Machine Learning: Algorithms and Applications Mockup Examination

Size: px
Start display at page:

Download "Machine Learning: Algorithms and Applications Mockup Examination"

Transcription

1 Machine Learning: Algorithms and Applications Mockup Examination 14 May 2012 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students Write First Name, Last Name, Student Number and Signature where indicated. If not, the examination cannot be marked. Use a pen, not a pencil. Write neatly and clearly. Student Code Ethics Students are expected to maintain the highest standards of academic integrity. Work that is not of the student's own creation will receive no credit. Remember that you cannot give or receiving unauthorized aid on any assignment, quiz, or exam. A student cannot use the ideas of another and declares it as his or her own. Students are required to properly cite the original source of the ideas and information used in his or her work. Page 1 of 8.

2 Question 1 (1 point) For which problems is Machine Learning suitable? Explain in a few lines. Machine Learning is suitable for problems with (some of) the following characteristics: There is no (or it is very difficult to define) an algorithm that solves them; Human expertise does not exist or human are unable to explain their expertise (therefore it is extremely difficult to build an algorithm based on this expertise); There is abundant data at low cost. Such data can be mined in order to find regularities, patterns, or structures (a model of the problem). The model can be used to predict the solution of new instances of the problem. There is an agent that needs to learn how to maximize its performance at a task by interacting with an (partially) unknown environment, which gives the agent a feedback about how good is the current performance. Question 2 (2 point) Make 1 example of learning tasks: Informally describe the task in few lines in English; Describe the task more formally focusing on the task T, the performance measure P, and the training experience E; Propose a target function F be learned. Any of the example tasks presented in slides ml_2012_lecture_01 is a good example. Question 3 (1 point) Classification and regression are two types of supervised learning. Explain the main differences between them. In short: in classification the variable to be predicted is categorical. In regression the variable to be predicted is numeric and continuous. Question 4 (1 point) Suppose that: H is a set of possible hypotheses; X is a training data set; h* H is the most probable hypothesis given the data X. Under what conditions does the following equality hold? How is h* called if the equality holds? h *! argmax h " H P(h X) = argmax P(X h) h " H The equality holds in the all the hypotheses in H are equally probable a priori (without taking into account the content of the training set X). When the equality hold h* is called the maximum likelihood hypothesis. Page 2 of 8.

3 Question 5 (2 points) Consider the following training data set X, containing commercial transactions performed by some people. Each training example is represented by four attributes: Age, with possible values of {,, }; Income, with possible values of {Low,, High}; CreditRating, with possible values of {, }; and BuyComputer the classification attribute. It is if the person bought, if the person did not buy. Record ID Age Income High High High Low Low Low Low High CreditRating BuyComputer Using the Naïve Bayes classification approach, compute in detail the prediction (i.e., buy a computer or not) for a person with income and credit rating. Let! =!"# =!"#$%,!"#$%& =!"#$%&,!"#$%&'(&%)* =!"#$ predicted. be the instance to be Let!!!"#$%&'"()* =!"# and!!!"#$%&'"()* =!" ℎ!" = argmax!!1,!2! ℎ!!!!!!! ℎ = = argmax!!1,!2! ℎ!!"# =!"#$% ℎ!!"#$%& =!"#$%& ℎ!(!"#$%&'(&%)* =!"#$ ℎ)!"!!!!!1 =!" =!!!2 =!" =!!!"# =!"#$%!1 = 2/10 = 1/5!(!"# =!"#$%!2 ) = 3/5!!"#$%& =!"#$%&!1 = 5/10 = 1/2!(!"#$%& =!"#$%&!2 ) = 2/5!!"#$%&'(&%)* =!"#$!1 = 6/10 = 3/5!(!"#$%&'(&%)* =!"#$!2 ) = 2/5!!1!!"# =!"#$%!1!!"#$%& =!"#$%&!1!!"#$%&'(&%)* =!"#$!1 = 2/3 1/5 1/2 3/5 = 1/25 Page 3 of 8.

4 !! 1!!"# =!"#$%! 2!!"#$%& =!"#$%&! 2!!"#$%&'(&%)* =!"#$! 2 = 1/3 3/5 2/5 2/5 = 4/125 h!" (!) =!! Question 6 (2 points) Consider the problem of plant classification. The training set X is made of plant records. Each plant record (i.e., training example) is represented by 5 attributes: SepalLength the plant s sepal length in cm. SepalWidth the plant s sepal width in cm. PetalLength the plant s petal length in cm. PetalWidth the plant s petal width in cm. Class the classification attribute, with the possible values {Iris-setosa, Iris-versicolor, Iris-virginica}. PlantID SepalLength SepalWidth PetalLength PetalWidth Class Iris-setosa Iris-virginica Iris-setosa Iris-versicolor Iris-versicolor Iris-virginica Iris-setosa Iris-setosa Iris-virginica Iris-versicolor Iris-virginica Iris-versicolor Iris-virginica Iris-setosa Iris-versicolor Predict the class of the following plant Plant #16: (SepalLength=6.1; SepalWidth=2.8; PetalLength=4.0; PetalWidth=1.3). by applying the K Nearest Neighbor learning algorithm. Use k=3 and Manhattan distance. Assume that the values of the attributes are standardized. See mockup_exam_nn_solution.xlsx Page 4 of 8.

