Effective Tour Searching for Large TSP Instances. Gerold Jäger

Size: px
Start display at page:

Download "Effective Tour Searching for Large TSP Instances. Gerold Jäger"

Transcription

1 Effective Tour Searching for Large TSP Instances Gerold Jäger Martin-Luther-University Halle-Wittenberg joint work with Changxing Dong, Paul Molitor, Dirk Richter November 14, 2008

2 Overview 1 Introduction Definition Graph Model Applications Importance of TSP Exact Algorithms

3 Overview 2 Heuristics Nearest-Neighbor Algorithm k-opt Algorithm Helsgaun s Algorithm

4 Overview 3 Our Approach: Pseudo Backbone Contraction Algorithm Description of the Algorithm Experimental Results Work on World-TSP

5 Introduction Definition A traveling salesman wants to visit a given number of cities. Finally he wants to return to the starting point. This is called a tour through all cities. Each pair of cities receives a cost value for the distance between these cities. The Traveling Salesman Problem (TSP) is to find a tour with minimum costs.

6 Introduction Graph Model Let G = (V, E) be a complete undirected graph. V is the set of vertices, where V = n. E is the set of edges. Let c : E R + 0 be a cost function. Find a tour (v 1, v 2,..., v n, v 1 ) such that the following term is minimized: n 1 c(v n, v 1 ) + c(v i, v i+1 ) i=1

7 Introduction Applications Public transport: vehicle stops at given stations. Warehouse logistics: single items of an order are searched in a warehouse. Tour planning: vehicle visits depots. Design of microchips: vertices are boreholes. Genome sequencing: vertices are DNA ranges.

8 Introduction Importance of TSP Easy to understand. NP-Hard. Theoretical and practical methods for the TSP have shown to be successful also for related optimization problems, e.g., integer programming, branch-and-cut. Large datasets from practice exist for comparison of 1 exact algorithms 2 heuristics

9 Introduction Exact Algorithms Largest solved example instances Year Research Team Number of Vertices 1954 Dantzig, Fulkerson, Johnson Held, Karp Camerini, Fratta, Maffioli Grötschel Crowder, Padberg Padberg, Rinaldi Grötschel, Holland Padberg, Rinaldi Applegate, Bixby, Chvátal, Cook Applegate, Bixby, Chvátal, Cook (USA tour) 2001 Applegate, Bixby, Chvátal, Cook (D tour) 2004 App., Bixby, Chvátal, Cook, Helsgaun (Swe tour) 2006 App., Bixby, Chvátal, Cook, Helsgaun The 5 largest instances were solved by Concorde, an exact TSP solver, based on branch-and-cut.

10 Introduction Exact Algorithms Shortest tour through cities in Germany

11 Heuristics Nearest-Neighbor Algorithm Simple idea: 1 In each step go to the nearest non-visited vertex. 2 If all vertices are visited, return to the starting point. Advantage: At the beginning of the tour the costs are rather small. Disadvantage: At the end of the tour the set of non-visited vertices is small, and the costs become very large. This algorithm needs O(n 2 ) steps.

12 Heuristics k-opt Algorithm By a variation of the Nearest-Neighbor Algorithm, find a good tour, the so-called starting tour. Replace tour edges by non-tour edges, such that 1 The edges are still a tour. 2 The tour is better than the original one.

13 Heuristics k-opt Algorithm For two edges: For k edges this step is called k-opt step. Apply k-opt steps, as long as they exist.

14 Heuristics Helsgaun s Algorithm Best TSP heuristic: [Helsgaun, 1998, improved: 2007]. It combines variations of the Nearest-Neighbor Algorithm and the k-opt Algorithm. Optimizations: 1 Choose k small (Standard k = 5) 2 For each vertex consider only the s shortest neighboring edges, the so-called candidate system. (Standard s = 5) 3 Apply t (nearly) independent runs of the algorithm. (Standard t = 10)

15 Heuristics Helsgaun s Algorithm The larger the algorithm parameters k, s and t are, the slower, but more effective is Helsgaun s Algorithm. Helsgaun s main improvement: For each vertex do not consider the t shortest neighboring edges, but the t neighboring edges with a criterion based on the minimum spanning tree.

16 Our Approach: Pseudo Backbone Contraction Algorithm Description of the Algorithm 1 Using known algorithms, e.g., Helsgaun s Algorithm, find good starting tours. a b c

17 Our Approach: Pseudo Backbone Contraction Algorithm Description of the Algorithm 2 Find all common edges in these starting tours. d Such edges are called pseudo backbone edges. (Edges, which are contained in all optimum tours, are called backbone edges.)

18 Our Approach: Pseudo Backbone Contraction Algorithm Description of the Algorithm 3 Create a new instance by omitting the vertices, which lie on a path of pseudo backbone edges. 4 Contract all edges of paths of pseudo backbone edges to one edge. 5 Fix these edges, i.e., these edges are forced to be in the final tour.

19 Our Approach: Pseudo Backbone Contraction Algorithm Description of the Algorithm 6 Apply Helsgaun s Algorithm to the new instance. d e

20 Our Approach: Pseudo Backbone Contraction Algorithm Description of the Algorithm 7 Re-contract the tour of the new instance to a tour of the original instance. e f Indeed, the last tour is the optimum one.

