Recent Developments in Model-based Derivative-free Optimization

Size: px
Start display at page:

Download "Recent Developments in Model-based Derivative-free Optimization"

Transcription

1 Recent Developments in Model-based Derivative-free Optimization Seppo Pulkkinen April 23, 2010

2 Introduction Problem definition The problem we are considering is a nonlinear optimization problem with constraints: min x R n f : Rn R l i x i u i, i = 1,..., n, Ax b. We also assume that the objective function is nonconvex and not necessarily differentiable. is expensive to evaluate.

3 A Motivating Example: Image Matching Problem Given two consequent images and a region in the first image, find a matching region from the second image: Practical considerations: Difficult to find invariant measures between the images. The transformations between the images can be large. The images may be contaminated with noise.

4 Image Matching Problem: A Simple Mathematical Formulation Problem definition The aim is to find transformation parameters giving the best fit between the matched regions by solving the problem min p x Ω x I 1 (x ) I 2 (x + T (x, p)) 2. This is a nonconvex nonlinear optimization problem having a large number of local minima. nondifferentiable objective function. possibly constraints enforcing the smoothness of the solution. Implication: Local gradient-based methods are not really usable for such problems.

5 Problems With Noisy Data Smooth Noisy Consider a difference approximation of the form f f (x + he i) f (x). x i h Clearly, any local gradient approximations become unusable in the presence of noise.

6 The Traditional Approach - Taylor Series Approximations Most gradient-based algorithms employ the quadratic Taylor series approximation m(x + s) = f (x) + f (x) T s st H(x)s. This can expressed in a more generic form, that is m(x + s) = c + b T s st As, where c R, b R n and A R n n. Problem: Can the model parameters c, b and A be estimated without evaluating derivatives?

7 Interpolation-based Methods An alternative approach: Determine the model parameters c, b and A from interpolation equations m(x + y i ) = f (x + y i ), i = 1,..., Y, where Y = {y 1,..., y m } is the set of interpolation points. A model defined by the above equations only requires that f can be evaluated at the given points: no derivatives are needed. is not restricted to the small neighbourhood of x.

8 Limitations of Quadratic Models Quadratic interpolation models have several limitations: The need to solve O(n 2 ) parameters from interpolation equations. Updating the model parameters has complexity of O(n 4 ). The interpolation set must be well-poised, which leads to complex geometric conditions. Quadratic models are essentially local: they cannot model multimodal behaviour of a nonconvex function. Problem: Is there a model function that requires only O(n) parameters. requires only mild conditions for well-poisedness. can approximate functions with multiple local minima.

9 Improvement: Underdetermined Quadratic Models An alternative approach is to determine only the diagonal elements of the matrix A from interpolation equations. The off-diagonal elements of the matrix A are approximated by using the minimum Frobenius norm method (Powell, 2004, Wild, 2008). Requires only 2n + 1 model parameters. The amount of work per iteration is O(n 3 ) (Powell, 2004). Analogous to quasi-newton methods. However... this approach still has the limitations of quadratic models: it gives only local approximations.

10 A Novel Approach - Radial Basis Function Models RBF Model Function A typical radial basis function model is of the form Y m(x + s) = λ i φ( s y i ) + p(s), i=1 where λ i are weighting coefficients and p is a low-order polynomial. Such a model function addresses the questions posed above: The minimum number of interpolation points is n + 2. Can use an arbitrary number of interpolation points. Ideal for approximating functions with multiple minima.

11 Radial Basis Functions: Overview The choice of the radial basis function φ is crucial for the accuracy and numerical stability of the approximation. Commonly used radial basis functions: φ(r) = r linear φ(r) = r 3 cubic φ(r) = r 2 log r thin plate φ(r) = (γr 2 + 1) 3 2 multiquadric φ(r) = exp γr 2 gaussian r 0. Other important applications of radial basis functions are solving partial differential equations. neural networks.

12 An Illustrative Example RBF Interpolation with 30 randomly chosen interpolation points, Rastrigin function: 1.0 Function RBF model

13 An Illustrative Example Function RBF model Model Radial basis function models yield global approximations of the objective function. increasingly accurate approximations as the number of interpolation points increases.

14 Limiting Functions of Flat RBF Models (1) Examples of RBF models with adjustable shape parameter: φ(r) = (γr 2 + 1) 3 2 φ(r) = e γr 2 multiquadric gaussian The limit γ 0 (Fornberg et al., 2004): When Y = (n+1)(n+2) 2, the limit γ 0 yields under certain conditions a quadratic polynomial, i.e. Y lim γ 0 i=1 λ i φ( s y i, γ) + p(s) = 1 2 st As + b T s + c. Implication: RBF models yield accurate local approximations by letting γ 0 near a minimum.

