Saccheri Quadrilaterals

Size: px
Start display at page:

Download "Saccheri Quadrilaterals"

Transcription

1 Saccheri Quadrilaterals efinition: Let be any line segment, and erect two perpendiculars at the endpoints and. ark off points and on these perpendiculars so that and lie on the same side of the line, and =. Join and. The resulting quadrilateral is a Saccheri Quadrilateral. Side is called the base, and the legs, and side the summit. The angles at and are called the summit angles. Lemma: Saccheri Quadrilateral is convex. ~ y construction, and are on the same side of the line, and by PSP, will be as well. If intersected at a point F, one of the triangles ªF or ªF would have two angles of at least measure 90, a contradiction (one of the linear pair of angles at F must be obtuse or right). Finally, if and met at a point E then ªE would be a triangle with two right angles. Thus and must lie entirely on one side of each other. So, G is convex. F

2 Theorem: The summit angles of a Saccheri Quadrilateral are congruent. ~ The SSS version of using SS to prove the base angles of an isosceles triangle are congruent. G G, by SSS, so p p. orollaries: The diagonals of a Saccheri Quadrilateral are congruent. (Proof: ª ª by SS; PF gives =.) The line joining the midpoints of the base and summit of a quadrilateral is the perpendicular bisector of both the base and summit. (Proof: Let and be the midpoints of summit and base, respectively. Use SSS on G and G. The angles at and are congruent by PF, and form a linear pair, so must have measure 90.) If each of the summit angles of a Saccheri Quadrilateral is a right angle, the quadrilateral is a rectangle, and the summit is congruent to the base. (Proof: onsider diagonal. HL gives ª ª so =.)

3 Lemma: If G has right angles at and, then: < iff μp < μp, = iff μp = μp, and > iff μp > μp. ~ If =, G is Saccheri and we have already shown μp = μp. If <, then let E be a point such that *E* and E =. Then GE is Saccheri and μpe = μpe. E is interior to p, so μp > μpe = μpe. ut μpe > μp by exterior angle inequality, so μp > μp. n exactly analogous proof will establish > implies μp > μp. E We now have one direction of each iff statement. ow suppose μp = μp. If, then < or >. ut we have shown this either gives μp > μp or μp < μp, in contradiction to μp = μp. So μp = μp implies =. Similarly, if μp > μp but Ý, then #, and either μp = μp or μp < μp, again contradicting μp > μp. Similarly, μp < μp must imply <. (ote how we got the converse of each implication since the three implications taken together exhaust all the possibilities.)

4 Theorem: If the summit angles of a Saccheri Quadrilateral are acute, the summit has greater length than the base. ~ Given G, connect the midpoints and of summit and base. onsider G, with right angles at and (we proved this above). y the previous lemma, if p is acute, and therefore less than p in measure, >. Similarly, considering G, if p is acute and therefore less than p in measure, >. ombining these, since ** and **, >. ote: If the summit angles are obtuse, we can just as easily, and in the exact same way, prove that the base is longer than the summit. Since we already know that if the summit angles are right, we have a rectangle, with summit and base of equal length, we can summarize in the following way: If the summit angles of a Saccheri Quadrilateral are: acute, the summit is longer than the base right, the summit is equal to the base and the quadrilateral is a rectangle obtuse, the summit is shorter than the base.

5 In absolute geometry, we cannot establish that the summit angles are in fact right angles. ut we can eliminate the obtuse case, and in the process, get another almost Euclidean result. Theorem: The summit angles of a Saccheri Quadrilateral are either acute or right. ~ egin with Saccheri Quadrilateral G, with right angles at and (so below it is drawn upside down relative to how we have usually drawn it). Extend to a point E with **E such that = E. Let be the midpoint of. onsider ªE and ª. Since E = =, and =, we have ªE ª by SS. This means p pe by PF, and so **E (we have previously proved this). Thus we have a triangle ªE, and pe pe. E ow the sum of the summit angles of G is: μpe + μpe + μp. The sum of the angles of triangle ªE is: μpe + pe + μp. ut these sums are equal, since pe pe. Thus, since the angle sum of the triangle is no more than 180, so is the sum of the summit angles. Since the summit angles are equal in measure, they must be acute. orollary: The length of the summit of a Saccheri Quadrilateral is greater than or equal to the length of the base.

6 This lets us now prove one more interesting thing about Saccheri Quadrilaterals: They are, in fact, parallelograms. efinintion: parallelogram is a convex quadrilateral in which opposite sides are parallel. Theorem: Saccheri Quadrilateral is a parallelogram. Outline of proof: We have already noted that lines and cannot meet (if they met at a point F, then ªF would have two right angles). Suppose and were to meet at a point G. Either **G or G**. WLOG suppose **G. Then since the summit angle at is acute, the angle pg, being supplementary, is obtuse. Similarly, the angle pg is supplementary to the right angle at. Thus ªG has two right or obtuse angles, a contradiction. The case for G** is similar. G

7 Theorem: The line joining the midpoints of two sides of a triangle has length less than or equal to one-half of the third side. (ote: in Euclidean geometry, the inequality is replaced by equality.) Outline of proof: Let ª be given, and locate midpoints and of and, respectively. rop perpendiculars from and to line at and, respectively. Since and lie on opposite sides of from, they lie on the same side of and just as for Saccheri Quadrilaterals we can show G is convex. ' '