5 Question 7 (1 point) How can the SVM learning approach be used for datasets that are not linearly separable? Data an be not linearly separable for two reasons: 1. ise. With noisy data, the constraints may not be satisfied and the SVM algorithm may not be able to find a solution because the constraints of the minimization problem are not satisfied. The solution is to relax the margin constraints and introduce slack variables. See ml_2012_lecture_08 from page 9 for details. 2. Data is intrinsically not linearly separable. The input data is transformed into another (higher dimensional) space so that a linear decision boundary can separate positive and negative examples in the transformed space. The kernel trick is used to avoid a specific transformation and make the optimization problem computationally tractable. See ml_2012_lecture_08 from page 14 for details. Question 8 (1 point) Which are the main weaknesses of the k-means clustering algorithm? k has to be selected a priori; it is sensitive to initial seeds; it is sensitive to outliers; it may fail in finding clusters of arbitrary shapes the mean of data points should be calculable Question 9 (1 point) Explain how to evaluate a classifier s performance using k-fold cross-validation. k-fold cross validation is explained in ml_2012_lecture_06 on page 5. Question 10 (1.5 point) Consider a binary classification problem. In the training set there are 100 instances of class c 1 and 80 instances of class c 2. Suppose that, for the learned classifier, we have the following confusion matrix related to class c 1. class c 1 The true classification The learned classifier s classification c 1 c 2 Total c c Give a definition of precision, recall, and F-measure wrt class c 1 and preform the calculation of the 3 evaluation metrics. Page 5 of 8.

6 The explanation of precision, recall, and F-measure is in ml_2012_lecture_06 from page 9.!"#$!! =!"#!! =!"! = 90!"! +!"! = 9 11 = 0.82!"! = 90!"! +!"! = 9 10 = 0.9!!! = 2!"#$!!!"#(!! )!"#$!! +!"#(!! ) = = 0.86 Question 11 (1 point) Discuss whether there is the survival of the fittest in generational GAs. In generational GAs the entire population is replaced by the offspring at each generation. Therefore, the fittest individual at generation t survives at generation t+1 if: It is selected for mating It is not destroyed by crossover and mutation Assuming fitness proportionate selection, the number of copies in the mating pool of the fittest is as higher as the fittest is outstanding in the population (its fitness is much higher than all other finesses). At least one of these copies should not be destroyed by crossover and mutation. This depends on the probabilities of crossover and mutation. Question 12 (1 point) Describe the main steps and the main genetic operators of the Genetic Algorithms learning approach. The general schema of a Evolutionary algorithm is described in ml_2012_lecture_04 on page 5. This schema can be adopted for a Genetic Algorithm. The main genetic operators of a genetic algorithm are selection, crossover, mad mutation. See ml_2012_lecture_04 for more details. Question 13 (1.5 point) Design a two-input perceptron that implements the Boolean function A B. The requested perceptron has 3 inputs: A, B, and the constant 1. The values of A and B are 1 (true) or -1 (false). The following table describes the output O of the perceptron: A B O = A B Page 6 of 8.

7 One of the correct decision surfaces (any line that separates the positive point from the negative points would be fine) is shown in the following picture. The line crosses the A axis at -1 and the B axis at 1. The equation of the line is (A-0)/(-1-0)=(B-1))/(0-1)) -A= -B+1 1+A-B=0 So 1, 1, -1 are possible values for the weights w 0, w 1, and w 2, respectively. Using this values the output of the perceptron for A=0, B=0 is positive. Therefore, the sign of the weights is corrects and therefore we can conclude that w 0 =1,w 1 =1,w 2 =-1. Question 13 (1 point) Consider the three linearly separable two-dimensional input vectors in the following figure. Find the linear SVM that optimally separates the classes by maximizing the margin. All three data points are support vectors. The margin hyperplan H+ is the line passing through the two positive points. The margin hyperplan H- is the line passing through the negative point that is parallel to H+. The decision boundary is the red line half way between H+ and H-. The equation of the decision boundary is x+2=0. The following picture illustrates the solution: Page 7 of 8.

8 Page 8 of 8.

k Nearest Neighbors Super simple idea! Instance-based learning as opposed to model-based (no pre-processing)

k Nearest Neighbors Super simple idea! Instance-based learning as opposed to model-based (no pre-processing) k Nearest Neighbors k Nearest Neighbors To classify an observation: Look at the labels of some number, say k, of neighboring observations. The observation is then classified based on its nearest neighbors

More information

Performance Analysis of Data Mining Classification Techniques

Performance Analysis of Data Mining Classification Techniques Performance Analysis of Data Mining Classification Techniques Tejas Mehta 1, Dr. Dhaval Kathiriya 2 Ph.D. Student, School of Computer Science, Dr. Babasaheb Ambedkar Open University, Gujarat, India 1 Principal

More information

DATA MINING INTRODUCTION TO CLASSIFICATION USING LINEAR CLASSIFIERS

DATA MINING INTRODUCTION TO CLASSIFICATION USING LINEAR CLASSIFIERS DATA MINING INTRODUCTION TO CLASSIFICATION USING LINEAR CLASSIFIERS 1 Classification: Definition Given a collection of records (training set ) Each record contains a set of attributes and a class attribute