15 Limiting Functions of flat RBF Models (2) Function Multiquadric RBF model (γ=5) Multiquadric RBF model (γ=0.05) 180 Quadratic model

16 Geomeric Conditions for RBF Interpolation (1) We are particularly interested in multiquadric RBF models Y m(x + s) = λ i (γ s y i 2 + 1) g T s + c, i=1 where the linear polynomial tail guarantees an unique interpolant (Powell, 1992). provides an estimate for the function gradient. The interpolation equations uniquely determining the model parameters are: m(x + y i ) = f (x + y i ), i = 1,..., Y Y λ i p j (y i ) = 0, j = 1,..., n + 1 i=1

17 Geomeric Conditions for RBF Interpolation (2) We denote the linear tail p(s) by n+1 i=1 c ip i (s), where {p 1,..., p n+1 } span the linear polynomial space. The interpolation equations in matrix form are [ ] [ ] Φ Π λ Π T = F, 0 c where λ = λ 1. λ Y, c = c 1. c n+1, F = f (x + y 1 ). f (x + y Y ). and Φ ij = φ( y i y j ), Π ij = p i (y j ).

18 Geomeric Conditions for RBF Interpolation (3) Necessary conditions A necessary condition for an unique solution of the interpolation equations is that rank(π) n + 1, or equivalently, at a least subset consisting of n + 1 points is linearly independent. Two approaches for ensuring this poisedness condition can be found in the literature: 1 Apply correction steps for improving the quality of the model (Powell, 2004, Scheinberg et al., 2009). 2 Avoid inserting any bad interpolation points (Marazzi and Nocedal, 2002).

19 The Trust Region Framework (1) Idea: Define a region in which the model can be considered reliable. Contour lines of f An iterative algorithm: Each new iterate x k+1 is defined by x k+1 = x k + s k, where s k minimizes the model within the current trust region.

20 The Trust Region Framework (2) Mathematical formulation: Solve the minimization problem s = arg min s {m k (x k + s) x k + s B k }, where the spherical trust region B k is defined as B k = {x F x x k < k }, and F is the set of feasible points. Also adjust the trust region radius k, if necessary: If the step s leads to sufficiently smaller function value, increase the radius, set k+1 > k. Otherwise, shrink the trust region, set k+1 < k.

21 Updating the Model Under Geometric Constraints The Constraint Condition: S = span({y 1,..., y n+1 } \ {y }). Compute vector ˆn that is orthonormal to S. The feasible region containing sufficiently linearly independent points is defined by infeasible region F = {x B k x T ˆn > γ x }. The Idea of The Algorithm: Replace some interpolation point y with a better point y +, for example, y + = s k.

22 The Special Structure of RBF Models Motivation RBF models are linear combinations of convex and concave functions. Hence, it seems natural to express the model function in the decomposed form m(x) = g(x) h(x), where g and h are convex. Implications This special structure allows developing efficient d.c. (diff-convex) algorithms for minimizing the RBF model function.

23 Diff-convex Decompositions of RBF Models The following decompositions of RBF models have been proposed in the literature (Hoai An, Vaz and Vicente, 2009): Separation of convex and concave terms: g(x) = λ i 0 λ i φ( x y i ) + p(x), h(x) = λ i <0( λ i )φ( x y i ) Regularization approach: g(x) = ρ 2 x 2 + p(x), Y h(x) = ρ 2 x 2 λ i φ( x y i ) i=1

24 The d.c. Algorithm: Preliminaries g(x) g(x)-h(x) -h(x) x The Idea of the d.c. Algorithm: Replace the concave term h(x) of f (x) = g(x) h(x) with its linear approximation, let f (x) g(x) (h(x 0 ) + h(x 0 )(x x 0 )).

25 The d.c. Algorithm: Mathematical Formulation Statement of the Algorithm: Iteratively solve the problem x k+1 = arg min x F {g(x) (h(x k) + (x x k ) T y k )}, where y k = h(x k ). Using this formulation can be beneficial, if the new problem is easier to solve can be solved more efficiently than the original problem.

26 Convexification: An Illustrative Example Idea: Convexify the function by adding a convex term ρ 2 x 2 with a large enough parameter ρ to it.

27 The d.c. Algorithm: Regularization Approach With the regularized d.c. decomposition, solving the linearized minimization problem x k+1 = arg min x F {g(x) (h(x k) + (x x k ) T y k )}, is equivalent to solving x k+1 = arg min x (x O + y k g ), x F ρ which is the projection of the term x O + y k g ρ to the set F. We have a gradient descent method requiring no line search. a convenient way to handle constraints.

28 How to determine the Regularization Parameter ρ? The sufficient condition for convexity of h The convexity of h within the trust region B is guaranteed, if ρ max x B 2 h (x), where Y h (x) = λ i φ( x y i ). i=1 It is possible to derive an upper bound for the minimum ρ that ensures convexity. When ρ gives an accurate estimate, the algorithm converges rapidly.