8 Our next goal is to show that G is in fact a Saccheri Quadrilateral. To do so, we drop a perpendicular from to at point Q. There are three cases: (1) p and p are both acute; (2) one of p and p is right; and (3) one of p and p is obtuse: In ase 1, **Q**. In ase 2, ==Q, and **. In ase 3, Q*** and **. ' ' Q ase 1 ' ' = = Q ase 2 ' Q ' ase 3

9 We ll do ase I here, and leave the others as exercises. 1 2 ' ' Q ow = and = by construction. Since they are vertical angles, pq p and pq p. y H, ªQ ª and ªQ ª. So Q and is a Saccheri Quadrilateral. ow = Q, and = Q. Since **Q**, = + Q + Q + = 2 Q + 2 Q = 2 (Q + Q) = 2, so = ½(). Since is the base and the summit of Saccheri Quadrilateral G, #. Thus, = ½() # ½().

Saccheri Quadrilaterals

Saccheri Quadrilaterals Saccheri Quadrilaterals Definition: Let be any line segment, and erect two perpendiculars at the endpoints A and B. Mark off points C and D on these perpendiculars so that C and D lie on the same side

More information

Hyperbolic Geometry 8.2 Basic Theorems of Hyperbolic Geometry

Hyperbolic Geometry 8.2 Basic Theorems of Hyperbolic Geometry Hyperbolic Geometry 8.2 asic Theorems of Hyperbolic Geometry In these notes we explore the consequences of accepting the Hyperbolic Parallel Postulate: Given a line l and a point P not on l, there is more

More information

Lesson 4.3 Ways of Proving that Quadrilaterals are Parallelograms

Lesson 4.3 Ways of Proving that Quadrilaterals are Parallelograms Lesson 4.3 Ways of Proving that Quadrilaterals are Parallelograms Getting Ready: How will you know whether or not a figure is a parallelogram? By definition, a quadrilateral is a parallelogram if it has

More information

Theorem (NIB), The "The Adjacent Supplementary Angles" Theorem (Converse of Postulate 14) :

Theorem (NIB), The The Adjacent Supplementary Angles Theorem (Converse of Postulate 14) : More on Neutral Geometry I (Including Section 3.3) ( "NI" means "NOT IN OOK" ) Theorem (NI), The "The djacent Supplementary ngles" Theorem (onverse of ostulate 14) : If two adjacent angles are supplementary,

More information

Geometry/Trigonometry Unit 5: Polygon Notes Period:

Geometry/Trigonometry Unit 5: Polygon Notes Period: Geometry/Trigonometry Unit 5: Polygon Notes Name: Date: Period: # (1) Page 270 271 #8 14 Even, #15 20, #27-32 (2) Page 276 1 10, #11 25 Odd (3) Page 276 277 #12 30 Even (4) Page 283 #1-14 All (5) Page

More information

Geometry Ch 7 Quadrilaterals January 06, 2016

Geometry Ch 7 Quadrilaterals January 06, 2016 Theorem 17: Equal corresponding angles mean that lines are parallel. Corollary 1: Equal alternate interior angles mean that lines are parallel. Corollary 2: Supplementary interior angles on the same side

More information

There are three ways to classify triangles based on sides

There are three ways to classify triangles based on sides Unit 4 Notes: Triangles 4-1 Triangle ngle-sum Theorem ngle review, label each angle with the correct classification: Triangle a polygon with three sides. There are two ways to classify triangles: by angles

More information

Ch 4 Review Problems pp #7 36, 48,51,52 due MONDAY 12/12

Ch 4 Review Problems pp #7 36, 48,51,52 due MONDAY 12/12 Geometry 4.4 4.6 ongruence Proofs ecember 08, 2016 h 4 Review Problems pp.176 180 #7 36, 48,51,52 due MONY 12/12 h 5 Review Problems pp. 206 209 #15 50 h 6 Review Problems pp. 250 254 #9 19, 33 53 4.2

More information

An Approach to Geometry (stolen in part from Moise and Downs: Geometry)

An Approach to Geometry (stolen in part from Moise and Downs: Geometry) An Approach to Geometry (stolen in part from Moise and Downs: Geometry) Undefined terms: point, line, plane The rules, axioms, theorems, etc. of elementary algebra are assumed as prior knowledge, and apply

More information

Geometry Review for Test 3 January 13, 2016

Geometry Review for Test 3 January 13, 2016 Homework #7 Due Thursday, 14 January Ch 7 Review, pp. 292 295 #1 53 Test #3 Thurs, 14 Jan Emphasis on Ch 7 except Midsegment Theorem, plus review Betweenness of Rays Theorem Whole is Greater than Part

More information

Proving Theorems about Lines and Angles

Proving Theorems about Lines and Angles Proving Theorems about Lines and Angles Angle Vocabulary Complementary- two angles whose sum is 90 degrees. Supplementary- two angles whose sum is 180 degrees. Congruent angles- two or more angles with

More information

Geometry Unit 6 Properties of Quadrilaterals Classifying Polygons Review

Geometry Unit 6 Properties of Quadrilaterals Classifying Polygons Review Geometry Unit 6 Properties of Quadrilaterals Classifying Polygons Review Polygon a closed plane figure with at least 3 sides that are segments -the sides do not intersect except at the vertices N-gon -