More information

k-nearest Neighbors + Model Selection

k-nearest Neighbors + Model Selection 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University k-nearest Neighbors + Model Selection Matt Gormley Lecture 5 Jan. 30, 2019 1 Reminders

More information

Machine Learning for. Artem Lind & Aleskandr Tkachenko

Machine Learning for. Artem Lind & Aleskandr Tkachenko Machine Learning for Object Recognition Artem Lind & Aleskandr Tkachenko Outline Problem overview Classification demo Examples of learning algorithms Probabilistic modeling Bayes classifier Maximum margin

More information

Instance-Based Representations. k-nearest Neighbor. k-nearest Neighbor. k-nearest Neighbor. exemplars + distance measure. Challenges.

Instance-Based Representations. k-nearest Neighbor. k-nearest Neighbor. k-nearest Neighbor. exemplars + distance measure. Challenges. Instance-Based Representations exemplars + distance measure Challenges. algorithm: IB1 classify based on majority class of k nearest neighbors learned structure is not explicitly represented choosing k

More information

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review Gautam Kunapuli Machine Learning Data is identically and independently distributed Goal is to learn a function that maps to Data is generated using an unknown function Learn a hypothesis that minimizes

More information

CS 584 Data Mining. Classification 1

CS 584 Data Mining. Classification 1 CS 584 Data Mining Classification 1 Classification: Definition Given a collection of records (training set ) Each record contains a set of attributes, one of the attributes is the class. Find a model for

More information

Introduction to Artificial Intelligence

Introduction to Artificial Intelligence Introduction to Artificial Intelligence COMP307 Machine Learning 2: 3-K Techniques Yi Mei yi.mei@ecs.vuw.ac.nz 1 Outline K-Nearest Neighbour method Classification (Supervised learning) Basic NN (1-NN)

More information

Data analysis case study using R for readily available data set using any one machine learning Algorithm

Data analysis case study using R for readily available data set using any one machine learning Algorithm Assignment-4 Data analysis case study using R for readily available data set using any one machine learning Algorithm Broadly, there are 3 types of Machine Learning Algorithms.. 1. Supervised Learning

More information

Model Selection Introduction to Machine Learning. Matt Gormley Lecture 4 January 29, 2018

Model Selection Introduction to Machine Learning. Matt Gormley Lecture 4 January 29, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Model Selection Matt Gormley Lecture 4 January 29, 2018 1 Q&A Q: How do we deal

More information

Hsiaochun Hsu Date: 12/12/15. Support Vector Machine With Data Reduction

Hsiaochun Hsu Date: 12/12/15. Support Vector Machine With Data Reduction Support Vector Machine With Data Reduction 1 Table of Contents Summary... 3 1. Introduction of Support Vector Machines... 3 1.1 Brief Introduction of Support Vector Machines... 3 1.2 SVM Simple Experiment...

More information

Input: Concepts, Instances, Attributes

Input: Concepts, Instances, Attributes Input: Concepts, Instances, Attributes 1 Terminology Components of the input: Concepts: kinds of things that can be learned aim: intelligible and operational concept description Instances: the individual,

More information

CISC 4631 Data Mining

CISC 4631 Data Mining CISC 4631 Data Mining Lecture 03: Introduction to classification Linear classifier Theses slides are based on the slides by Tan, Steinbach and Kumar (textbook authors) Eamonn Koegh (UC Riverside) 1 Classification:

More information

ESERCITAZIONE PIATTAFORMA WEKA. Croce Danilo Web Mining & Retrieval 2015/2016

ESERCITAZIONE PIATTAFORMA WEKA. Croce Danilo Web Mining & Retrieval 2015/2016 ESERCITAZIONE PIATTAFORMA WEKA Croce Danilo Web Mining & Retrieval 2015/2016 Outline Weka: a brief recap ARFF Format Performance measures Confusion Matrix Precision, Recall, F1, Accuracy Question Classification

More information

Nearest Neighbor Classification

Nearest Neighbor Classification Nearest Neighbor Classification Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 11, 2017 1 / 48 Outline 1 Administration 2 First learning algorithm: Nearest

More information

The k-means Algorithm and Genetic Algorithm

The k-means Algorithm and Genetic Algorithm The k-means Algorithm and Genetic Algorithm k-means algorithm Genetic algorithm Rough set approach Fuzzy set approaches Chapter 8 2 The K-Means Algorithm The K-Means algorithm is a simple yet effective

More information

Data Mining - Data. Dr. Jean-Michel RICHER Dr. Jean-Michel RICHER Data Mining - Data 1 / 47

Data Mining - Data. Dr. Jean-Michel RICHER Dr. Jean-Michel RICHER Data Mining - Data 1 / 47 Data Mining - Data Dr. Jean-Michel RICHER 2018 jean-michel.richer@univ-angers.fr Dr. Jean-Michel RICHER Data Mining - Data 1 / 47 Outline 1. Introduction 2. Data preprocessing 3. CPA with R 4. Exercise