29 Thank you! Questions?

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS18 Lecture 2: Linear Regression Gradient Descent Non-linear basis functions LINEAR REGRESSION MOTIVATION Why Linear Regression? Simplest

More information

COMPUTATIONAL INTELLIGENCE (CS) (INTRODUCTION TO MACHINE LEARNING) SS16. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions

COMPUTATIONAL INTELLIGENCE (CS) (INTRODUCTION TO MACHINE LEARNING) SS16. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions COMPUTATIONAL INTELLIGENCE (CS) (INTRODUCTION TO MACHINE LEARNING) SS16 Lecture 2: Linear Regression Gradient Descent Non-linear basis functions LINEAR REGRESSION MOTIVATION Why Linear Regression? Regression

More information

A Random Variable Shape Parameter Strategy for Radial Basis Function Approximation Methods

A Random Variable Shape Parameter Strategy for Radial Basis Function Approximation Methods A Random Variable Shape Parameter Strategy for Radial Basis Function Approximation Methods Scott A. Sarra, Derek Sturgill Marshall University, Department of Mathematics, One John Marshall Drive, Huntington

More information

CS 450 Numerical Analysis. Chapter 7: Interpolation

CS 450 Numerical Analysis. Chapter 7: Interpolation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

Convexization in Markov Chain Monte Carlo

Convexization in Markov Chain Monte Carlo in Markov Chain Monte Carlo 1 IBM T. J. Watson Yorktown Heights, NY 2 Department of Aerospace Engineering Technion, Israel August 23, 2011 Problem Statement MCMC processes in general are governed by non

More information

Optimization. Industrial AI Lab.

Optimization. Industrial AI Lab. Optimization Industrial AI Lab. Optimization An important tool in 1) Engineering problem solving and 2) Decision science People optimize Nature optimizes 2 Optimization People optimize (source: http://nautil.us/blog/to-save-drowning-people-ask-yourself-what-would-light-do)

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Problems; Algorithms - C) SUVRIT SRA Massachusetts Institute of Technology PKU Summer School on Data Science (July 2017) Course materials http://suvrit.de/teaching.html

More information

Learning a classification of Mixed-Integer Quadratic Programming problems

Learning a classification of Mixed-Integer Quadratic Programming problems Learning a classification of Mixed-Integer Quadratic Programming problems CERMICS 2018 June 29, 2018, Fréjus Pierre Bonami 1, Andrea Lodi 2, Giulia Zarpellon 2 1 CPLEX Optimization, IBM Spain 2 Polytechnique

More information

Locally Weighted Least Squares Regression for Image Denoising, Reconstruction and Up-sampling

Locally Weighted Least Squares Regression for Image Denoising, Reconstruction and Up-sampling Locally Weighted Least Squares Regression for Image Denoising, Reconstruction and Up-sampling Moritz Baecher May 15, 29 1 Introduction Edge-preserving smoothing and super-resolution are classic and important

More information

SYSTEMS OF NONLINEAR EQUATIONS

SYSTEMS OF NONLINEAR EQUATIONS SYSTEMS OF NONLINEAR EQUATIONS Widely used in the mathematical modeling of real world phenomena. We introduce some numerical methods for their solution. For better intuition, we examine systems of two

More information

Computational Methods. Constrained Optimization

Computational Methods. Constrained Optimization Computational Methods Constrained Optimization Manfred Huber 2010 1 Constrained Optimization Unconstrained Optimization finds a minimum of a function under the assumption that the parameters can take on

More information

Performance Evaluation of an Interior Point Filter Line Search Method for Constrained Optimization

Performance Evaluation of an Interior Point Filter Line Search Method for Constrained Optimization 6th WSEAS International Conference on SYSTEM SCIENCE and SIMULATION in ENGINEERING, Venice, Italy, November 21-23, 2007 18 Performance Evaluation of an Interior Point Filter Line Search Method for Constrained

More information

Mathematical Programming and Research Methods (Part II)

Mathematical Programming and Research Methods (Part II) Mathematical Programming and Research Methods (Part II) 4. Convexity and Optimization Massimiliano Pontil (based on previous lecture by Andreas Argyriou) 1 Today s Plan Convex sets and functions Types

More information

Solution Methods Numerical Algorithms

Solution Methods Numerical Algorithms Solution Methods Numerical Algorithms Evelien van der Hurk DTU Managment Engineering Class Exercises From Last Time 2 DTU Management Engineering 42111: Static and Dynamic Optimization (6) 09/10/2017 Class

More information

Comparison of Interior Point Filter Line Search Strategies for Constrained Optimization by Performance Profiles

Comparison of Interior Point Filter Line Search Strategies for Constrained Optimization by Performance Profiles INTERNATIONAL JOURNAL OF MATHEMATICS MODELS AND METHODS IN APPLIED SCIENCES Comparison of Interior Point Filter Line Search Strategies for Constrained Optimization by Performance Profiles M. Fernanda P.