More information

Geometry Practice Questions Semester 1

Geometry Practice Questions Semester 1 Geometry Practice Questions Semester 1 MAFS.912.G-CO.1.1 - Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line,

More information

Geometry - Concepts 9-12 Congruent Triangles and Special Segments

Geometry - Concepts 9-12 Congruent Triangles and Special Segments Geometry - Concepts 9-12 Congruent Triangles and Special Segments Concept 9 Parallel Lines and Triangles (Section 3.5) ANGLE Classifications Acute: Obtuse: Right: SIDE Classifications Scalene: Isosceles:

More information

GEOMETRY is the study of points in space

GEOMETRY is the study of points in space CHAPTER 5 Logic and Geometry SECTION 5-1 Elements of Geometry GEOMETRY is the study of points in space POINT indicates a specific location and is represented by a dot and a letter R S T LINE is a set of

More information

A closed plane figure with at least 3 sides The sides intersect only at their endpoints. Polygon ABCDEF

A closed plane figure with at least 3 sides The sides intersect only at their endpoints. Polygon ABCDEF A closed plane figure with at least 3 sides The sides intersect only at their endpoints B C A D F E Polygon ABCDEF The diagonals of a polygon are the segments that connects one vertex of a polygon to another

More information

22. A parallelogram is a quadrilateral in which both pairs of opposite sides are parallel.

22. A parallelogram is a quadrilateral in which both pairs of opposite sides are parallel. Chapter 4 Quadrilaterals 4.1 Properties of a Parallelogram Definitions 22. A parallelogram is a quadrilateral in which both pairs of opposite sides are parallel. 23. An altitude of a parallelogram is the

More information

POTENTIAL REASONS: Definition of Congruence:

POTENTIAL REASONS: Definition of Congruence: Sec 1.6 CC Geometry Triangle Proofs Name: POTENTIAL REASONS: Definition of Congruence: Having the exact same size and shape and there by having the exact same measures. Definition of Midpoint: The point

More information

Geometry Reasons for Proofs Chapter 1

Geometry Reasons for Proofs Chapter 1 Geometry Reasons for Proofs Chapter 1 Lesson 1.1 Defined Terms: Undefined Terms: Point: Line: Plane: Space: Postulate 1: Postulate : terms that are explained using undefined and/or other defined terms

More information

theorems & postulates & stuff (mr. ko)

theorems & postulates & stuff (mr. ko) theorems & postulates & stuff (mr. ko) postulates 1 ruler postulate The points on a line can be matched one to one with the real numbers. The real number that corresponds to a point is the coordinate of

More information

Example G1: Triangles with circumcenter on a median. Prove that if the circumcenter of a triangle lies on a median, the triangle either is isosceles

Example G1: Triangles with circumcenter on a median. Prove that if the circumcenter of a triangle lies on a median, the triangle either is isosceles 1 Example G1: Triangles with circumcenter on a median. Prove that if the circumcenter of a triangle lies on a median, the triangle either is isosceles or contains a right angle. D D 2 Solution to Example

More information

Elementary Planar Geometry

Elementary Planar Geometry Elementary Planar Geometry What is a geometric solid? It is the part of space occupied by a physical object. A geometric solid is separated from the surrounding space by a surface. A part of the surface

More information

Videos, Constructions, Definitions, Postulates, Theorems, and Properties

Videos, Constructions, Definitions, Postulates, Theorems, and Properties Videos, Constructions, Definitions, Postulates, Theorems, and Properties Videos Proof Overview: http://tinyurl.com/riehlproof Modules 9 and 10: http://tinyurl.com/riehlproof2 Module 9 Review: http://tinyurl.com/module9livelesson-recording

More information

GEOMETRY COORDINATE GEOMETRY Proofs

GEOMETRY COORDINATE GEOMETRY Proofs GEOMETRY COORDINATE GEOMETRY Proofs Name Period 1 Coordinate Proof Help Page Formulas Slope: Distance: To show segments are congruent: Use the distance formula to find the length of the sides and show

More information

CHAPTER 2. Euclidean Geometry

CHAPTER 2. Euclidean Geometry HPTER 2 Euclidean Geometry In this chapter we start off with a very brief review of basic properties of angles, lines, and parallels. When presenting such material, one has to make a choice. One can present

More information

Postulates, Theorems, and Corollaries. Chapter 1

Postulates, Theorems, and Corollaries. Chapter 1 Chapter 1 Post. 1-1-1 Through any two points there is exactly one line. Post. 1-1-2 Through any three noncollinear points there is exactly one plane containing them. Post. 1-1-3 If two points lie in a

More information

MST Topics in History of Mathematics

MST Topics in History of Mathematics MST Topics in History of Mathematics Euclid s Elements and the Works of rchimedes Paul Yiu Department of Mathematics Florida tlantic University Summer 2014 June 30 2.6 ngle properties 11 2.6 ngle properties

More information

The angle measure at for example the vertex A is denoted by m A, or m BAC.

The angle measure at for example the vertex A is denoted by m A, or m BAC. MT 200 ourse notes on Geometry 5 2. Triangles and congruence of triangles 2.1. asic measurements. Three distinct lines, a, b and c, no two of which are parallel, form a triangle. That is, they divide the

More information

Question2: Which statement is true about the two triangles in the diagram?