More information

6.034 Quiz 2, Spring 2005

6.034 Quiz 2, Spring 2005 6.034 Quiz 2, Spring 2005 Open Book, Open Notes Name: Problem 1 (13 pts) 2 (8 pts) 3 (7 pts) 4 (9 pts) 5 (8 pts) 6 (16 pts) 7 (15 pts) 8 (12 pts) 9 (12 pts) Total (100 pts) Score 1 1 Decision Trees (13

More information

Robot Learning. There are generally three types of robot learning: Learning from data. Learning by demonstration. Reinforcement learning

Robot Learning. There are generally three types of robot learning: Learning from data. Learning by demonstration. Reinforcement learning Robot Learning 1 General Pipeline 1. Data acquisition (e.g., from 3D sensors) 2. Feature extraction and representation construction 3. Robot learning: e.g., classification (recognition) or clustering (knowledge

More information

CSCI567 Machine Learning (Fall 2014)

CSCI567 Machine Learning (Fall 2014) CSCI567 Machine Learning (Fall 2014) Drs. Sha & Liu {feisha,yanliu.cs}@usc.edu September 9, 2014 Drs. Sha & Liu ({feisha,yanliu.cs}@usc.edu) CSCI567 Machine Learning (Fall 2014) September 9, 2014 1 / 47

More information

Experimental Design + k- Nearest Neighbors

Experimental Design + k- Nearest Neighbors 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Experimental Design + k- Nearest Neighbors KNN Readings: Mitchell 8.2 HTF 13.3

More information

All lecture slides will be available at CSC2515_Winter15.html

All lecture slides will be available at  CSC2515_Winter15.html CSC2515 Fall 2015 Introduc3on to Machine Learning Lecture 9: Support Vector Machines All lecture slides will be available at http://www.cs.toronto.edu/~urtasun/courses/csc2515/ CSC2515_Winter15.html Many

More information

Summary. Machine Learning: Introduction. Marcin Sydow

Summary. Machine Learning: Introduction. Marcin Sydow Outline of this Lecture Data Motivation for Data Mining and Learning Idea of Learning Decision Table: Cases and Attributes Supervised and Unsupervised Learning Classication and Regression Examples Data:

More information

Application of Support Vector Machine Algorithm in Spam Filtering

Application of Support Vector Machine Algorithm in  Spam Filtering Application of Support Vector Machine Algorithm in E-Mail Spam Filtering Julia Bluszcz, Daria Fitisova, Alexander Hamann, Alexey Trifonov, Advisor: Patrick Jähnichen Abstract The problem of spam classification

More information

Performance Evaluation of Various Classification Algorithms

Performance Evaluation of Various Classification Algorithms Performance Evaluation of Various Classification Algorithms Shafali Deora Amritsar College of Engineering & Technology, Punjab Technical University -----------------------------------------------------------***----------------------------------------------------------

More information

arulescba: Classification for Factor and Transactional Data Sets Using Association Rules

arulescba: Classification for Factor and Transactional Data Sets Using Association Rules arulescba: Classification for Factor and Transactional Data Sets Using Association Rules Ian Johnson Southern Methodist University Abstract This paper presents an R package, arulescba, which uses association

More information

EPL451: Data Mining on the Web Lab 5

EPL451: Data Mining on the Web Lab 5 EPL451: Data Mining on the Web Lab 5 Παύλος Αντωνίου Γραφείο: B109, ΘΕΕ01 University of Cyprus Department of Computer Science Predictive modeling techniques IBM reported in June 2012 that 90% of data available

More information

The Curse of Dimensionality

The Curse of Dimensionality The Curse of Dimensionality ACAS 2002 p1/66 Curse of Dimensionality The basic idea of the curse of dimensionality is that high dimensional data is difficult to work with for several reasons: Adding more

More information

Classification: Decision Trees

Classification: Decision Trees Classification: Decision Trees IST557 Data Mining: Techniques and Applications Jessie Li, Penn State University 1 Decision Tree Example Will a pa)ent have high-risk based on the ini)al 24-hour observa)on?

More information

CSE 417T: Introduction to Machine Learning. Lecture 22: The Kernel Trick. Henry Chai 11/15/18

CSE 417T: Introduction to Machine Learning. Lecture 22: The Kernel Trick. Henry Chai 11/15/18 CSE 417T: Introduction to Machine Learning Lecture 22: The Kernel Trick Henry Chai 11/15/18 Linearly Inseparable Data What can we do if the data is not linearly separable? Accept some non-zero in-sample

More information

Data Mining. Practical Machine Learning Tools and Techniques. Slides for Chapter 3 of Data Mining by I. H. Witten, E. Frank and M. A.