More information

morphology on binary images

morphology on binary images morphology on binary images Ole-Johan Skrede 10.05.2017 INF2310 - Digital Image Processing Department of Informatics The Faculty of Mathematics and Natural Sciences University of Oslo After original slides

More information

IE598 Big Data Optimization Summary Nonconvex Optimization

IE598 Big Data Optimization Summary Nonconvex Optimization IE598 Big Data Optimization Summary Nonconvex Optimization Instructor: Niao He April 16, 2018 1 This Course Big Data Optimization Explore modern optimization theories, algorithms, and big data applications

More information

Integer Programming Theory

Integer Programming Theory Integer Programming Theory Laura Galli October 24, 2016 In the following we assume all functions are linear, hence we often drop the term linear. In discrete optimization, we seek to find a solution x

More information

Constrained and Unconstrained Optimization

Constrained and Unconstrained Optimization Constrained and Unconstrained Optimization Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu Oct 10th, 2017 C. Hurtado (UIUC - Economics) Numerical

More information

(1) Given the following system of linear equations, which depends on a parameter a R, 3x y + 5z = 2 4x + y + (a 2 14)z = a + 2

(1) Given the following system of linear equations, which depends on a parameter a R, 3x y + 5z = 2 4x + y + (a 2 14)z = a + 2 (1 Given the following system of linear equations, which depends on a parameter a R, x + 2y 3z = 4 3x y + 5z = 2 4x + y + (a 2 14z = a + 2 (a Classify the system of equations depending on the values of

More information

CHAPTER 6 IMPLEMENTATION OF RADIAL BASIS FUNCTION NEURAL NETWORK FOR STEGANALYSIS

CHAPTER 6 IMPLEMENTATION OF RADIAL BASIS FUNCTION NEURAL NETWORK FOR STEGANALYSIS 95 CHAPTER 6 IMPLEMENTATION OF RADIAL BASIS FUNCTION NEURAL NETWORK FOR STEGANALYSIS 6.1 INTRODUCTION The concept of distance measure is used to associate the input and output pattern values. RBFs use

More information

Learning from Data Linear Parameter Models

Learning from Data Linear Parameter Models Learning from Data Linear Parameter Models Copyright David Barber 200-2004. Course lecturer: Amos Storkey a.storkey@ed.ac.uk Course page : http://www.anc.ed.ac.uk/ amos/lfd/ 2 chirps per sec 26 24 22 20

More information

Approximation Methods in Optimization

Approximation Methods in Optimization Approximation Methods in Optimization The basic idea is that if you have a function that is noisy and possibly expensive to evaluate, then that function can be sampled at a few points and a fit of it created.

More information

Kernels and representation

Kernels and representation Kernels and representation Corso di AA, anno 2017/18, Padova Fabio Aiolli 20 Dicembre 2017 Fabio Aiolli Kernels and representation 20 Dicembre 2017 1 / 19 (Hierarchical) Representation Learning Hierarchical

More information

Bilevel Sparse Coding

Bilevel Sparse Coding Adobe Research 345 Park Ave, San Jose, CA Mar 15, 2013 Outline 1 2 The learning model The learning algorithm 3 4 Sparse Modeling Many types of sensory data, e.g., images and audio, are in high-dimensional

More information

Approximation of a Fuzzy Function by Using Radial Basis Functions Interpolation

Approximation of a Fuzzy Function by Using Radial Basis Functions Interpolation International Journal of Mathematical Modelling & Computations Vol. 07, No. 03, Summer 2017, 299-307 Approximation of a Fuzzy Function by Using Radial Basis Functions Interpolation R. Firouzdor a and M.

More information

A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions

A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions Nira Dyn School of Mathematical Sciences Tel Aviv University Michael S. Floater Department of Informatics University of

More information

Algorithms for convex optimization

Algorithms for convex optimization Algorithms for convex optimization Michal Kočvara Institute of Information Theory and Automation Academy of Sciences of the Czech Republic and Czech Technical University kocvara@utia.cas.cz http://www.utia.cas.cz/kocvara

More information

Convex Optimization MLSS 2015

Convex Optimization MLSS 2015 Convex Optimization MLSS 2015 Constantine Caramanis The University of Texas at Austin The Optimization Problem minimize : f (x) subject to : x X. The Optimization Problem minimize : f (x) subject to :

More information

Delaunay-based Derivative-free Optimization via Global Surrogate. Pooriya Beyhaghi, Daniele Cavaglieri and Thomas Bewley

Delaunay-based Derivative-free Optimization via Global Surrogate. Pooriya Beyhaghi, Daniele Cavaglieri and Thomas Bewley Delaunay-based Derivative-free Optimization via Global Surrogate Pooriya Beyhaghi, Daniele Cavaglieri and Thomas Bewley May 23, 2014 Delaunay-based Derivative-free Optimization via Global Surrogate Pooriya

More information

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 Lecture 25: Bezier Subdivision And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 1. Divide and Conquer If we are going to build useful

More information

Chemnitz Scientific Computing Preprints

Chemnitz Scientific Computing Preprints Roman Unger Obstacle Description with Radial Basis Functions for Contact Problems in Elasticity CSC/09-01 Chemnitz Scientific Computing Preprints Impressum: Chemnitz Scientific Computing Preprints ISSN