Question2: Which statement is true about the two triangles in the diagram? Question1: The diagram shows three aid stations in a national park. Choose the values of x, y, and z that COULD represent the distances between the stations. (a) x = 7 miles, y = 8 miles, z = 18 miles

More information

Geometry Chapter 5 Review Sheet

Geometry Chapter 5 Review Sheet Geometry hapter 5 Review Sheet Name: 1. List the 6 properties of the parallelogram. 2. List the 5 ways to prove that a quadrilateral is a parallelogram. 3. Name two properties of the rectangle that are

More information

Chapter 10 Similarity

Chapter 10 Similarity Chapter 10 Similarity Def: The ratio of the number a to the number b is the number. A proportion is an equality between ratios. a, b, c, and d are called the first, second, third, and fourth terms. The

More information

Math Section 001 Winter 2006 Test 2 -Key

Math Section 001 Winter 2006 Test 2 -Key Name: Math 362 - Section 001 Winter 2006 Test 2 -Key Closed Book / Closed Note. Write your answers on the test itself. Take the test in one sitting. It should take you no more than two hours. Part I: Circle

More information

U4 Polygon Notes January 11, 2017 Unit 4: Polygons

U4 Polygon Notes January 11, 2017 Unit 4: Polygons Unit 4: Polygons 180 Complimentary Opposite exterior Practice Makes Perfect! Example: Example: Practice Makes Perfect! Def: Midsegment of a triangle - a segment that connects the midpoints of two sides

More information

MANHATTAN HUNTER SCIENCE HIGH SCHOOL GEOMETRY CURRICULUM

MANHATTAN HUNTER SCIENCE HIGH SCHOOL GEOMETRY CURRICULUM COORDINATE Geometry Plotting points on the coordinate plane. Using the Distance Formula: Investigate, and apply the Pythagorean Theorem as it relates to the distance formula. (G.GPE.7, 8.G.B.7, 8.G.B.8)

More information

GEOMETRY POSTULATES AND THEOREMS. Postulate 1: Through any two points, there is exactly one line.

GEOMETRY POSTULATES AND THEOREMS. Postulate 1: Through any two points, there is exactly one line. GEOMETRY POSTULATES AND THEOREMS Postulate 1: Through any two points, there is exactly one line. Postulate 2: The measure of any line segment is a unique positive number. The measure (or length) of AB

More information

MTH 362 Study Guide Exam 1 System of Euclidean Geometry 1. Describe the building blocks of Euclidean geometry. a. Point, line, and plane - undefined

MTH 362 Study Guide Exam 1 System of Euclidean Geometry 1. Describe the building blocks of Euclidean geometry. a. Point, line, and plane - undefined MTH 362 Study Guide Exam 1 System of Euclidean Geometry 1. Describe the building blocks of Euclidean geometry. a. Point, line, and plane - undefined terms used to create definitions. Definitions are used

More information

Instructional Unit CPM Geometry Unit Content Objective Performance Indicator Performance Task State Standards Code:

Instructional Unit CPM Geometry Unit Content Objective Performance Indicator Performance Task State Standards Code: 306 Instructional Unit Area 1. Areas of Squares and The students will be -Find the amount of carpet 2.4.11 E Rectangles able to determine the needed to cover various plane 2. Areas of Parallelograms and

More information

Definition (Axiomatic System). An axiomatic system (a set of axioms and their logical consequences) consists of:

Definition (Axiomatic System). An axiomatic system (a set of axioms and their logical consequences) consists of: Course Overview Contents 1 AxiomaticSystems.............................. 1 2 Undefined Terms............................... 2 3 Incidence................................... 2 4 Distance....................................

More information

Geometry Definitions, Postulates, and Theorems. Chapter 3: Parallel and Perpendicular Lines. Section 3.1: Identify Pairs of Lines and Angles.

Geometry Definitions, Postulates, and Theorems. Chapter 3: Parallel and Perpendicular Lines. Section 3.1: Identify Pairs of Lines and Angles. Geometry Definitions, Postulates, and Theorems Chapter : Parallel and Perpendicular Lines Section.1: Identify Pairs of Lines and Angles Standards: Prepare for 7.0 Students prove and use theorems involving

More information

6.1 What is a Polygon?

6.1 What is a Polygon? 6. What is a Polygon? Unit 6 Polygons and Quadrilaterals Regular polygon - Polygon Names: # sides Name 3 4 raw hexagon RPTOE 5 6 7 8 9 0 Name the vertices: Name the sides: Name the diagonals containing

More information

UNIT 1 SIMILARITY, CONGRUENCE, AND PROOFS Lesson 10: Proving Theorems About Parallelograms Instruction

UNIT 1 SIMILARITY, CONGRUENCE, AND PROOFS Lesson 10: Proving Theorems About Parallelograms Instruction Prerequisite Skills This lesson requires the use of the following skills: applying angle relationships in parallel lines intersected by a transversal applying triangle congruence postulates applying triangle

More information

Unit 3: Triangles and Polygons

Unit 3: Triangles and Polygons Unit 3: Triangles and Polygons Background for Standard G.CO.9: Prove theorems about triangles. Objective: By the end of class, I should Example 1: Trapezoid on the coordinate plane below has the following