21 Our Approach: Pseudo Backbone Contraction Algorithm Description of the Algorithm Two advantages: 1 Reduction of dimension. 2 Fixing of a part of the edges. Helsgaun s Algorithm can be applied with larger algorithm parameters k, s and t. It is much more effective than applied for the original instance. The algorithm works rather good, if the starting tours are 1 good ones 2 not too similar (as otherwise the search space is restricted too strongly)

22 Our Approach: Pseudo Backbone Contraction Algorithm Experimental Results Competition: TSP homepage ( For example instances, for which the computation of an optimum tour is too difficult, find a tour as good as possible. 74 unsolved example instances from TSP homepage come from two sources: VLSI and national instances. For 19 instances we have set a new world record. 12 of 19 world records are still up to date.

23 Our Approach: Pseudo Backbone Contraction Algorithm Experimental Results Our world records, part 1 Date Research team Number of Vertices Richter, Goldengorin, Jäger, Molitor Richter, Goldengorin, Jäger, Molitor Dong, Jäger, Molitor, Richter Dong, Jäger, Molitor, Richter Dong, Jäger, Molitor, Richter Dong, Jäger, Molitor, Richter Dong, Jäger, Molitor, Richter Dong, Jäger, Molitor, Richter Dong, Jäger, Molitor, Richter Dong, Jäger, Molitor, Richter

24 Our Approach: Pseudo Backbone Contraction Algorithm Experimental Results Our world records, part 2 Date Research team Number of Vertices Dong, Jäger, Molitor, Richter Dong, Jäger, Molitor, Richter Dong, Jäger, Molitor, Richter Dong, Jäger, Molitor, Richter Dong, Jäger, Molitor, Richter Dong, Molitor Dong, Molitor Dong, Molitor Dong, Jäger, Molitor, Richter

25 Our Approach: Pseudo Backbone Contraction Algorithm Work on World-TSP The most difficult (and interesting) instance of the TSP homepage is the World-TSP with cities. World-Tour (Ambitious) aim: computation of a world record tour.

26 Our Approach: Pseudo Backbone Contraction Algorithm Work on World-TSP Ideas 1 Hierarchical application of Pseudo Backbone Contraction Algorithm. 2 Compute good tours in overlapping windows. Compose an overall tour using only edges contained in 4 areas.

27 Our Approach: Pseudo Backbone Contraction Algorithm Work on World-TSP Our current tour: 1 0, 1% over the current best tour. 2 Found in a few days.

28 Our Approach: Pseudo Backbone Contraction Algorithm Work on World-TSP Thanks for your attention!

Effective Tour Searching for Large TSP Instances. Gerold Jäger

Effective Tour Searching for Large TSP Instances. Gerold Jäger Effective Tour Searching for Large TSP Instances Gerold Jäger Martin-Luther-University Halle-Wittenberg (Germany) joint work with Changxing Dong, Paul Molitor, Dirk Richter German Research Foundation Grant

More information

Effective Tour Searching for Large TSP Instances. Gerold Jäger

Effective Tour Searching for Large TSP Instances. Gerold Jäger Effective Tour Searching for Large TSP Instances Gerold Jäger Martin-Luther-University Halle-Wittenberg (Germany) joint work with Changxing Dong, Paul Molitor, Dirk Richter German Research Foundation Grant

More information

Tolerance based Greedy Heuristics for the Asymmetric TSP. Gerold Jäger Martin Luther University Halle-Wittenberg

Tolerance based Greedy Heuristics for the Asymmetric TSP. Gerold Jäger Martin Luther University Halle-Wittenberg Tolerance based Greedy Heuristics for the Asymmetric TSP Gerold Jäger Martin Luther University Halle-Wittenberg Cooperation with Boris Goldengorin DFG Project: Paul Molitor December 21, 200 Overview 1

More information

Algorithms and Experimental Study for the Traveling Salesman Problem of Second Order. Gerold Jäger

Algorithms and Experimental Study for the Traveling Salesman Problem of Second Order. Gerold Jäger Algorithms and Experimental Study for the Traveling Salesman Problem of Second Order Gerold Jäger joint work with Paul Molitor University Halle-Wittenberg, Germany August 22, 2008 Overview 1 Introduction

More information

A COMPARATIVE STUDY OF BRUTE FORCE METHOD, NEAREST NEIGHBOUR AND GREEDY ALGORITHMS TO SOLVE THE TRAVELLING SALESMAN PROBLEM

A COMPARATIVE STUDY OF BRUTE FORCE METHOD, NEAREST NEIGHBOUR AND GREEDY ALGORITHMS TO SOLVE THE TRAVELLING SALESMAN PROBLEM IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN(E): 2321-8843; ISSN(P): 2347-4599 Vol. 2, Issue 6, Jun 2014, 59-72 Impact Journals A COMPARATIVE STUDY OF BRUTE

More information

Heuristic Approaches to Solve Traveling Salesman Problem

Heuristic Approaches to Solve Traveling Salesman Problem TELKOMNIKA Indonesian Journal of Electrical Engineering Vol. 15, No. 2, August 2015, pp. 390 ~ 396 DOI: 10.11591/telkomnika.v15i2.8301 390 Heuristic Approaches to Solve Traveling Salesman Problem Malik

More information

Some Basics on Tolerances. Gerold Jäger

Some Basics on Tolerances. Gerold Jäger Some Basics on Tolerances Gerold Jäger University Halle, Germany joint work with Boris Goldengorin and Paul Molitor June 21, 2006 Acknowledgement This paper is dedicated to Jop Sibeyn, who is missed since