More information

Ill-Posed Problems with A Priori Information

Ill-Posed Problems with A Priori Information INVERSE AND ILL-POSED PROBLEMS SERIES Ill-Posed Problems with A Priori Information V.V.Vasin andalageev HIV SPIII Utrecht, The Netherlands, 1995 CONTENTS Introduction 1 CHAPTER 1. UNSTABLE PROBLEMS 1 Base

More information

Two-phase matrix splitting methods for asymmetric and symmetric LCP

Two-phase matrix splitting methods for asymmetric and symmetric LCP Two-phase matrix splitting methods for asymmetric and symmetric LCP Daniel P. Robinson Department of Applied Mathematics and Statistics Johns Hopkins University Joint work with Feng, Nocedal, and Pang

More information

Surrogate Gradient Algorithm for Lagrangian Relaxation 1,2

Surrogate Gradient Algorithm for Lagrangian Relaxation 1,2 Surrogate Gradient Algorithm for Lagrangian Relaxation 1,2 X. Zhao 3, P. B. Luh 4, and J. Wang 5 Communicated by W.B. Gong and D. D. Yao 1 This paper is dedicated to Professor Yu-Chi Ho for his 65th birthday.

More information

Ensemble methods in machine learning. Example. Neural networks. Neural networks

Ensemble methods in machine learning. Example. Neural networks. Neural networks Ensemble methods in machine learning Bootstrap aggregating (bagging) train an ensemble of models based on randomly resampled versions of the training set, then take a majority vote Example What if you

More information

Chapter 1 BACKGROUND

Chapter 1 BACKGROUND Chapter BACKGROUND. Introduction In many areas of mathematics and in applications of mathematics, it is often necessary to be able to infer information about some function using only a limited set of sample

More information

A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation [Wen,Yin,Goldfarb,Zhang 2009]

A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation [Wen,Yin,Goldfarb,Zhang 2009] A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation [Wen,Yin,Goldfarb,Zhang 2009] Yongjia Song University of Wisconsin-Madison April 22, 2010 Yongjia Song

More information

Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology

Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology Hausdorff Institute for Mathematics (HIM) Trimester: Mathematics of Signal Processing

More information

Function approximation using RBF network. 10 basis functions and 25 data points.

Function approximation using RBF network. 10 basis functions and 25 data points. 1 Function approximation using RBF network F (x j ) = m 1 w i ϕ( x j t i ) i=1 j = 1... N, m 1 = 10, N = 25 10 basis functions and 25 data points. Basis function centers are plotted with circles and data

More information

Lagrangian methods for the regularization of discrete ill-posed problems. G. Landi

Lagrangian methods for the regularization of discrete ill-posed problems. G. Landi Lagrangian methods for the regularization of discrete ill-posed problems G. Landi Abstract In many science and engineering applications, the discretization of linear illposed problems gives rise to large

More information

Parallel and Distributed Sparse Optimization Algorithms

Parallel and Distributed Sparse Optimization Algorithms Parallel and Distributed Sparse Optimization Algorithms Part I Ruoyu Li 1 1 Department of Computer Science and Engineering University of Texas at Arlington March 19, 2015 Ruoyu Li (UTA) Parallel and Distributed

More information

Introduction to Optimization Problems and Methods

Introduction to Optimization Problems and Methods Introduction to Optimization Problems and Methods wjch@umich.edu December 10, 2009 Outline 1 Linear Optimization Problem Simplex Method 2 3 Cutting Plane Method 4 Discrete Dynamic Programming Problem Simplex

More information

CPSC 340: Machine Learning and Data Mining. Robust Regression Fall 2015

CPSC 340: Machine Learning and Data Mining. Robust Regression Fall 2015 CPSC 340: Machine Learning and Data Mining Robust Regression Fall 2015 Admin Can you see Assignment 1 grades on UBC connect? Auditors, don t worry about it. You should already be working on Assignment

More information

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey. Chapter 4 : Optimization for Machine Learning

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey. Chapter 4 : Optimization for Machine Learning Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey Chapter 4 : Optimization for Machine Learning Summary of Chapter 2 Chapter 2: Convex Optimization with Sparsity

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING

INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING DAVID G. LUENBERGER Stanford University TT ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo Park, California London Don Mills, Ontario CONTENTS

More information

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin Clustering K-means Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, 2014 Carlos Guestrin 2005-2014 1 Clustering images Set of Images [Goldberger et al.] Carlos Guestrin 2005-2014

More information

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CHAPTER 4 CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS 4.1 Introduction Optical character recognition is one of

More information

Calibration by Optimization Without Using Derivatives

Calibration by Optimization Without Using Derivatives Calibration by Optimization Without Using Derivatives Markus Lazar 1, Fakultät für Ingenieurwissenschaften University of Applied Sciences, Rosenheim, Germany Florian Jarre 1, Mathematisches Institut, University