More information

added to equal quantities, their sum is equal. Same holds for congruence.

added to equal quantities, their sum is equal. Same holds for congruence. Mr. Cheung s Geometry Cheat Sheet Theorem List Version 6.0 Updated 3/14/14 (The following is to be used as a guideline. The rest you need to look up on your own, but hopefully this will help. The original

More information

Hyperbolic Geometry. Chaper Hyperbolic Geometry

Hyperbolic Geometry. Chaper Hyperbolic Geometry Hyperbolic Geometry Chaper 6.1-6.6 Hyperbolic Geometry Theorems Unique to Hyperbolic Geometry Now we assume Hyperbolic Parallel Postulate (HPP - p21) With the HPP we get for free all the negations of the

More information

BD separates ABC into two parts ( 1 and 2 ),then the measure

BD separates ABC into two parts ( 1 and 2 ),then the measure M 1312 section 3.5 1 Inequalities in a Triangle Definition: Let a and b be real numbers a > b if and only if there is a positive number p for which a = b + p Example 1: 7 > 2 and 5 is a positive number

More information

Angles. Classification Acute Right Obtuse. Complementary s 2 s whose sum is 90 Supplementary s 2 s whose sum is 180. Angle Addition Postulate

Angles. Classification Acute Right Obtuse. Complementary s 2 s whose sum is 90 Supplementary s 2 s whose sum is 180. Angle Addition Postulate ngles Classification cute Right Obtuse Complementary s 2 s whose sum is 90 Supplementary s 2 s whose sum is 180 ngle ddition Postulate If the exterior sides of two adj s lie in a line, they are supplementary

More information

FIGURES FOR SOLUTIONS TO SELECTED EXERCISES. V : Introduction to non Euclidean geometry

FIGURES FOR SOLUTIONS TO SELECTED EXERCISES. V : Introduction to non Euclidean geometry FIGURES FOR SOLUTIONS TO SELECTED EXERCISES V : Introduction to non Euclidean geometry V.1 : Facts from spherical geometry V.1.1. The objective is to show that the minor arc m does not contain a pair of

More information

Index COPYRIGHTED MATERIAL. Symbols & Numerics

Index COPYRIGHTED MATERIAL. Symbols & Numerics Symbols & Numerics. (dot) character, point representation, 37 symbol, perpendicular lines, 54 // (double forward slash) symbol, parallel lines, 54, 60 : (colon) character, ratio of quantity representation

More information

Lines Plane A flat surface that has no thickness and extends forever.

Lines Plane A flat surface that has no thickness and extends forever. Lines Plane A flat surface that has no thickness and extends forever. Point an exact location Line a straight path that has no thickness and extends forever in opposite directions Ray Part of a line that

More information

Proving Lines Parallel

Proving Lines Parallel Proving Lines Parallel Proving Triangles ongruent 1 Proving Triangles ongruent We know that the opposite sides of a parallelogram are congruent. What about the converse? If we had a quadrilateral whose

More information

Chapter. Triangles. Copyright Cengage Learning. All rights reserved.

Chapter. Triangles. Copyright Cengage Learning. All rights reserved. Chapter 3 Triangles Copyright Cengage Learning. All rights reserved. 3.3 Isosceles Triangles Copyright Cengage Learning. All rights reserved. In an isosceles triangle, the two sides of equal length are

More information

Carnegie Learning High School Math Series: Geometry Indiana Standards Worktext Correlations

Carnegie Learning High School Math Series: Geometry Indiana Standards Worktext Correlations Carnegie Learning High School Math Series: Logic and Proofs G.LP.1 Understand and describe the structure of and relationships within an axiomatic system (undefined terms, definitions, axioms and postulates,

More information

H.Geometry Chapter 4 Definition Sheet

H.Geometry Chapter 4 Definition Sheet Section 4.1 Triangle Sum Theorem The sum of the measure of the angles in a triangle is Conclusions Justification Third Angle Theorem If two angles in one triangle are to two angles in another triangle,

More information

SOME IMPORTANT PROPERTIES/CONCEPTS OF GEOMETRY (Compiled by Ronnie Bansal)

SOME IMPORTANT PROPERTIES/CONCEPTS OF GEOMETRY (Compiled by Ronnie Bansal) 1 SOME IMPORTANT PROPERTIES/CONCEPTS OF GEOMETRY (Compiled by Ronnie Bansal) 1. Basic Terms and Definitions: a) Line-segment: A part of a line with two end points is called a line-segment. b) Ray: A part

More information

Polygons are named by the number of sides they have:

Polygons are named by the number of sides they have: Unit 5 Lesson 1 Polygons and Angle Measures I. What is a polygon? (Page 322) A polygon is a figure that meets the following conditions: It is formed by or more segments called, such that no two sides with

More information

Polygon. Note: Each segment is called a side. Each endpoint is called a vertex.