More information

Discrete Optimization

Discrete Optimization Discrete Optimization Quentin Louveaux ULg - Institut Montefiore 2016 Quentin Louveaux (ULg - Institut Montefiore) Discrete Optimization 2016 1 / 28 Discrete optimization problems What is a discrete optimization

More information

The Subtour LP for the Traveling Salesman Problem

The Subtour LP for the Traveling Salesman Problem The Subtour LP for the Traveling Salesman Problem David P. Williamson Cornell University November 22, 2011 Joint work with Jiawei Qian, Frans Schalekamp, and Anke van Zuylen The Traveling Salesman Problem

More information

The Traveling Salesman Problem: State of the Art

The Traveling Salesman Problem: State of the Art The Traveling Salesman Problem: State of the Art Thomas Stützle stuetzle@informatik.tu-darmstadt.de http://www.intellektik.informatik.tu-darmstadt.de/ tom. Darmstadt University of Technology Department

More information

Amanur Rahman Saiyed (Indiana State University) THE TRAVELING SALESMAN PROBLEM November 22, / 21

Amanur Rahman Saiyed (Indiana State University) THE TRAVELING SALESMAN PROBLEM November 22, / 21 . Amanur Rahman Saiyed (Indiana State University) THE TRAVELING SALESMAN PROBLEM November 22, 2011 1 / 21 THE TRAVELING SALESMAN PROBLEM Amanur Rahman Saiyed Indiana State University November 22, 2011

More information

Improving the Efficiency of Helsgaun s Lin-Kernighan Heuristic for the Symmetric TSP

Improving the Efficiency of Helsgaun s Lin-Kernighan Heuristic for the Symmetric TSP Improving the Efficiency of Helsgaun s Lin-Kernighan Heuristic for the Symmetric TSP Dirk Richter 1, Boris Goldengorin 2,3,4, Gerold Jäger 5, and Paul Molitor 1 1 Computer Science Institute, University

More information

Constraint-based solution methods for vehicle routing problems

Constraint-based solution methods for vehicle routing problems EWO Seminar - November 17, 2009 Constraint-based solution methods for vehicle routing problems Willem-Jan van Hoeve Tepper School of Business, Carnegie Mellon University Based on joint work with Michela

More information

Optimal tour along pubs in the UK

Optimal tour along pubs in the UK 1 From Facebook Optimal tour along 24727 pubs in the UK Road distance (by google maps) see also http://www.math.uwaterloo.ca/tsp/pubs/index.html (part of TSP homepage http://www.math.uwaterloo.ca/tsp/

More information

Assignment 3b: The traveling salesman problem

Assignment 3b: The traveling salesman problem Chalmers University of Technology MVE165 University of Gothenburg MMG631 Mathematical Sciences Linear and integer optimization Optimization with applications Emil Gustavsson Assignment information Ann-Brith

More information

6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS. Vehicle Routing Problem, VRP:

6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS. Vehicle Routing Problem, VRP: 6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS Vehicle Routing Problem, VRP: Customers i=1,...,n with demands of a product must be served using a fleet of vehicles for the deliveries. The vehicles, with given

More information

Using Python to Solve Computationally Hard Problems

Using Python to Solve Computationally Hard Problems Using Python to Solve Computationally Hard Problems Using Python to Solve Computationally Hard Problems Rachael Madsen Optimal Design Software LLC BS in Mathematics Software Engineer & Architect Python

More information

1 date: September 15, 1998 file: mitche1

1 date: September 15, 1998 file: mitche1 1 date: September 15, 1998 file: mitche1 CUTTING PLANE ALGORITHMS FOR INTEGER PROGRAMMING, Cutting plane algorithms Cutting plane methods are exact algorithms for integer programming problems. Theyhave

More information

Improving the Held and Karp Approach with Constraint Programming

Improving the Held and Karp Approach with Constraint Programming Improving the Held and Karp Approach with Constraint Programming Pascal Benchimol 1, Jean-Charles Régin 2, Louis-Martin Rousseau 1, Michel Rueher 2, Willem-Jan van Hoeve 3 1 CIRRELT,École Polytechnique

More information

A constant-factor approximation algorithm for the asymmetric travelling salesman problem

A constant-factor approximation algorithm for the asymmetric travelling salesman problem A constant-factor approximation algorithm for the asymmetric travelling salesman problem London School of Economics Joint work with Ola Svensson and Jakub Tarnawski cole Polytechnique F d rale de Lausanne

More information

Seismic Vessel Problem

Seismic Vessel Problem Seismic Vessel Problem Gregory Gutin, Helmut Jakubowicz, Shuki Ronen and Alexei Zverovitch November 14, 2003 Abstract We introduce and study a new combinatorial optimization problem, the Seismic Vessel

More information

Travelling Salesman Problem. Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij

Travelling Salesman Problem. Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij Travelling Salesman Problem Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij 1 Contents TSP and its applications Heuristics and approximation algorithms Construction heuristics,

More information

Module 6 NP-Complete Problems and Heuristics

Module 6 NP-Complete Problems and Heuristics Module 6 NP-Complete Problems and Heuristics Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu P, NP-Problems Class

More information

Traveling Salesman Problem. Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij

Traveling Salesman Problem. Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij Traveling Salesman Problem Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij 1 Contents TSP and its applications Heuristics and approximation algorithms Construction heuristics,

More information

CSE 417 Branch & Bound (pt 4) Branch & Bound

CSE 417 Branch & Bound (pt 4) Branch & Bound CSE 417 Branch & Bound (pt 4) Branch & Bound Reminders > HW8 due today > HW9 will be posted tomorrow start early program will be slow, so debugging will be slow... Review of previous lectures > Complexity

More information

Recent PTAS Algorithms on the Euclidean TSP

Recent PTAS Algorithms on the Euclidean TSP Recent PTAS Algorithms on the Euclidean TSP by Leonardo Zambito Submitted as a project for CSE 4080, Fall 2006 1 Introduction The Traveling Salesman Problem, or TSP, is an on going study in computer science.

