Conic Sections 13.1 Conic Sections: Parabolas and Circles 13.2 Conic Sections: Ellipses 13.3 Conic Sections: Hyperbolas 13.4 Nonlinear Systems of Equations 13.1 Conic Sections: Parabolas and Circles

More information