Polygon. Note: Each segment is called a side. Each endpoint is called a vertex. Polygons Polygon A closed plane figure formed by 3 or more segments. Each segment intersects exactly 2 other segments at their endpoints. No 2 segments with a common endpoint are collinear. Note: Each

More information

Points, lines, angles

Points, lines, angles Points, lines, angles Point Line Line segment Parallel Lines Perpendicular lines Vertex Angle Full Turn An exact location. A point does not have any parts. A straight length that extends infinitely in

More information

Geometry Definitions, Postulates, and Theorems. Chapter 4: Congruent Triangles. Section 4.1: Apply Triangle Sum Properties

Geometry Definitions, Postulates, and Theorems. Chapter 4: Congruent Triangles. Section 4.1: Apply Triangle Sum Properties Geometry efinitions, Postulates, and Theorems Key hapter 4: ongruent Triangles Section 4.1: pply Triangle Sum Properties Standards: 12.0 Students find and use measures of sides and of interior and exterior

More information

Any questions about the material so far? About the exercises?

Any questions about the material so far? About the exercises? Any questions about the material so far? About the exercises? Here is a question for you. In the diagram on the board, DE is parallel to AC, DB = 4, AB = 9 and BE = 8. What is the length EC? Polygons Definitions:

More information

Maintaining Mathematical Proficiency

Maintaining Mathematical Proficiency Name ate hapter 7 Maintaining Mathematical Proficiency Solve the equation by interpreting the expression in parentheses as a single quantity. 1. 5( 10 x) = 100 2. 6( x + 8) 12 = 48 3. ( x) ( x) 32 + 42

More information

Pearson Mathematics Geometry

Pearson Mathematics Geometry A Correlation of Pearson Mathematics Geometry Indiana 2017 To the INDIANA ACADEMIC STANDARDS Mathematics (2014) Geometry The following shows where all of the standards that are part of the Indiana Mathematics

More information

Geometry SOL Study Sheet. 1. Slope: ! y 1 x 2. m = y 2. ! x Midpoint: + x y 2 2. midpoint = ( x 1. , y Distance: (x 2 ) 2

Geometry SOL Study Sheet. 1. Slope: ! y 1 x 2. m = y 2. ! x Midpoint: + x y 2 2. midpoint = ( x 1. , y Distance: (x 2 ) 2 Geometry SOL Study Sheet 1. Slope: 2. Midpoint: 3. Distance: m = y 2! y 1 x 2! x 1 midpoint = ( x 1 + x 2 2, y 1 + y 2 2 ) d = (x 2! x 1 ) 2 + (y 2! y 1 ) 2 4. Sum of Interior Angles (Convex Polygons):

More information

1. A statement is a set of words and/or symbols that collectively make a claim that can be classified as true or false.

1. A statement is a set of words and/or symbols that collectively make a claim that can be classified as true or false. Chapter 1 Line and Angle Relationships 1.1 Sets, Statements and Reasoning Definitions 1. A statement is a set of words and/or symbols that collectively make a claim that can be classified as true or false.

More information

B. Algebraic Properties Reflexive, symmetric, transitive, substitution, addition, subtraction, multiplication, division

B. Algebraic Properties Reflexive, symmetric, transitive, substitution, addition, subtraction, multiplication, division . efinitions 1) cute angle ) cute triangle 3) djacent angles 4) lternate exterior angles 5) lternate interior angles 6) ltitude of a triangle 7) ngle ) ngle bisector of a triangle 9) ngles bisector 10)

More information

Triangle Theorem Notes. Warm Up. List 5 things you think you know about triangles.

Triangle Theorem Notes. Warm Up. List 5 things you think you know about triangles. Warm Up List 5 things you think you know about triangles. Standards for this week: CO.10 Prove theorems about and classify triangles. Theorems include: measures of interior angles of a triangle sum to

More information

MATH 113 Section 8.2: Two-Dimensional Figures

MATH 113 Section 8.2: Two-Dimensional Figures MATH 113 Section 8.2: Two-Dimensional Figures Prof. Jonathan Duncan Walla Walla University Winter Quarter, 2008 Outline 1 Classifying Two-Dimensional Shapes 2 Polygons Triangles Quadrilaterals 3 Other

More information

Chapter 1. Euclid s Elements, Book I (constructions)

Chapter 1. Euclid s Elements, Book I (constructions) hapter 1 uclid s lements, ook I (constructions) 102 uclid s lements, ook I (constructions) 1.1 The use of ruler and compass uclid s lements can be read as a book on how to construct certain geometric figures

More information

Segment Addition Postulate: If B is BETWEEN A and C, then AB + BC = AC. If AB + BC = AC, then B is BETWEEN A and C.

Segment Addition Postulate: If B is BETWEEN A and C, then AB + BC = AC. If AB + BC = AC, then B is BETWEEN A and C. Ruler Postulate: The points on a line can be matched one to one with the REAL numbers. The REAL number that corresponds to a point is the COORDINATE of the point. The DISTANCE between points A and B, written

More information

Geometry Cheat Sheet

Geometry Cheat Sheet Geometry Cheat Sheet Chapter 1 Postulate 1-6 Segment Addition Postulate - If three points A, B, and C are collinear and B is between A and C, then AB + BC = AC. Postulate 1-7 Angle Addition Postulate -

More information

Warm-Up 3/30/ What is the measure of angle ABC.

