MET71 COMPUTER AIDED DESIGN

Size: px
Start display at page:

Download "MET71 COMPUTER AIDED DESIGN"

Transcription

1 UNIT - II BRESENHAM S ALGORITHM BRESENHAM S LINE ALGORITHM Bresenham s algorithm enables the selection of optimum raster locations to represent a straight line. In this algorithm either pixels along X or Y directions are incremented by one unit depending upon the slope of the line. The increment in the other direction is determined by examining the error or distance between actual line location and the nearest grid locations. The principle of Bresenham s algorithm can be explained with the aid of Fig a. If the slope of the line (in the first octant) is more than 1/2, the pixel point in the Y direction is shifted by one. Thus lines L1 and L2 passes through pixel (0, 0). For line L2 slope is greater than 1/2; hence the pixel point is (1, 1) whereas for L1 the slope is less than 1/2 and hence (1, 0) is the pixel point. Bresenham s algorithm selects optimum raster locations with minimum computation. To accomplish this, the algorithm always increments by one unit in either X or Y depending upon the slope of the line. The increment in the other variable either zero or one is determined by examining the distance (error) between the actual line location and the nearest grid location. Only the sign of this error needs be examined. Consider the line of slope m = 0.4 and passing through (0, 0) in Fig (a). The error team e is initialized to 1/2. The next raster point can be determined by adding the slope (m) to the error term. i.e. e = e + m e = = 0.1 Since e is negative, the line will pass below the middle of the pixel. Hence the pixel is at the same horizontal level i.e., (0, 1). For the next location X is incremented to 2. Error e = = 0.3. Since e is positive the line passes above the middle of the raster line. Hence the location of pixel is (2, 1). Before examining the next pixel location the error term has to be reinitialized as its value is positive. Re-initialization is done by subtracting one from the current e value. Hence e = = Adding the slope 0.4 we get e = Table 3.2 shows the computed values and the location of pixels. A plot of the pixel location is shown in Fig. (b). Table: Calculation of Pixel Position M.SRINIVASSAN, ASST. PROF 1 RGCET

2 Fig. a Location of Pixels Using Fig. b Pixels for Line of Bresenham Algorithm Slope, m = 0.4 The speed of the Bresenham s algorithm can be increased by using integer arithmetic and eliminating division to determine slope.the pseudo code and a C-program for implementing Bresenham s algorithm are given below: Pseudo code for Bresenham s line-drawing algorithm Given a line from x1, y1 to x2, y2... dx is the difference between the x components of end points dy is the difference between the y components of end points ix is the absolute value of dx iy is the absolute value of dy inc is the larger of dx, dy plotx is x1 ploty is y1 (the beginning of line) x starts at 0 y starts at 0 plot a pixel at plotx, ploty increment x using ix increment y using iy plot is false if x is greater than inc plot is true decrement x using inc increment plotx if dx is positive decrement plotx id dx is negative if y is greater than inc plot is true decrement y using inc increment ploty if dy is positive decrement ploty if dy is negative if plot is true, plot a pixel at plotx, ploty M.SRINIVASSAN, ASST. PROF 2 RGCET

3 increment i. Program in Turbo-C to draw a line # include <stdio. h> # include <graphics. h> # include <stdlb. h> void draw line (int x1, int y1, int x2, int y2), void main (void) { draw line (100, 100, 50, 50) ; } void draw line (int x1, int y1, int x2 m int y2) { int dx, dy, inc, ix, iy, x, y, plot, plotx, ploty, i ; int gd, gm ; gd = DETECT ; initgraph (&gd, &gm, ) ; dx = x1 x2 ; dy = y1 y2 ; ix = abs (dx) ; iy = abs (dy) ; inc = max (ix, iy) ; x = y = 0 ; plot x = x1 ; plot y = y1 ; for (i = 0 ; i <inc ; i ++) { x + = ix ; y + iy ; plot = 0 if (x > inc) { plot = 1 ; x = inc ; if (dx < 0) plot x = 1 ; else plotx + = 1 ; } if (y > inc) M.SRINIVASSAN, ASST. PROF 3 RGCET