More information

Theoretical Concepts of Machine Learning

Theoretical Concepts of Machine Learning Theoretical Concepts of Machine Learning Part 2 Institute of Bioinformatics Johannes Kepler University, Linz, Austria Outline 1 Introduction 2 Generalization Error 3 Maximum Likelihood 4 Noise Models 5

More information

REAL-CODED GENETIC ALGORITHMS CONSTRAINED OPTIMIZATION. Nedim TUTKUN

REAL-CODED GENETIC ALGORITHMS CONSTRAINED OPTIMIZATION. Nedim TUTKUN REAL-CODED GENETIC ALGORITHMS CONSTRAINED OPTIMIZATION Nedim TUTKUN nedimtutkun@gmail.com Outlines Unconstrained Optimization Ackley s Function GA Approach for Ackley s Function Nonlinear Programming Penalty

More information

Characterizing Improving Directions Unconstrained Optimization

Characterizing Improving Directions Unconstrained Optimization Final Review IE417 In the Beginning... In the beginning, Weierstrass's theorem said that a continuous function achieves a minimum on a compact set. Using this, we showed that for a convex set S and y not

More information

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama Introduction to Computer Graphics Modeling (3) April 27, 2017 Kenshi Takayama Solid modeling 2 Solid models Thin shapes represented by single polygons Unorientable Clear definition of inside & outside

More information

Introduction to optimization methods and line search

Introduction to optimization methods and line search Introduction to optimization methods and line search Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi How to find optimal solutions? Trial and error widely used in practice, not efficient and

More information

Linear Methods for Regression and Shrinkage Methods

Linear Methods for Regression and Shrinkage Methods Linear Methods for Regression and Shrinkage Methods Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 Linear Regression Models Least Squares Input vectors

More information

A projected Hessian matrix for full waveform inversion Yong Ma and Dave Hale, Center for Wave Phenomena, Colorado School of Mines

A projected Hessian matrix for full waveform inversion Yong Ma and Dave Hale, Center for Wave Phenomena, Colorado School of Mines A projected Hessian matrix for full waveform inversion Yong Ma and Dave Hale, Center for Wave Phenomena, Colorado School of Mines SUMMARY A Hessian matrix in full waveform inversion (FWI) is difficult

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 1 3.1 Linearization and Optimization of Functions of Vectors 1 Problem Notation 2 Outline 3.1.1 Linearization 3.1.2 Optimization of Objective Functions 3.1.3 Constrained

More information

A Truncated Newton Method in an Augmented Lagrangian Framework for Nonlinear Programming

A Truncated Newton Method in an Augmented Lagrangian Framework for Nonlinear Programming A Truncated Newton Method in an Augmented Lagrangian Framework for Nonlinear Programming Gianni Di Pillo (dipillo@dis.uniroma1.it) Giampaolo Liuzzi (liuzzi@iasi.cnr.it) Stefano Lucidi (lucidi@dis.uniroma1.it)

More information

Support Vector Machines.

Support Vector Machines. Support Vector Machines srihari@buffalo.edu SVM Discussion Overview 1. Overview of SVMs 2. Margin Geometry 3. SVM Optimization 4. Overlapping Distributions 5. Relationship to Logistic Regression 6. Dealing

More information

1.7.1 Laplacian Smoothing

1.7.1 Laplacian Smoothing 1.7.1 Laplacian Smoothing 320491: Advanced Graphics - Chapter 1 434 Theory Minimize energy functional total curvature estimate by polynomial-fitting non-linear (very slow!) 320491: Advanced Graphics -

More information

Efficient Tuning of SVM Hyperparameters Using Radius/Margin Bound and Iterative Algorithms

Efficient Tuning of SVM Hyperparameters Using Radius/Margin Bound and Iterative Algorithms IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 5, SEPTEMBER 2002 1225 Efficient Tuning of SVM Hyperparameters Using Radius/Margin Bound and Iterative Algorithms S. Sathiya Keerthi Abstract This paper

More information

Numerical experience with a derivative-free trust-funnel method for nonlinear optimization problems with general nonlinear constraints by Ph. R. Sampaio and Ph. L. Toint Report naxys-3-25 August 2, 25

More information

Modern Methods of Data Analysis - WS 07/08

Modern Methods of Data Analysis - WS 07/08 Modern Methods of Data Analysis Lecture XV (04.02.08) Contents: Function Minimization (see E. Lohrmann & V. Blobel) Optimization Problem Set of n independent variables Sometimes in addition some constraints

More information

Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms

Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms By:- Nitin Kamra Indian Institute of Technology, Delhi Advisor:- Prof. Ulrich Reude 1. Introduction to Linear

More information

Adaptive Node Selection in Periodic Radial Basis Function Interpolations

Adaptive Node Selection in Periodic Radial Basis Function Interpolations Adaptive Node Selection in Periodic Radial Basis Function Interpolations Muhammad Shams Dept. of Mathematics UMass Dartmouth Dartmouth MA 02747 Email: mshams@umassd.edu December 19, 2011 Abstract In RBFs,