Warm-Up 3/30/ What is the measure of angle ABC. enchmark #3 Review Warm-Up 3/30/15 1. 2. What is the measure of angle. Warm-Up 3/31/15 1. 2. Five exterior angles of a convex hexagon have measure 74, 84, 42, 13, 26. What is the measure of the 6 th exterior

More information

Chapter 1-2 Points, Lines, and Planes

Chapter 1-2 Points, Lines, and Planes Chapter 1-2 Points, Lines, and Planes Undefined Terms: A point has no size but is often represented by a dot and usually named by a capital letter.. A A line extends in two directions without ending. Lines

More information

Geometry Third Quarter Study Guide

Geometry Third Quarter Study Guide Geometry Third Quarter Study Guide 1. Write the if-then form, the converse, the inverse and the contrapositive for the given statement: All right angles are congruent. 2. Find the measures of angles A,

More information

Department: Course: Chapter 1

Department: Course: Chapter 1 Department: Course: 2016-2017 Term, Phrase, or Expression Simple Definition Chapter 1 Comprehension Support Point Line plane collinear coplanar A location in space. It does not have a size or shape The

More information

a triangle with all acute angles acute triangle angles that share a common side and vertex adjacent angles alternate exterior angles

a triangle with all acute angles acute triangle angles that share a common side and vertex adjacent angles alternate exterior angles acute triangle a triangle with all acute angles adjacent angles angles that share a common side and vertex alternate exterior angles two non-adjacent exterior angles on opposite sides of the transversal;

More information

6-1 Study Guide and Intervention Angles of Polygons

6-1 Study Guide and Intervention Angles of Polygons 6-1 Study Guide and Intervention Angles of Polygons Polygon Interior Angles Sum The segments that connect the nonconsecutive vertices of a polygon are called diagonals. Drawing all of the diagonals from

More information

What is a(n); 2. acute angle 2. An angle less than 90 but greater than 0

What is a(n); 2. acute angle 2. An angle less than 90 but greater than 0 Geometry Review Packet Semester Final Name Section.. Name all the ways you can name the following ray:., Section.2 What is a(n); 2. acute angle 2. n angle less than 90 but greater than 0 3. right angle

More information

FGCU Invitational Geometry Individual 2014

FGCU Invitational Geometry Individual 2014 All numbers are assumed to be real. Diagrams are not drawn to scale. For all questions, NOTA represents none of the above answers is correct. For problems 1 and 2, refer to the figure in which AC BC and

More information

Geometry Final Exam - Study Guide

Geometry Final Exam - Study Guide Geometry Final Exam - Study Guide 1. Solve for x. True or False? (questions 2-5) 2. All rectangles are rhombuses. 3. If a quadrilateral is a kite, then it is a parallelogram. 4. If two parallel lines are

More information

Geometry. Slide 1 / 343. Slide 2 / 343. Slide 3 / 343. Quadrilaterals. Table of Contents

Geometry. Slide 1 / 343. Slide 2 / 343. Slide 3 / 343. Quadrilaterals. Table of Contents Slide 1 / 343 Slide 2 / 343 Geometry Quadrilaterals 2015-10-27 www.njctl.org Table of ontents Polygons Properties of Parallelograms Proving Quadrilaterals are Parallelograms Rhombi, Rectangles and Squares

More information

Theorems & Postulates Math Fundamentals Reference Sheet Page 1

Theorems & Postulates Math Fundamentals Reference Sheet Page 1 Math Fundamentals Reference Sheet Page 1 30-60 -90 Triangle In a 30-60 -90 triangle, the length of the hypotenuse is two times the length of the shorter leg, and the length of the longer leg is the length

More information

B M. and Quad Quad MNOP

B M.  and Quad Quad MNOP hapter 7 ongruence Postulates &Theorems -Δ s In math, the word congruent is used to describe objects that have the same size and shape. When you traced things when you were a little kid, you were using

More information

Assumption High School. Bell Work. Academic institution promoting High expectations resulting in Successful students

Assumption High School. Bell Work. Academic institution promoting High expectations resulting in Successful students Bell Work Geometry 2016 2017 Day 36 Topic: Chapter 4 Congruent Figures Chapter 6 Polygons & Quads Chapter 4 Big Ideas Visualization Visualization can help you connect properties of real objects with two-dimensional

More information

The side that is opposite the vertex angle is the base of the isosceles triangle.

The side that is opposite the vertex angle is the base of the isosceles triangle. Unit 5, Lesson 6. Proving Theorems about Triangles Isosceles triangles can be seen throughout our daily lives in structures, supports, architectural details, and even bicycle frames. Isosceles triangles

More information

14. How many sides does a regular polygon have, if the measure of an interior angle is 60?

14. How many sides does a regular polygon have, if the measure of an interior angle is 60? State whether the figure is a polygon; if it is a polygon, state whether the polygon is convex or concave. HINT: No curves, no gaps, and no overlaps! 1. 2. 3. 4. Find the indicated measures of the polygon.

More information

Rectilinear Figures. Introduction

Rectilinear Figures. Introduction 2 Rectilinear Figures Introduction If we put the sharp tip of a pencil on a sheet of paper and move from one point to the other, without lifting the pencil, then the shapes so formed are called plane curves.