Data Mining. Practical Machine Learning Tools and Techniques. Slides for Chapter 3 of Data Mining by I. H. Witten, E. Frank and M. A. Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 3 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Output: Knowledge representation Tables Linear models Trees Rules

More information

Weka ( )

Weka (  ) Weka ( http://www.cs.waikato.ac.nz/ml/weka/ ) The phases in which classifier s design can be divided are reflected in WEKA s Explorer structure: Data pre-processing (filtering) and representation Supervised

More information

Basic Data Mining Technique

Basic Data Mining Technique Basic Data Mining Technique What is classification? What is prediction? Supervised and Unsupervised Learning Decision trees Association rule K-nearest neighbor classifier Case-based reasoning Genetic algorithm

More information

Basic Concepts Weka Workbench and its terminology

Basic Concepts Weka Workbench and its terminology Changelog: 14 Oct, 30 Oct Basic Concepts Weka Workbench and its terminology Lecture Part Outline Concepts, instances, attributes How to prepare the input: ARFF, attributes, missing values, getting to know

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

KTH ROYAL INSTITUTE OF TECHNOLOGY. Lecture 14 Machine Learning. K-means, knn

KTH ROYAL INSTITUTE OF TECHNOLOGY. Lecture 14 Machine Learning. K-means, knn KTH ROYAL INSTITUTE OF TECHNOLOGY Lecture 14 Machine Learning. K-means, knn Contents K-means clustering K-Nearest Neighbour Power Systems Analysis An automated learning approach Understanding states in

More information

5 Learning hypothesis classes (16 points)

5 Learning hypothesis classes (16 points) 5 Learning hypothesis classes (16 points) Consider a classification problem with two real valued inputs. For each of the following algorithms, specify all of the separators below that it could have generated

More information

More Learning. Ensembles Bayes Rule Neural Nets K-means Clustering EM Clustering WEKA

More Learning. Ensembles Bayes Rule Neural Nets K-means Clustering EM Clustering WEKA More Learning Ensembles Bayes Rule Neural Nets K-means Clustering EM Clustering WEKA 1 Ensembles An ensemble is a set of classifiers whose combined results give the final decision. test feature vector

More information

Naïve Bayes for text classification

Naïve Bayes for text classification Road Map Basic concepts Decision tree induction Evaluation of classifiers Rule induction Classification using association rules Naïve Bayesian classification Naïve Bayes for text classification Support

More information

Classification. 1 o Semestre 2007/2008

Classification. 1 o Semestre 2007/2008 Classification Departamento de Engenharia Informática Instituto Superior Técnico 1 o Semestre 2007/2008 Slides baseados nos slides oficiais do livro Mining the Web c Soumen Chakrabarti. Outline 1 2 3 Single-Class

More information

Preprocessing of Stream Data using Attribute Selection based on Survival of the Fittest

Preprocessing of Stream Data using Attribute Selection based on Survival of the Fittest Preprocessing of Stream Data using Attribute Selection based on Survival of the Fittest Bhakti V. Gavali 1, Prof. Vivekanand Reddy 2 1 Department of Computer Science and Engineering, Visvesvaraya Technological

More information

ADaM version 4.0 (Eagle) Tutorial Information Technology and Systems Center University of Alabama in Huntsville

ADaM version 4.0 (Eagle) Tutorial Information Technology and Systems Center University of Alabama in Huntsville ADaM version 4.0 (Eagle) Tutorial Information Technology and Systems Center University of Alabama in Huntsville Tutorial Outline Overview of the Mining System Architecture Data Formats Components Using

More information

Large Scale Data Analysis Using Deep Learning

Large Scale Data Analysis Using Deep Learning Large Scale Data Analysis Using Deep Learning Machine Learning Basics - 1 U Kang Seoul National University U Kang 1 In This Lecture Overview of Machine Learning Capacity, overfitting, and underfitting

More information

Decision Trees In Weka,Data Formats

Decision Trees In Weka,Data Formats CS 4510/9010 Applied Machine Learning 1 Decision Trees In Weka,Data Formats Paula Matuszek Fall, 2016 J48: Decision Tree in Weka 2 NAME: weka.classifiers.trees.j48 SYNOPSIS Class for generating a pruned

More information

Data mining with Support Vector Machine

Data mining with Support Vector Machine Data mining with Support Vector Machine Ms. Arti Patle IES, IPS Academy Indore (M.P.) artipatle@gmail.com Mr. Deepak Singh Chouhan IES, IPS Academy Indore (M.P.) deepak.schouhan@yahoo.com Abstract: Machine

More information

Contents Machine Learning concepts 4 Learning Algorithm 4 Predictive Model (Model) 4 Model, Classification 4 Model, Regression 4 Representation

Contents Machine Learning concepts 4 Learning Algorithm 4 Predictive Model (Model) 4 Model, Classification 4 Model, Regression 4 Representation Contents Machine Learning concepts 4 Learning Algorithm 4 Predictive Model (Model) 4 Model, Classification 4 Model, Regression 4 Representation Learning 4 Supervised Learning 4 Unsupervised Learning 4

More information

Data Preprocessing. Supervised Learning

Data Preprocessing. Supervised Learning Supervised Learning Regression Given the value of an input X, the output Y belongs to the set of real values R. The goal is to predict output accurately for a new input. The predictions or outputs y are

More information

Statistical Methods in AI

Statistical Methods in AI Statistical Methods in AI Distance Based and Linear Classifiers Shrenik Lad, 200901097 INTRODUCTION : The aim of the project was to understand different types of classification algorithms by implementing

More information

劉介宇 國立台北護理健康大學 護理助產研究所 / 通識教育中心副教授 兼教師發展中心教師評鑑組長 Nov 19, 2012

劉介宇 國立台北護理健康大學 護理助產研究所 / 通識教育中心副教授 兼教師發展中心教師評鑑組長 Nov 19, 2012 劉介宇 國立台北護理健康大學 護理助產研究所 / 通識教育中心副教授 兼教師發展中心教師評鑑組長 Nov 19, 2012 Overview of Data Mining ( 資料採礦 ) What is Data Mining? Steps in Data Mining Overview of Data Mining techniques Points to Remember Data mining