More information

Overview. H. R. Alvarez A., Ph. D.

Overview. H. R. Alvarez A., Ph. D. Network Modeling Overview Networks arise in numerous settings: transportation, electrical, and communication networks, for example. Network representations also are widely used for problems in such diverse

More information

A Meta-heuristic Applied for a Topologic Pickup and Delivery Problem with Time Windows Constraints

A Meta-heuristic Applied for a Topologic Pickup and Delivery Problem with Time Windows Constraints A Meta-heuristic Applied for a Topologic Pickup and Delivery Problem with Time Windows Constraints Jesús Fabián López Pérez Post-Graduate Program of Management Science, FACPYA UANL, Monterrey, México fabian.lopez@e-arca.com.mx

More information

Combinatorial Optimization Lab No. 10 Traveling Salesman Problem

Combinatorial Optimization Lab No. 10 Traveling Salesman Problem Combinatorial Optimization Lab No. 10 Traveling Salesman Problem Industrial Informatics Research Center http://industrialinformatics.cz/ May 29, 2018 Abstract In this lab we review various ways how to

More information

Combinatorial Optimization - Lecture 14 - TSP EPFL

Combinatorial Optimization - Lecture 14 - TSP EPFL Combinatorial Optimization - Lecture 14 - TSP EPFL 2012 Plan Simple heuristics Alternative approaches Best heuristics: local search Lower bounds from LP Moats Simple Heuristics Nearest Neighbor (NN) Greedy

More information

Module 6 P, NP, NP-Complete Problems and Approximation Algorithms

Module 6 P, NP, NP-Complete Problems and Approximation Algorithms Module 6 P, NP, NP-Complete Problems and Approximation Algorithms Dr. Natarajan Meghanathan Associate Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu

More information

Supporting hyperplanes

Supporting hyperplanes Supporting hyperplanes General approach when using Lagrangian methods Lecture 1 homework Shadow prices A linear programming problem The simplex tableau Simple example with cycling The pivot rule being

More information

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W.

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W. : Coping with NP-Completeness Course contents: Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems Reading: Chapter 34 Chapter 35.1, 35.2 Y.-W. Chang 1 Complexity

More information

Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost

Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R

More information

A Parallel Architecture for the Generalized Traveling Salesman Problem

A Parallel Architecture for the Generalized Traveling Salesman Problem A Parallel Architecture for the Generalized Traveling Salesman Problem Max Scharrenbroich AMSC 663 Project Proposal Advisor: Dr. Bruce L. Golden R. H. Smith School of Business 1 Background and Introduction

More information

Case Studies: Bin Packing & The Traveling Salesman Problem. TSP: Part II. David S. Johnson AT&T Labs Research

Case Studies: Bin Packing & The Traveling Salesman Problem. TSP: Part II. David S. Johnson AT&T Labs Research Case Studies: Bin Packing & The Traveling Salesman Problem TSP: Part II David S. Johnson AT&T Labs Research 2010 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of

More information

Math for Liberal Arts MAT 110: Chapter 13 Notes

Math for Liberal Arts MAT 110: Chapter 13 Notes Math for Liberal Arts MAT 110: Chapter 13 Notes Graph Theory David J. Gisch Networks and Euler Circuits Network Representation Network: A collection of points or objects that are interconnected in some

More information

Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan Institute of Technology and Science

Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan Institute of Technology and Science Volume 118 No. 20 2018, 419-424 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan

More information

A Distributed Chained Lin-Kernighan Algorithm for TSP Problems

A Distributed Chained Lin-Kernighan Algorithm for TSP Problems A Distributed Chained Lin-Kernighan Algorithm for TSP Problems Thomas Fischer Department of Computer Science University of Kaiserslautern fischer@informatik.uni-kl.de Peter Merz Department of Computer

More information

Kurt Mehlhorn, MPI für Informatik. Curve and Surface Reconstruction p.1/25

Kurt Mehlhorn, MPI für Informatik. Curve and Surface Reconstruction p.1/25 Curve and Surface Reconstruction Kurt Mehlhorn MPI für Informatik Curve and Surface Reconstruction p.1/25 Curve Reconstruction: An Example probably, you see more than a set of points Curve and Surface

More information

EXACT METHODS FOR THE ASYMMETRIC TRAVELING SALESMAN PROBLEM

EXACT METHODS FOR THE ASYMMETRIC TRAVELING SALESMAN PROBLEM EXACT METHODS FOR THE ASYMMETRIC TRAVELING SALESMAN PROBLEM Matteo Fischetti D.E.I, University of Padova Via Gradenigo 6/A, 35100 Padova, Italy fisch@dei.unipd.it (2013) Abstract In the present chapter

More information

Questions? You are given the complete graph of Facebook. What questions would you ask? (What questions could we hope to answer?)