More information

Projection-Based Methods in Optimization

Projection-Based Methods in Optimization Projection-Based Methods in Optimization Charles Byrne (Charles Byrne@uml.edu) http://faculty.uml.edu/cbyrne/cbyrne.html Department of Mathematical Sciences University of Massachusetts Lowell Lowell, MA

More information

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Neural Networks CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Biological and artificial neural networks Feed-forward neural networks Single layer

More information

Radial Basis Function Networks: Algorithms

Radial Basis Function Networks: Algorithms Radial Basis Function Networks: Algorithms Neural Computation : Lecture 14 John A. Bullinaria, 2015 1. The RBF Mapping 2. The RBF Network Architecture 3. Computational Power of RBF Networks 4. Training

More information

Bayesian Methods in Vision: MAP Estimation, MRFs, Optimization

Bayesian Methods in Vision: MAP Estimation, MRFs, Optimization Bayesian Methods in Vision: MAP Estimation, MRFs, Optimization CS 650: Computer Vision Bryan S. Morse Optimization Approaches to Vision / Image Processing Recurring theme: Cast vision problem as an optimization

More information

COMPUTATIONAL INTELLIGENCE

COMPUTATIONAL INTELLIGENCE COMPUTATIONAL INTELLIGENCE Radial Basis Function Networks Adrian Horzyk Preface Radial Basis Function Networks (RBFN) are a kind of artificial neural networks that use radial basis functions (RBF) as activation

More information

Derivative Free Optimization Methods: A Brief, Opinionated, and Incomplete Look at a Few Recent Developments

Derivative Free Optimization Methods: A Brief, Opinionated, and Incomplete Look at a Few Recent Developments Derivative Free Optimization Methods: A Brief, Opinionated, and Incomplete Look at a Few Recent Developments Margaret H. Wright Computer Science Department Courant Institute of Mathematical Sciences New

More information

Introduction to unconstrained optimization - derivative-free methods

Introduction to unconstrained optimization - derivative-free methods Introduction to unconstrained optimization - derivative-free methods Jussi Hakanen Post-doctoral researcher Office: AgC426.3 jussi.hakanen@jyu.fi Learning outcomes To understand the basic principles of

More information

Search direction improvement for gradient-based optimization problems

Search direction improvement for gradient-based optimization problems Computer Aided Optimum Design in Engineering IX 3 Search direction improvement for gradient-based optimization problems S Ganguly & W L Neu Aerospace and Ocean Engineering, Virginia Tech, USA Abstract

More information

A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions

A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions Nira Dyn Michael S. Floater Kai Hormann Abstract. We present a new four-point subdivision scheme that generates C 2 curves.

More information

Collocation and optimization initialization

Collocation and optimization initialization Boundary Elements and Other Mesh Reduction Methods XXXVII 55 Collocation and optimization initialization E. J. Kansa 1 & L. Ling 2 1 Convergent Solutions, USA 2 Hong Kong Baptist University, Hong Kong

More information

Iterative methods for use with the Fast Multipole Method

Iterative methods for use with the Fast Multipole Method Iterative methods for use with the Fast Multipole Method Ramani Duraiswami Perceptual Interfaces and Reality Lab. Computer Science & UMIACS University of Maryland, College Park, MD Joint work with Nail

More information

Post-Processing Radial Basis Function Approximations: A Hybrid Method

Post-Processing Radial Basis Function Approximations: A Hybrid Method Post-Processing Radial Basis Function Approximations: A Hybrid Method Muhammad Shams Dept. of Mathematics UMass Dartmouth Dartmouth MA 02747 Email: mshams@umassd.edu August 4th 2011 Abstract With the use

More information

A Brief Look at Optimization

A Brief Look at Optimization A Brief Look at Optimization CSC 412/2506 Tutorial David Madras January 18, 2018 Slides adapted from last year s version Overview Introduction Classes of optimization problems Linear programming Steepest

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming SECOND EDITION Dimitri P. Bertsekas Massachusetts Institute of Technology WWW site for book Information and Orders http://world.std.com/~athenasc/index.html Athena Scientific, Belmont,

More information

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation Optimization Methods: Introduction and Basic concepts 1 Module 1 Lecture Notes 2 Optimization Problem and Model Formulation Introduction In the previous lecture we studied the evolution of optimization

More information

Experimental Data and Training

Experimental Data and Training Modeling and Control of Dynamic Systems Experimental Data and Training Mihkel Pajusalu Alo Peets Tartu, 2008 1 Overview Experimental data Designing input signal Preparing data for modeling Training Criterion

More information

AM205: lecture 2. 1 These have been shifted to MD 323 for the rest of the semester.