More information

DATA MINING Introductory and Advanced Topics Part I

DATA MINING Introductory and Advanced Topics Part I DATA MINING Introductory and Advanced Topics Part I Margaret H. Dunham Department of Computer Science and Engineering Southern Methodist University Companion slides for the text by Dr. M.H.Dunham, Data

More information

Support vector machines

Support vector machines Support vector machines Cavan Reilly October 24, 2018 Table of contents K-nearest neighbor classification Support vector machines K-nearest neighbor classification Suppose we have a collection of measurements

More information

Multi-label classification using rule-based classifier systems

Multi-label classification using rule-based classifier systems Multi-label classification using rule-based classifier systems Shabnam Nazmi (PhD candidate) Department of electrical and computer engineering North Carolina A&T state university Advisor: Dr. A. Homaifar

More information

PV211: Introduction to Information Retrieval

PV211: Introduction to Information Retrieval PV211: Introduction to Information Retrieval http://www.fi.muni.cz/~sojka/pv211 IIR 15-1: Support Vector Machines Handout version Petr Sojka, Hinrich Schütze et al. Faculty of Informatics, Masaryk University,

More information

Support Vector Machines

Support Vector Machines Support Vector Machines RBF-networks Support Vector Machines Good Decision Boundary Optimization Problem Soft margin Hyperplane Non-linear Decision Boundary Kernel-Trick Approximation Accurancy Overtraining

More information

Contents. Preface to the Second Edition

Contents. Preface to the Second Edition Preface to the Second Edition v 1 Introduction 1 1.1 What Is Data Mining?....................... 4 1.2 Motivating Challenges....................... 5 1.3 The Origins of Data Mining....................

More information

Practice EXAM: SPRING 2012 CS 6375 INSTRUCTOR: VIBHAV GOGATE

Practice EXAM: SPRING 2012 CS 6375 INSTRUCTOR: VIBHAV GOGATE Practice EXAM: SPRING 0 CS 6375 INSTRUCTOR: VIBHAV GOGATE The exam is closed book. You are allowed four pages of double sided cheat sheets. Answer the questions in the spaces provided on the question sheets.

More information

Supervised vs unsupervised clustering

Supervised vs unsupervised clustering Classification Supervised vs unsupervised clustering Cluster analysis: Classes are not known a- priori. Classification: Classes are defined a-priori Sometimes called supervised clustering Extract useful

More information

Supervised Learning Classification Algorithms Comparison

Supervised Learning Classification Algorithms Comparison Supervised Learning Classification Algorithms Comparison Aditya Singh Rathore B.Tech, J.K. Lakshmipat University -------------------------------------------------------------***---------------------------------------------------------

More information

Introduction to Automated Text Analysis. bit.ly/poir599

Introduction to Automated Text Analysis. bit.ly/poir599 Introduction to Automated Text Analysis Pablo Barberá School of International Relations University of Southern California pablobarbera.com Lecture materials: bit.ly/poir599 Today 1. Solutions for last

More information

Function Approximation and Feature Selection Tool

Function Approximation and Feature Selection Tool Function Approximation and Feature Selection Tool Version: 1.0 The current version provides facility for adaptive feature selection and prediction using flexible neural tree. Developers: Varun Kumar Ojha

More information

STAT 1291: Data Science

STAT 1291: Data Science STAT 1291: Data Science Lecture 18 - Statistical modeling II: Machine learning Sungkyu Jung Where are we? data visualization data wrangling professional ethics statistical foundation Statistical modeling:

More information

An Introduction to Cluster Analysis. Zhaoxia Yu Department of Statistics Vice Chair of Undergraduate Affairs

An Introduction to Cluster Analysis. Zhaoxia Yu Department of Statistics Vice Chair of Undergraduate Affairs An Introduction to Cluster Analysis Zhaoxia Yu Department of Statistics Vice Chair of Undergraduate Affairs zhaoxia@ics.uci.edu 1 What can you say about the figure? signal C 0.0 0.5 1.0 1500 subjects Two

More information

Visualizing class probability estimators

Visualizing class probability estimators Visualizing class probability estimators Eibe Frank and Mark Hall Department of Computer Science University of Waikato Hamilton, New Zealand {eibe, mhall}@cs.waikato.ac.nz Abstract. Inducing classifiers

More information

Work 2. Case-based reasoning exercise

Work 2. Case-based reasoning exercise Work 2. Case-based reasoning exercise Marc Albert Garcia Gonzalo, Miquel Perelló Nieto November 19, 2012 1 Introduction In this exercise we have implemented a case-based reasoning system, specifically

More information

Computational Statistics The basics of maximum likelihood estimation, Bayesian estimation, object recognitions

Computational Statistics The basics of maximum likelihood estimation, Bayesian estimation, object recognitions Computational Statistics The basics of maximum likelihood estimation, Bayesian estimation, object recognitions Thomas Giraud Simon Chabot October 12, 2013 Contents 1 Discriminant analysis 3 1.1 Main idea................................