Questions? You are given the complete graph of Facebook. What questions would you ask? (What questions could we hope to answer?) P vs. NP What now? Attribution These slides were prepared for the New Jersey Governor s School course The Math Behind the Machine taught in the summer of 2011 by Grant Schoenebeck Large parts of these

More information

Figurative Tours and Braids

Figurative Tours and Braids Figurative Tours and Braids Robert Bosch Dept. of Mathematics Oberlin College rbosch@oberlin.edu Tom Wexler Dept. of Computer Science Oberlin College wexler@cs.oberlin.edu Abstract We start with a rectangular

More information

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 Part A: Answer any four of the five problems. (15 points each) 1. Transportation problem 2. Integer LP Model Formulation

More information

An Experimental Evaluation of the Best-of-Many Christofides Algorithm for the Traveling Salesman Problem

An Experimental Evaluation of the Best-of-Many Christofides Algorithm for the Traveling Salesman Problem An Experimental Evaluation of the Best-of-Many Christofides Algorithm for the Traveling Salesman Problem David P. Williamson Cornell University Joint work with Kyle Genova, Cornell University July 14,

More information

Module 6 NP-Complete Problems and Heuristics

Module 6 NP-Complete Problems and Heuristics Module 6 NP-Complete Problems and Heuristics Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 97 E-mail: natarajan.meghanathan@jsums.edu Optimization vs. Decision

More information

Travelling Salesman Problem: Tabu Search

Travelling Salesman Problem: Tabu Search Travelling Salesman Problem: Tabu Search (Anonymized) April 2017 Abstract The Tabu Search algorithm is a heuristic method to find optimal solutions to the Travelling Salesman Problem (TSP). It is a local

More information

Practice Final Exam 1

Practice Final Exam 1 Algorithm esign Techniques Practice Final xam Instructions. The exam is hours long and contains 6 questions. Write your answers clearly. You may quote any result/theorem seen in the lectures or in the

More information

Approximating TSP Solution by MST based Graph Pyramid

Approximating TSP Solution by MST based Graph Pyramid Approximating TSP Solution by MST based Graph Pyramid Y. Haxhimusa 1,2, W. G. Kropatsch 2, Z. Pizlo 1, A. Ion 2 and A. Lehrbaum 2 1 Department of Psychological Sciences, Purdue University 2 PRIP, Vienna

More information

Solving the Railway Traveling Salesman Problem via a Transformation into the Classical Traveling Salesman Problem

Solving the Railway Traveling Salesman Problem via a Transformation into the Classical Traveling Salesman Problem Solving the Railway Traveling Salesman Problem via a Transformation into the Classical Traveling Salesman Problem Bin Hu Günther R. Raidl Vienna University of Technology Favoritenstraße 9 11/1861 1040

More information

M2 ORO: Advanced Integer Programming. Part IV. Solving MILP (1) easy IP. Outline. Sophie Demassey. October 10, 2011

M2 ORO: Advanced Integer Programming. Part IV. Solving MILP (1) easy IP. Outline. Sophie Demassey. October 10, 2011 M2 ORO: Advanced Integer Programming Sophie Demassey Part IV Solving MILP (1) Mines Nantes - TASC - INRIA/LINA CNRS UMR 6241 sophie.demassey@mines-nantes.fr October 10, 2011 Université de Nantes / M2 ORO

More information

Module 6 NP-Complete Problems and Heuristics

Module 6 NP-Complete Problems and Heuristics Module 6 NP-Complete Problems and Heuristics Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 397 E-mail: natarajan.meghanathan@jsums.edu Optimization vs. Decision

More information

Constructing arbitrarily large graphs with a specified number of Hamiltonian cycles

Constructing arbitrarily large graphs with a specified number of Hamiltonian cycles Electronic Journal of Graph Theory and Applications 4 (1) (2016), 18 25 Constructing arbitrarily large graphs with a specified number of Hamiltonian cycles Michael School of Computer Science, Engineering

More information

LKH User Guide Version 2.0 (November 2007)

LKH User Guide Version 2.0 (November 2007) LKH User Guide Version 2.0 (November 2007) by Keld Helsgaun E-mail: keld@ruc.dk 1. Introduction The Lin-Kernighan heuristic [1] is generally considered to be one of the most successful methods for generating

More information

Implementation Analysis of Efficient Heuristic Algorithms for the Traveling Salesman Problem

Implementation Analysis of Efficient Heuristic Algorithms for the Traveling Salesman Problem Implementation Analysis of Efficient Heuristic Algorithms for the Traveling Salesman Problem Dorabela Gamboa a, César Rego b, Fred Glover c a b c Escola Superior de Tecnologia e Gestão de Felgueiras, Instituto

More information

A NEW HEURISTIC ALGORITHM FOR MULTIPLE TRAVELING SALESMAN PROBLEM

A NEW HEURISTIC ALGORITHM FOR MULTIPLE TRAVELING SALESMAN PROBLEM TWMS J. App. Eng. Math. V.7, N.1, 2017, pp. 101-109 A NEW HEURISTIC ALGORITHM FOR MULTIPLE TRAVELING SALESMAN PROBLEM F. NURIYEVA 1, G. KIZILATES 2, Abstract. The Multiple Traveling Salesman Problem (mtsp)

More information

Fundamentals of Integer Programming

Fundamentals of Integer Programming Fundamentals of Integer Programming Di Yuan Department of Information Technology, Uppsala University January 2018 Outline Definition of integer programming Formulating some classical problems with integer