AM205: lecture 2. 1 These have been shifted to MD 323 for the rest of the semester. AM205: lecture 2 Luna and Gary will hold a Python tutorial on Wednesday in 60 Oxford Street, Room 330 Assignment 1 will be posted this week Chris will hold office hours on Thursday (1:30pm 3:30pm, Pierce

More information

SID-PSM: A PATTERN SEARCH METHOD GUIDED BY SIMPLEX DERIVATIVES FOR USE IN DERIVATIVE-FREE OPTIMIZATION

SID-PSM: A PATTERN SEARCH METHOD GUIDED BY SIMPLEX DERIVATIVES FOR USE IN DERIVATIVE-FREE OPTIMIZATION SID-PSM: A PATTERN SEARCH METHOD GUIDED BY SIMPLEX DERIVATIVES FOR USE IN DERIVATIVE-FREE OPTIMIZATION A. L. CUSTÓDIO AND L. N. VICENTE Abstract. SID-PSM (version 1.3) is a suite of MATLAB [1] functions

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Second Order Optimization Methods Marc Toussaint U Stuttgart Planned Outline Gradient-based optimization (1st order methods) plain grad., steepest descent, conjugate grad.,

More information

Numerical Optimization: Introduction and gradient-based methods

Numerical Optimization: Introduction and gradient-based methods Numerical Optimization: Introduction and gradient-based methods Master 2 Recherche LRI Apprentissage Statistique et Optimisation Anne Auger Inria Saclay-Ile-de-France November 2011 http://tao.lri.fr/tiki-index.php?page=courses

More information

Lecture 19: November 5

Lecture 19: November 5 0-725/36-725: Convex Optimization Fall 205 Lecturer: Ryan Tibshirani Lecture 9: November 5 Scribes: Hyun Ah Song Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have not

More information

Fast Radial Basis Functions for Engineering Applications. Prof. Marco Evangelos Biancolini University of Rome Tor Vergata

Fast Radial Basis Functions for Engineering Applications. Prof. Marco Evangelos Biancolini University of Rome Tor Vergata Fast Radial Basis Functions for Engineering Applications Prof. Marco Evangelos Biancolini University of Rome Tor Vergata Outline 2 RBF background Fast RBF on HPC Engineering Applications Mesh morphing

More information

Notes on Robust Estimation David J. Fleet Allan Jepson March 30, 005 Robust Estimataion. The field of robust statistics [3, 4] is concerned with estimation problems in which the data contains gross errors,

More information

Convex Optimization / Homework 2, due Oct 3

Convex Optimization / Homework 2, due Oct 3 Convex Optimization 0-725/36-725 Homework 2, due Oct 3 Instructions: You must complete Problems 3 and either Problem 4 or Problem 5 (your choice between the two) When you submit the homework, upload a

More information

Learning via Optimization

Learning via Optimization Lecture 7 1 Outline 1. Optimization Convexity 2. Linear regression in depth Locally weighted linear regression 3. Brief dips Logistic Regression [Stochastic] gradient ascent/descent Support Vector Machines

More information

RBF Interpolation with CSRBF of Large Data Sets

RBF Interpolation with CSRBF of Large Data Sets RBF Interpolation with CSRBF of Large Data Sets Vaclav Skala University of West Bohemia, Plzen, Czech Republic. www.vaclavskala.eu Abstract This contribution presents a new analysis of properties of the

More information

3 Nonlinear Regression

3 Nonlinear Regression CSC 4 / CSC D / CSC C 3 Sometimes linear models are not sufficient to capture the real-world phenomena, and thus nonlinear models are necessary. In regression, all such models will have the same basic

More information

Convex or non-convex: which is better?

Convex or non-convex: which is better? Sparsity Amplified Ivan Selesnick Electrical and Computer Engineering Tandon School of Engineering New York University Brooklyn, New York March 7 / 4 Convex or non-convex: which is better? (for sparse-regularized

More information

arxiv: v1 [math.na] 20 Sep 2016

arxiv: v1 [math.na] 20 Sep 2016 arxiv:1609.06236v1 [math.na] 20 Sep 2016 A Local Mesh Modification Strategy for Interface Problems with Application to Shape and Topology Optimization P. Gangl 1,2 and U. Langer 3 1 Doctoral Program Comp.

More information

lecture 10: B-Splines

lecture 10: B-Splines 9 lecture : -Splines -Splines: a basis for splines Throughout our discussion of standard polynomial interpolation, we viewed P n as a linear space of dimension n +, and then expressed the unique interpolating

More information

Matching. Compare region of image to region of image. Today, simplest kind of matching. Intensities similar.

Matching. Compare region of image to region of image. Today, simplest kind of matching. Intensities similar. Matching Compare region of image to region of image. We talked about this for stereo. Important for motion. Epipolar constraint unknown. But motion small. Recognition Find object in image. Recognize object.

More information

The Pre-Image Problem in Kernel Methods

The Pre-Image Problem in Kernel Methods The Pre-Image Problem in Kernel Methods James Kwok Ivor Tsang Department of Computer Science Hong Kong University of Science and Technology Hong Kong The Pre-Image Problem in Kernel Methods ICML-2003 1

More information