More information

Florida Association of Mu Alpha Theta January 2017 Geometry Team Solutions

Florida Association of Mu Alpha Theta January 2017 Geometry Team Solutions Geometry Team Solutions Florida ssociation of Mu lpha Theta January 017 Regional Team nswer Key Florida ssociation of Mu lpha Theta January 017 Geometry Team Solutions Question arts () () () () Question

More information

Capter 6 Review Sheet. 1. Given the diagram, what postulate or theorem would be used to prove that AP = CP?

Capter 6 Review Sheet. 1. Given the diagram, what postulate or theorem would be used to prove that AP = CP? apter 6 Review Sheet Name: ate: 1. Given the diagram, what postulate or theorem would be used to prove that P = P? 4.. S. SSS.. SS 2. Given the diagram, what postulate or theorem would be used to prove

More information

Geometry Review for Semester 1 Final Exam

Geometry Review for Semester 1 Final Exam Name Class Test Date POINTS, LINES & PLANES: Geometry Review for Semester 1 Final Exam Use the diagram at the right for Exercises 1 3. Note that in this diagram ST plane at T. The point S is not contained

More information

UNIT 5 SIMILARITY AND CONGRUENCE

UNIT 5 SIMILARITY AND CONGRUENCE UNIT 5 SIMILARITY AND CONGRUENCE M2 Ch. 2, 3, 4, 6 and M1 Ch. 13 5.1 Parallel Lines Objective When parallel lines are cut by a transversal, I will be able to identify angle relationships, determine whether

More information

Basic Euclidean Geometry

Basic Euclidean Geometry hapter 1 asic Euclidean Geometry This chapter is not intended to be a complete survey of basic Euclidean Geometry, but rather a review for those who have previously taken a geometry course For a definitive

More information

Semester Test Topic Review. Correct Version

Semester Test Topic Review. Correct Version Semester Test Topic Review Correct Version List of Questions Questions to answer: What does the perpendicular bisector theorem say? What is true about the slopes of parallel lines? What is true about the

More information

GEOMETRY. PARALLEL LINES Theorems Theorem 1: If a pair of parallel lines is cut by a transversal, then corresponding angles are equal.

GEOMETRY. PARALLEL LINES Theorems Theorem 1: If a pair of parallel lines is cut by a transversal, then corresponding angles are equal. GOMTRY RLLL LINS Theorems Theorem 1: If a pair of parallel lines is cut by a transversal, then corresponding angles are equal. Theorem 2: If a pair of parallel lines is cut by a transversal, then the alternate

More information

Geometry ~ Unit 2. Lines, Angles, and Triangles *CISD Safety Net Standards: G.6D

Geometry ~ Unit 2. Lines, Angles, and Triangles *CISD Safety Net Standards: G.6D Lines, Angles, and Triangles *CISD Safety Net Standards: G.6D Title Suggested Time Frame 1 st and 2 nd Six Weeks Suggested Duration: 30 Days Geometry Big Ideas/Enduring Understandings Module 4 Parallel

More information

- DF is a perpendicular bisector of AB in ABC D

- DF is a perpendicular bisector of AB in ABC D Geometry 5-1 isectors, Medians, and ltitudes. Special Segments 1. Perpendicular -the perpendicular bisector does what it sounds like, it is perpendicular to a segment and it bisects the segment. - DF is

More information

Slide 1 / 343 Slide 2 / 343

Slide 1 / 343 Slide 2 / 343 Slide 1 / 343 Slide 2 / 343 Geometry Quadrilaterals 2015-10-27 www.njctl.org Slide 3 / 343 Table of ontents Polygons Properties of Parallelograms Proving Quadrilaterals are Parallelograms Rhombi, Rectangles

More information

Plane Geometry. Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2011

Plane Geometry. Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2011 lane Geometry aul Yiu epartment of Mathematics Florida tlantic University Summer 2011 NTENTS 101 Theorem 1 If a straight line stands on another straight line, the sum of the adjacent angles so formed is

More information

Objectives: (What You ll Learn) Identify and model points, lines, planes Identify collinear and coplanar points, intersecting lines and planes

Objectives: (What You ll Learn) Identify and model points, lines, planes Identify collinear and coplanar points, intersecting lines and planes Geometry Chapter 1 Outline: Points, Lines, Planes, & Angles A. 1-1 Points, Lines, and Planes (What You ll Learn) Identify and model points, lines, planes Identify collinear and coplanar points, intersecting

More information

Lesson 9: Coordinate Proof - Quadrilaterals Learning Targets

Lesson 9: Coordinate Proof - Quadrilaterals Learning Targets Lesson 9: Coordinate Proof - Quadrilaterals Learning Targets Using coordinates, I can find the intersection of the medians of a triangle that meet at a point that is two-thirds of the way along each median

More information

Geometry Honors. Midterm Review

Geometry Honors. Midterm Review eometry onors Midterm Review lass: ate: eometry onors Midterm Review Multiple hoice Identify the choice that best completes the statement or answers the question. 1 What is the contrapositive of the statement

More information

Geometry (H) Worksheet: 1st Semester Review:True/False, Always/Sometimes/Never

Geometry (H) Worksheet: 1st Semester Review:True/False, Always/Sometimes/Never 1stSemesterReviewTrueFalse.nb 1 Geometry (H) Worksheet: 1st Semester Review:True/False, Always/Sometimes/Never Classify each statement as TRUE or FALSE. 1. Three given points are always coplanar. 2. A

More information