More information

A Theoretical Framework to Solve the TSPs as Classification Problems and Shortest Hamiltonian Path Problems

A Theoretical Framework to Solve the TSPs as Classification Problems and Shortest Hamiltonian Path Problems American Journal of Intelligent Systems 2014, 4(1): 1-8 DOI: 10.5923/j.ajis.20140401.01 A Theoretical Framework to Solve the TSPs as Classification Problems and Shortest Hamiltonian Path Problems Akihiko

More information

IE 102 Spring Routing Through Networks - 1

IE 102 Spring Routing Through Networks - 1 IE 102 Spring 2017 Routing Through Networks - 1 The Bridges of Koenigsberg: Euler 1735 Graph Theory began in 1735 Leonard Eüler Visited Koenigsberg People wondered whether it is possible to take a walk,

More information

The metric travelling salesman problem: pareto-optimal heuristic algorithms

The metric travelling salesman problem: pareto-optimal heuristic algorithms 295 The metric travelling salesman problem: pareto-optimal heuristic algorithms Ekaterina Beresneva Faculty of Computer Science National Research University Higher School of Economics Moscow, Russia, +7(925)538-40-58

More information

Theorem 2.9: nearest addition algorithm

Theorem 2.9: nearest addition algorithm There are severe limits on our ability to compute near-optimal tours It is NP-complete to decide whether a given undirected =(,)has a Hamiltonian cycle An approximation algorithm for the TSP can be used

More information

A SURVEY ON DIFFERENT METHODS TO SOLVE TRAVELLING SALESMAN PROBLEM

A SURVEY ON DIFFERENT METHODS TO SOLVE TRAVELLING SALESMAN PROBLEM A SURVEY ON DIFFERENT METHODS TO SOLVE TRAVELLING SALESMAN PROBLEM Harshala Ingole 1, V.B.Kute 2 1,2 Computer Engineering & RTM Nagpur University, (India) ABSTRACT Travelling salesman problem acts as an

More information

Optimal tree for Genetic Algorithms in the Traveling Salesman Problem (TSP).

Optimal tree for Genetic Algorithms in the Traveling Salesman Problem (TSP). Optimal tree for Genetic Algorithms in the Traveling Salesman Problem (TSP). Liew Sing liews_ryan@yahoo.com.sg April 1, 2012 Abstract In this paper, the author proposes optimal tree as a gauge for the

More information

ON THE SOLUTION OF TRAVELING SALESMAN UNDER CONDITIONS OF SPARSENESS A THESIS. Presented. The Faculty of the Division of Graduate

ON THE SOLUTION OF TRAVELING SALESMAN UNDER CONDITIONS OF SPARSENESS A THESIS. Presented. The Faculty of the Division of Graduate ON THE SOLUTION OF TRAVELING SALESMAN UNDER CONDITIONS OF SPARSENESS PROBLEMS A THESIS Presented to The Faculty of the Division of Graduate Studies and Research by Norman Jon Bau In Partial Fulfillment

More information

Metaheuristic Development Methodology. Fall 2009 Instructor: Dr. Masoud Yaghini

Metaheuristic Development Methodology. Fall 2009 Instructor: Dr. Masoud Yaghini Metaheuristic Development Methodology Fall 2009 Instructor: Dr. Masoud Yaghini Phases and Steps Phases and Steps Phase 1: Understanding Problem Step 1: State the Problem Step 2: Review of Existing Solution

More information

Using a Divide and Conquer Method for Routing in a PC Vehicle Routing Application. Abstract

Using a Divide and Conquer Method for Routing in a PC Vehicle Routing Application. Abstract Using a Divide and Conquer Method for Routing in a PC Vehicle Routing Application Brenda Cheang Department of Management Information Systems University College Dublin Belfield, Dublin 4, Ireland. Sherlyn

More information

CMSC 451: Lecture 22 Approximation Algorithms: Vertex Cover and TSP Tuesday, Dec 5, 2017

CMSC 451: Lecture 22 Approximation Algorithms: Vertex Cover and TSP Tuesday, Dec 5, 2017 CMSC 451: Lecture 22 Approximation Algorithms: Vertex Cover and TSP Tuesday, Dec 5, 2017 Reading: Section 9.2 of DPV. Section 11.3 of KT presents a different approximation algorithm for Vertex Cover. Coping

More information

COMP 355 Advanced Algorithms Approximation Algorithms: VC and TSP Chapter 11 (KT) Section (CLRS)

COMP 355 Advanced Algorithms Approximation Algorithms: VC and TSP Chapter 11 (KT) Section (CLRS) COMP 355 Advanced Algorithms Approximation Algorithms: VC and TSP Chapter 11 (KT) Section 35.1-35.2(CLRS) 1 Coping with NP-Completeness Brute-force search: This is usually only a viable option for small

More information

TSP! Find a tour (hamiltonian circuit) that visits! every city exactly once and is of minimal cost.!