More information

CS 8520: Artificial Intelligence. Weka Lab. Paula Matuszek Fall, CSC 8520 Fall Paula Matuszek

CS 8520: Artificial Intelligence. Weka Lab. Paula Matuszek Fall, CSC 8520 Fall Paula Matuszek CS 8520: Artificial Intelligence Weka Lab Paula Matuszek Fall, 2015!1 Weka is Waikato Environment for Knowledge Analysis Machine Learning Software Suite from the University of Waikato Been under development

More information

6.034 Quiz 3 7 November 2014

6.034 Quiz 3 7 November 2014 6.0 Quiz 7 November 0 Name Email Circle your TA (for extra credit point), so that we can more easily enter your score in our records and return your quiz to you promptly. Josh Blum Elisa Castañer Pedro

More information

Machine Learning Classifiers and Boosting

Machine Learning Classifiers and Boosting Machine Learning Classifiers and Boosting Reading Ch 18.6-18.12, 20.1-20.3.2 Outline Different types of learning problems Different types of learning algorithms Supervised learning Decision trees Naïve

More information

Linear methods for supervised learning

Linear methods for supervised learning Linear methods for supervised learning LDA Logistic regression Naïve Bayes PLA Maximum margin hyperplanes Soft-margin hyperplanes Least squares resgression Ridge regression Nonlinear feature maps Sometimes

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Maximum Margin Methods Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574

More information

Intro to R for Epidemiologists

Intro to R for Epidemiologists Lab 9 (3/19/15) Intro to R for Epidemiologists Part 1. MPG vs. Weight in mtcars dataset The mtcars dataset in the datasets package contains fuel consumption and 10 aspects of automobile design and performance

More information

LOGISTIC REGRESSION FOR MULTIPLE CLASSES

LOGISTIC REGRESSION FOR MULTIPLE CLASSES Peter Orbanz Applied Data Mining Not examinable. 111 LOGISTIC REGRESSION FOR MULTIPLE CLASSES Bernoulli and multinomial distributions The mulitnomial distribution of N draws from K categories with parameter

More information

Applying Supervised Learning

Applying Supervised Learning Applying Supervised Learning When to Consider Supervised Learning A supervised learning algorithm takes a known set of input data (the training set) and known responses to the data (output), and trains

More information

Data Mining Tools. Jean-Gabriel Ganascia LIP6 University Pierre et Marie Curie 4, place Jussieu, Paris, Cedex 05

Data Mining Tools. Jean-Gabriel Ganascia LIP6 University Pierre et Marie Curie 4, place Jussieu, Paris, Cedex 05 Data Mining Tools Jean-Gabriel Ganascia LIP6 University Pierre et Marie Curie 4, place Jussieu, 75252 Paris, Cedex 05 Jean-Gabriel.Ganascia@lip6.fr DATA BASES Data mining Extraction Data mining Interpretation/

More information

CS570: Introduction to Data Mining

CS570: Introduction to Data Mining CS570: Introduction to Data Mining Classification Advanced Reading: Chapter 8 & 9 Han, Chapters 4 & 5 Tan Anca Doloc-Mihu, Ph.D. Slides courtesy of Li Xiong, Ph.D., 2011 Han, Kamber & Pei. Data Mining.

More information

Data Mining: Concepts and Techniques. Chapter 9 Classification: Support Vector Machines. Support Vector Machines (SVMs)

Data Mining: Concepts and Techniques. Chapter 9 Classification: Support Vector Machines. Support Vector Machines (SVMs) Data Mining: Concepts and Techniques Chapter 9 Classification: Support Vector Machines 1 Support Vector Machines (SVMs) SVMs are a set of related supervised learning methods used for classification Based

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING 08: Classification Evaluation and Practical Issues Instructor: Yizhou Sun yzsun@cs.ucla.edu October 24, 2017 Learnt Prediction and Classification Methods Vector Data

More information

Argha Roy* Dept. of CSE Netaji Subhash Engg. College West Bengal, India.

Argha Roy* Dept. of CSE Netaji Subhash Engg. College West Bengal, India. Volume 3, Issue 3, March 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Training Artificial

More information

Introduction to R and Statistical Data Analysis

Introduction to R and Statistical Data Analysis Microarray Center Introduction to R and Statistical Data Analysis PART II Petr Nazarov petr.nazarov@crp-sante.lu 22-11-2010 OUTLINE PART II Descriptive statistics in R (8) sum, mean, median, sd, var, cor,

More information

Supervised and Unsupervised Learning (II)

Supervised and Unsupervised Learning (II) Supervised and Unsupervised Learning (II) Yong Zheng Center for Web Intelligence DePaul University, Chicago IPD 346 - Data Science for Business Program DePaul University, Chicago, USA Intro: Supervised

More information

Density estimation. In density estimation problems, we are given a random from an unknown density. Our objective is to estimate

Density estimation. In density estimation problems, we are given a random from an unknown density. Our objective is to estimate Density estimation In density estimation problems, we are given a random sample from an unknown density Our objective is to estimate? Applications Classification If we estimate the density for each class,