4 { plot = 1 ; y = inc ; if (dy) ploty = 1 ; else ploty + = 1 ; } if (plot) putpixel (plotx, ploty, 1) else } getch ( ) ; closegraph ( ) ; BRESENHAM S CIRCLE ALGORITHM An efficient algorithm for generating a circle has been developed by J. Bresenham. Values of a circle centered at the origin are computed in the sector X = 0 to X = R /2 where R is the radius of the circle. The symmetry of the circle is used to obtain the pixels corresponding to other sectors. Bresenham s circle algorithm can be explained as follows: Consider an origin-centred circle. The algorithm begins at X = 0 and Y = R. In the first quadrant of the circle, Y is a monotonically decreasing function of X. Referring to Fig., (Xi, Yi) is a point on the circle. For clockwise generation of the circle there are only three possible selections of the next pixel, which represents the circle. These positions are also shown in Fig The algorithm is designed to choose the pixel which minimizes the square of the distance between one of these pixels and the true circle, i.e., the minimum of H = [ (Xi + 1) 2 + (Yi)2 R 2] V = [ (Xi ) 2 + ( Yi 1) 2 R 2 ] D = [ ( Xi + 1) 2 + ( Yi 1 ) 2 R 2 ] Fig. First Quadrant Pixel Position M.SRINIVASSAN, ASST. PROF 4 RGCET

5 A flow chart to obtain the pixel values for representing a circle is given in Fig. It is sufficient to obtain the pixel values for 1/8th of a circle, the remaining obtained by symmetry. A program which implements Bresenham s algorithm follows. include <stdio.h> include <graphics.h> Void draw circle (int xc, int yc, int y) ; Void symmetry (int x, int y, int xc, int yc) ; double ratio ; Void main (void) { draw circle (300, 150, 50) ; } int d, x ; int gd, gm ; gd = DETECT ; initgraph (&gd, &gm, ) ; d = 3-2 * y ; ratio = 1.5 x = 0 ; while (x < y) { symmetry (x, y, xc, yc) ; if (d < 0) d + = 4 * x + 6 ; else { d + = 4 * (X Y) + 10 ; y - : } x++ ; if (x = = y) symmetry (x, y, xc, yc) ; } getch ( ) ; closegraph ( ) ; } void symmetry (int x, int y, int xc, int yc) { M.SRINIVASSAN, ASST. PROF 5 RGCET

6 } int x start, x end, x out ; int y start, y end, y out ; x start = x * ratio x end = (x + 1) * ratio ; y start = y * ratio ; y end = (y + 1) * ratio for (x out = x start ; x out < x end ; ++ x out) { put pixel (x out + xc, y + yc, 1 ) ; put pixel (x out + xc, y + yc, 1) ; put pixel (-x out + xc, y + yc, 1) ; put pixel (-x out + xc, y + yc, 1) ; (y out = y start ; y out < y end ; ++y out) { put pixel (y out + xc, x + yc, 1 ) ; put pixel (y out + xc, x + yc, 1) ; put pixel (-y out + xc, x + yc, 2) ; put pixel (-y out + xc, x + yc, 1) ; } M.SRINIVASSAN, ASST. PROF 6 RGCET

7 Flow Chart to Determine Pixel Values EXAMPLE OF BRESENHAM S ALGORITHM Consider a circle with centre at the origin and radius equal to 10 units. Because of symmetry only the first octant is considered here. X = 0 Y = 10 i = 2 (1 10) = 18 LIMIT = 0 PLOT (0, 10) Y1 > LIMIT CONTINUE i < 0 GOTO 2 M.SRINIVASSAN, ASST. PROF 7 RGCET

8 2 = 2 ( 18) + 2 (10) 1 = 17 < 0 GOTO X = = 1 i = = 14 GOTO 1 1 PLOT (1, 10) Yi > LIMIT CONTINUE i < 0 = 2 ( 14) + 2 (10) 1 = 9 < 0 GOTO 10 X = i = (2) + 1 = 9 GOTO 1 PLOT (2, 10) The procedure is to be continued till the required point is reached. The results are given in Table and are plotted in Fig. shown below. Pixel Values for Circle Plot of First Octant of a Circle M.SRINIVASSAN, ASST. PROF 8 RGCET