TSP! Find a tour (hamiltonian circuit) that visits! every city exactly once and is of minimal cost.! TSP! Find a tour (hamiltonian circuit) that visits! every city exactly once and is of minimal cost.! Local Search! TSP! 1 3 5 6 4 What should be the neighborhood?! 2-opt: Find two edges in the current

More information

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery Monika Sharma 1, Deepak Sharma 2 1 Research Scholar Department of Computer Science and Engineering, NNSS SGI Samalkha,

More information

Part 3: Handling Intractability - a brief introduction

Part 3: Handling Intractability - a brief introduction COMP36111: Advanced Algorithms I Part 3: Handling Intractability - a brief introduction Howard Barringer Room KB2.20: email: howard.barringer@manchester.ac.uk December 2010 Introduction Course Structure

More information

A Tabu Search Heuristic for the Generalized Traveling Salesman Problem

A Tabu Search Heuristic for the Generalized Traveling Salesman Problem A Tabu Search Heuristic for the Generalized Traveling Salesman Problem Jacques Renaud 1,2 Frédéric Semet 3,4 1. Université Laval 2. Centre de Recherche sur les Technologies de l Organisation Réseau 3.

More information

CSCE 350: Chin-Tser Huang. University of South Carolina

CSCE 350: Chin-Tser Huang. University of South Carolina CSCE 350: Data Structures and Algorithms Chin-Tser Huang huangct@cse.sc.edu University of South Carolina Announcement Homework 2 will be returned on Thursday; solution will be available on class website

More information

Design and Analysis of Algorithms CS404/504. Razvan Bunescu School of EECS.

Design and Analysis of Algorithms CS404/504. Razvan Bunescu School of EECS. Welcome Design and Analysis of Algorithms Razvan Bunescu School of EECS bunescu@ohio.edu 1 Course Description Course Description: This course provides an introduction to the modern study of computer algorithms.

More information

Real-World Applications of Graph Theory

Real-World Applications of Graph Theory Real-World Applications of Graph Theory St. John School, 8 th Grade Math Class February 23, 2018 Dr. Dave Gibson, Professor Department of Computer Science Valdosta State University 1 What is a Graph? A

More information

Chapter 14 Section 3 - Slide 1

Chapter 14 Section 3 - Slide 1 AND Chapter 14 Section 3 - Slide 1 Chapter 14 Graph Theory Chapter 14 Section 3 - Slide WHAT YOU WILL LEARN Graphs, paths and circuits The Königsberg bridge problem Euler paths and Euler circuits Hamilton

More information

Implementation analysis of efficient heuristic algorithms for the traveling salesman problem

Implementation analysis of efficient heuristic algorithms for the traveling salesman problem Computers & Operations Research ( ) www.elsevier.com/locate/cor Implementation analysis of efficient heuristic algorithms for the traveling salesman problem Dorabela Gamboa a, César Rego b,, Fred Glover

More information

Questions... How does one show the first problem is NP-complete? What goes on in a reduction? How hard are NP-complete problems?

Questions... How does one show the first problem is NP-complete? What goes on in a reduction? How hard are NP-complete problems? Even More NP Questions... How does one show the first problem is NP-complete? What goes on in a reduction? How hard are NP-complete problems? Reduction We say that problem A reduces to problem B, if there

More information

Dynamic programming. Trivial problems are solved first More complex solutions are composed from the simpler solutions already computed

Dynamic programming. Trivial problems are solved first More complex solutions are composed from the simpler solutions already computed Dynamic programming Solves a complex problem by breaking it down into subproblems Each subproblem is broken down recursively until a trivial problem is reached Computation itself is not recursive: problems

More information

Machine Learning for Software Engineering

Machine Learning for Software Engineering Machine Learning for Software Engineering Introduction and Motivation Prof. Dr.-Ing. Norbert Siegmund Intelligent Software Systems 1 2 Organizational Stuff Lectures: Tuesday 11:00 12:30 in room SR015 Cover

More information

Networks: Lecture 2. Outline

Networks: Lecture 2. Outline Networks: Lecture Amedeo R. Odoni November 0, 00 Outline Generic heuristics for the TSP Euclidean TSP: tour construction, tour improvement, hybrids Worst-case performance Probabilistic analysis and asymptotic

More information

Calculation of the shortest-time path for traversal of an obstacle course by a robot

Calculation of the shortest-time path for traversal of an obstacle course by a robot Calculation of the shortest-time path for traversal of an obstacle course by a robot Rishi T. Khar*, Ernest L. Hall** Center for Robotics Research, University of Cincinnati, Cincinnati, OH 45221-0072 ABSTRACT

More information

ACO and other (meta)heuristics for CO

ACO and other (meta)heuristics for CO ACO and other (meta)heuristics for CO 32 33 Outline Notes on combinatorial optimization and algorithmic complexity Construction and modification metaheuristics: two complementary ways of searching a solution

More information

arxiv: v1 [math.co] 17 Oct 2017

arxiv: v1 [math.co] 17 Oct 2017 ON THE SKELETON OF THE PYRAMIDAL TOURS POLYTOPE VLADIMIR A. BONDARENKO, ANDREI V. NIKOLAEV arxiv:1710.06286v1 [math.co] 17 Oct 2017 Abstract. We consider the skeleton of the pyramidal tours polytope. Hamiltonian

More information

1 The Traveling Salesperson Problem (TSP)

1 The Traveling Salesperson Problem (TSP) CS 598CSC: Approximation Algorithms Lecture date: January 23, 2009 Instructor: Chandra Chekuri Scribe: Sungjin Im In the previous lecture, we had a quick overview of several basic aspects of approximation

More information

A SAT Based Effective Algorithm for the Directed Hamiltonian Cycle Problem

A SAT Based Effective Algorithm for the Directed Hamiltonian Cycle Problem A SAT Based Effective Algorithm for the Directed Hamiltonian Cycle Problem Gerold Jäger and Weixiong Zhang 2 Computer Science Institute Christian-Albrechts-University of Kiel D-248 Kiel, Germany E-mail:

More information

Travelling Salesman Problems

Travelling Salesman Problems STOCHASTIC LOCAL SEARCH FOUNDATIONS & APPLICATIONS Travelling Salesman Problems Presented by Camilo Rostoker rostokec@cs.ubc.ca Department of Computer Science University of British Columbia Outline 1.