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Isabelle Guyon Notes written by: Johann Leithon. Introduction The process of Machine Learning consist of having a big training data base, which is the input to some learning

More information

Classification Algorithms in Data Mining

Classification Algorithms in Data Mining August 9th, 2016 Suhas Mallesh Yash Thakkar Ashok Choudhary CIS660 Data Mining and Big Data Processing -Dr. Sunnie S. Chung Classification Algorithms in Data Mining Deciding on the classification algorithms

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing ECG782: Multidimensional Digital Signal Processing Object Recognition http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Knowledge Representation Statistical Pattern Recognition Neural Networks Boosting

More information

ADVANCED CLASSIFICATION TECHNIQUES

ADVANCED CLASSIFICATION TECHNIQUES Admin ML lab next Monday Project proposals: Sunday at 11:59pm ADVANCED CLASSIFICATION TECHNIQUES David Kauchak CS 159 Fall 2014 Project proposal presentations Machine Learning: A Geometric View 1 Apples

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Sources Hastie, Tibshirani, Friedman: The Elements of Statistical Learning James, Witten, Hastie, Tibshirani: An Introduction to Statistical Learning Andrew Ng:

More information

Support Vector Machines

Support Vector Machines Support Vector Machines RBF-networks Support Vector Machines Good Decision Boundary Optimization Problem Soft margin Hyperplane Non-linear Decision Boundary Kernel-Trick Approximation Accurancy Overtraining

More information

Tour-Based Mode Choice Modeling: Using An Ensemble of (Un-) Conditional Data-Mining Classifiers

Tour-Based Mode Choice Modeling: Using An Ensemble of (Un-) Conditional Data-Mining Classifiers Tour-Based Mode Choice Modeling: Using An Ensemble of (Un-) Conditional Data-Mining Classifiers James P. Biagioni Piotr M. Szczurek Peter C. Nelson, Ph.D. Abolfazl Mohammadian, Ph.D. Agenda Background

More information

CS229 Final Project: Predicting Expected Response Times

CS229 Final Project: Predicting Expected  Response Times CS229 Final Project: Predicting Expected Email Response Times Laura Cruz-Albrecht (lcruzalb), Kevin Khieu (kkhieu) December 15, 2017 1 Introduction Each day, countless emails are sent out, yet the time

More information

SOCIAL MEDIA MINING. Data Mining Essentials

SOCIAL MEDIA MINING. Data Mining Essentials SOCIAL MEDIA MINING Data Mining Essentials Dear instructors/users of these slides: Please feel free to include these slides in your own material, or modify them as you see fit. If you decide to incorporate

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Eric Medvet 16/3/2017 1/77 Outline Machine Learning: what and why? Motivating example Tree-based methods Regression trees Trees aggregation 2/77 Teachers Eric Medvet Dipartimento

More information

Search Engines. Information Retrieval in Practice

Search Engines. Information Retrieval in Practice Search Engines Information Retrieval in Practice All slides Addison Wesley, 2008 Classification and Clustering Classification and clustering are classical pattern recognition / machine learning problems

More information

Supervised Learning: Nearest Neighbors

Supervised Learning: Nearest Neighbors CS 2750: Machine Learning Supervised Learning: Nearest Neighbors Prof. Adriana Kovashka University of Pittsburgh February 1, 2016 Today: Supervised Learning Part I Basic formulation of the simplest classifier:

More information

Data Mining. Practical Machine Learning Tools and Techniques. Slides for Chapter 3 of Data Mining by I. H. Witten, E. Frank and M. A.

Data Mining. Practical Machine Learning Tools and Techniques. Slides for Chapter 3 of Data Mining by I. H. Witten, E. Frank and M. A. Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 3 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Input: Concepts, instances, attributes Terminology What s a concept?

More information

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CHAPTER 4 CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS 4.1 Introduction Optical character recognition is one of

More information

A Systematic Overview of Data Mining Algorithms. Sargur Srihari University at Buffalo The State University of New York

A Systematic Overview of Data Mining Algorithms. Sargur Srihari University at Buffalo The State University of New York A Systematic Overview of Data Mining Algorithms Sargur Srihari University at Buffalo The State University of New York 1 Topics Data Mining Algorithm Definition Example of CART Classification Iris, Wine

More information

Density estimation. In density estimation problems, we are given a random from an unknown density. Our objective is to estimate

Density estimation. In density estimation problems, we are given a random from an unknown density. Our objective is to estimate Density estimation In density estimation problems, we are given a random sample from an unknown density Our objective is to estimate? Applications Classification If we estimate the density for each class,

More information

Supervised Learning (contd) Linear Separation. Mausam (based on slides by UW-AI faculty)

Supervised Learning (contd) Linear Separation. Mausam (based on slides by UW-AI faculty) Supervised Learning (contd) Linear Separation Mausam (based on slides by UW-AI faculty) Images as Vectors Binary handwritten characters Treat an image as a highdimensional vector (e.g., by reading pixel

More information

Rule extraction from support vector machines

Rule extraction from support vector machines Rule extraction from support vector machines Haydemar Núñez 1,3 Cecilio Angulo 1,2 Andreu Català 1,2 1 Dept. of Systems Engineering, Polytechnical University of Catalonia Avda. Victor Balaguer s/n E-08800

More information