9 TRANSFORMATION IN GRAPHICS Geometric transformations provide a means by which an image can be enlarged in size, or reduced, rotated, or moved. These changes are brought about by changing the co-ordinates of the picture to a new set of values depending upon the requirements. CO-ORDINATE SYSTEMS USED IN GRAPHICS AND WINDOWING Transformations can be carried out either in 2-dimensions or in 3-dimensions. The theory of two-dimensional transformations is discussed first in this chapter. This is then extended to three dimensions. When a design package is initiated, the display will have a set of co-ordinate values. These are called default co-ordinates. A user co-ordinate system is one in which the designer can specify his own co-ordinates for a specific design application. These screen independent coordinates can have large or small numeric range, or even negative values, so that the model can be represented in a natural way. It may, however, happen that the picture is too crowded with several features to be viewed clearly on the display screen. Therefore, the designer may want to view only a portion of the image, enclosed in a rectangular region called a window. Different parts of the drawing can thus be selected for viewing by placing the windows. Portions inside the window can be enlarged, reduced or edited depending upon the requirements. Figure shows the use of windowing to enlarge the picture. VIEW PORT It may be sometimes desirable to display different portions or views of the drawing in different regions of the screen. A portion of the screen where the contents of the window are displayed is called a view port. Let the screen size be X = 0 to 200 and Y = 0 to 130. A view port can be defined by the co-ordinates say X1 = 65, X2 = 130, Y1 = 50 and Y2 = 100. If we use the same window as in Fig., the definition of this view port will display the image in the right hand top quarter of the screen (Fig.) choosing different view ports multiple views can be placed on the screen. Fig. shows four views of a component displayed using view port commands. M.SRINIVASSAN, ASST. PROF 9 RGCET

10 CLIPPING Clipping is the process of determining the visible portions of a drawing lying within a window. In clipping each graphic element of the display is examined to determine whether or not it is completely inside the window, completely outside the window or crosses a window boundary. Portions outside the boundary are not drawn. If the element of a drawing crosses the boundary the point of inter-section is determined and only portions which lie inside are drawn. Readers are advised to refer to books on computer graphics for typical clipping algorithms like Cohen- Sutherland clipping algorithm. Fig. Shows an example of clipping. HIDDEN SURFACE REMOVAL One of the difficult problems in computer graphics is the removal of hidden surfaces from the images of solid objects. In Fig. (a) An opaque cube is shown in wire frame representation. Edges 15, 48, 37, 14, 12, 23, 58 and 87 are visible whereas edges 56, 67 and 26 are not visible. Correspondingly, surfaces 1265, 2673 and 5678 are not visible since the object is opaque. The actual representation of the cube must be as shown in Fig. (b). M.SRINIVASSAN, ASST. PROF 10 RGCET

11 There are a number of algorithms available for removal of hidden lines and hidden surfaces. Table gives a list of algorithms for hidden line removal and hidden surface removal. Table Algorithms for Hidden Line and Hidden Surface There are two popular approaches to hidden surface removal. These are scan line based systems and Z-buffer based systems. Other important approaches are area subdivision and depth list schemes. 2-D & 3-D TRANSFORMATION 2-D TRANSFORMATIONS In computer graphics, drawings are created by a series of primitives which are represented by the co-ordinates of their end points. Certain changes in these drawings can be made by performing some mathematical operations on these co-ordinates. The basic transformations are scaling, translation and rotation. ROTATION Another useful transformation is the rotation of a drawing about a pivot point. Consider Fig. Point P1 (40, 20) can be seen being rotated about the origin through an angle, =45, in the anti-clockwise direction to position P2. The co-ordinates of P2 can be obtained by multiplying the co-ordinates of P1 by the matrix: M.SRINIVASSAN, ASST. PROF 11 RGCET

12 SCALING Changing the dimensions of window and view port, it is possible to alter the size of drawings. This technique is not satisfactory in all cases. A drawing can be made bigger by increasing the distance between the points of the drawing. In general, this can be done by multiplying the co-ordinates of the drawing by an enlargement or reduction factor called scaling factor and the operation is called scaling. Referring to Fig., P1 (30, 20) represents a point in the XY plane. In matrix form, P1 can be represented as:p1 = [30, 20] If we multiply this by a matrix M.SRINIVASSAN, ASST. PROF 12 RGCET