More information

Precept 4: Traveling Salesman Problem, Hierarchical Clustering. Qian Zhu 2/23/2011

Precept 4: Traveling Salesman Problem, Hierarchical Clustering. Qian Zhu 2/23/2011 Precept 4: Traveling Salesman Problem, Hierarchical Clustering Qian Zhu 2/23/2011 Agenda Assignment: Traveling salesman problem Hierarchical clustering Example Comparisons with K-means TSP TSP: Given the

More information

ALGORITHM CHEAPEST INSERTION

ALGORITHM CHEAPEST INSERTION Version for STSP ALGORITHM CHEAPEST INSERTION. Choose the two furthest vertices i and k as initial subtour (c ik = max {c hj : (h, j) A}); set V := V \ {i} \ {k} (set of the unvisited vertices).. For each

More information

The Traveling Salesman Problem: An Overview of Applications, Formulations, Exact and Approximate Algorithms

The Traveling Salesman Problem: An Overview of Applications, Formulations, Exact and Approximate Algorithms CaROMaD, Volume 02 (2017) : 8 21 http://www.laromad.usthb.dz Cahiers de Recherche Opérationnelle et Mathématiques de la Décision The Traveling Salesman Problem: An Overview of Applications, Formulations,

More information

Department of Computer Applications. MCA 312: Design and Analysis of Algorithms. [Part I : Medium Answer Type Questions] UNIT I

Department of Computer Applications. MCA 312: Design and Analysis of Algorithms. [Part I : Medium Answer Type Questions] UNIT I MCA 312: Design and Analysis of Algorithms [Part I : Medium Answer Type Questions] UNIT I 1) What is an Algorithm? What is the need to study Algorithms? 2) Define: a) Time Efficiency b) Space Efficiency

More information

Solution of P versus NP problem

Solution of P versus NP problem Algorithms Research 2015, 4(1): 1-7 DOI: 105923/jalgorithms2015040101 Solution of P versus NP problem Mustapha Hamidi Meknes, Morocco Abstract This paper, taking Travelling Salesman Problem as our object,

More information

TSP Infrastructure for the Traveling Salesperson Problem

TSP Infrastructure for the Traveling Salesperson Problem TSP Infrastructure for the Traveling Salesperson Problem Michael Hahsler, Kurt Hornik Department of Statistics and Mathematics Wirtschaftsuniversität Wien Research Report Series Report 45 December 2006

More information

Notes for Lecture 24

Notes for Lecture 24 U.C. Berkeley CS170: Intro to CS Theory Handout N24 Professor Luca Trevisan December 4, 2001 Notes for Lecture 24 1 Some NP-complete Numerical Problems 1.1 Subset Sum The Subset Sum problem is defined

More information

LP-based Heuristics for the Traveling Salesman Problem

LP-based Heuristics for the Traveling Salesman Problem UNIVERSITÀ DEGLI STUDI DI BOLOGNA DEIS - Dipartimento di Elettronica Informatica e Sistemistica Dottorato di Ricerca in Automatica e Ricerca Operativa (MAT/09) XVIII Ciclo LP-based Heuristics for the Traveling

More information

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems Math. Program., Ser. B 97: 91 153 (2003) Digital Object Identifier (DOI) 10.1007/s10107-003-0440-4 David Applegate Robert Bixby Vašek Chvátal William Cook Implementing the Dantzig-Fulkerson-Johnson algorithm

More information

Generating subtour elimination constraints for the TSP from pure integer solutions

Generating subtour elimination constraints for the TSP from pure integer solutions CEJOR (2017) 25:231 260 DOI 10.1007/s10100-016-0437-8 ORIGINAL PAPER Generating subtour elimination constraints for the TSP from pure integer solutions Ulrich Pferschy 1 Rostislav Staněk 1 Published online:

More information

Partha Sarathi Mandal

Partha Sarathi Mandal MA 515: Introduction to Algorithms & MA353 : Design and Analysis of Algorithms [3-0-0-6] Lecture 39 http://www.iitg.ernet.in/psm/indexing_ma353/y09/index.html Partha Sarathi Mandal psm@iitg.ernet.in Dept.

More information

Simulating Human Performance on the Traveling Salesman Problem Abstract Introduction

Simulating Human Performance on the Traveling Salesman Problem Abstract Introduction Simulating Human Performance on the Traveling Salesman Problem Bradley J. Best (bjbest@cmu.edu), Herbert A. Simon (Herb_Simon@v.gp.cs.cmu.edu) Carnegie Mellon University Department of Psychology Pittsburgh,

More information

Using Travelling Salesman Problem Algorithms to. Plan the Most Time-efficient Route for Robots

Using Travelling Salesman Problem Algorithms to. Plan the Most Time-efficient Route for Robots Using Travelling Salesman Problem Algorithms to Plan the Most Time-efficient Route for Robots Zhaoxin Xue The High School Affiliated to Renmin University of China, 14-0646 Using Travelling Salesman Problem

More information