13 An example of scaling in the case of a triangle is shown in Fig. Fig. (a) Shows the original picture before scaling. Fig. (b) Shows the triangle after the co-ordinates are multiplied by the scaling matrix. TRANSLATION Moving drawing or model across the screen is called translation. This is accomplished by adding to the co-ordinates of each corner point the distance through which the drawing is to be moved (translated). Fig. shows a rectangle (Fig.(a)) being moved to a new position (Fig.(b)) by adding 40 units to X co-ordinate values and 30 units to Y coordinate values. In general, in order to translate drawing by (TX, TY ) every point X, Y will be replaced by a point X1, Y1 where X1 = X + TX Y = Y + TY M.SRINIVASSAN, ASST. PROF 13 RGCET

14 REFLECTION Shading is an important element in 3-D computer graphics, as it gives the necessary realism to the representation of the object. Fig. shows what happens when light is incident on a surface. Light gets partly reflected, partly scattered, partly absorbed and partly transmitted. The relative magnitudes of these are influenced by many factors like the opaqueness of the solid, surface texture etc. The intensity and wave length of light reflected from a surface depends on the incident angle, the surface roughness, incident wave length and the electrical properties of the surface. In computer graphics designer can model reflected light and transmitted light. Reflected light could be categorized into two types: Diffuse reflection: Diffuse light is scattered in all directions and is responsible for the color of the object. The light is reflected from a surface due to molecular interaction between incident light and the surface material. A yellow object for example, absorbs white light and reflects yellow component of the light. This property is attributed to diffuse reflection. When light from a point source is incident on a solid object, the diffuse reflection depends upon the angle of inclination of the surface with that of the incident beam. More important source of illumination of the objects is ambient light, which is the result of multiple reflections from the walls and other objects in the vicinity and is incident on a surface in all directions. M.SRINIVASSAN, ASST. PROF 14 RGCET

15 Specular reflection: A perfectly matt surface scatters light in all directions. Most of the surfaces that we deal with, however, have different levels of glossiness. The specular deflection deals with the reflection of the surface due to glossiness. Consider Fig. which shows the reflection of light on a surface. If the surface is perfectly glossy the reflected light is in the direction of R. If the surface becomes more and more matt, the reflection intensity varies as in a profile shown as the shaded area of the figure. A technique to model reflection from an object based on specular reflection has been proposed by Phong. This model assumes that: Light sources are point sources. All geometry except the surface normal is ignored. Diffuse and specular components are modeled as local components The model to simulate the specular term is empirical. The color of specular reflection is that of the light source The ambient lighting is constant. SHEARING A shearing transformation produces distortion of an object or an entire image. There are two types of shears: X-shear and Y-shear. A Y-shear transforms the point (X, Y) to the point (X1, Y1) by a factor Sh1, where X1 = X Y1 = Sh1. X + Y Fig. shows Y shear applied to a drawing. M.SRINIVASSAN, ASST. PROF 15 RGCET

16 HOMOGENEOUS TRANSFORMATIONS Each of the above transformations with the exception of translation can be represented as a row vector X, Y and a 2 X 2 matrix. However, all the four transformations discussed above can be represented as a product of a 1 X 3 row vector and an appropriate 3 X 3 matrix. The conversion of a two-dimensional co-ordinate pair (X, Y) into a 3-dimensional vector can be achieved by representing the point as [X Y 1]. After multiplying this vectorby a 3 X 3 matrix, another homogeneous row vector is obtained [X1 Y1 1]. The first two terms in this vector are the co-ordinate pair which is the transform of (X, Y). This three dimensional representation of a two dimensional plane is called homogeneous coordinates and the transformation using the homogeneous co-ordinates is called homogeneous transformation. The matrix representations of the four basic transformations are given below. M.SRINIVASSAN, ASST. PROF 16 RGCET

17 Translation: COMBINATION TRANSFORMATIONS Sequences of transformations can be combined into a single transformation using the concatenation process. For example, consider the rotation of a line about an arbitrary point. Line M.SRINIVASSAN, ASST. PROF 17 RGCET

18 AB is to be rotated through 45 in anticlockwise direction about point A (Fig (a)). Fig. (b) Shows an inverse translation of AB to A1B1. A1B1 is then rotated through 45 to A2B2. The line A2B2 is then translated to A3B3 Since matrix operations are not commutative, care must be taken to preserve the order in which they are performed while combining the matrices. 3-D TRANSFORMATIONS It is often necessary to display objects in 3-D on the graphics screen. The transformation matrices developed for 2-dimensions can be extended to 3-D. M.SRINIVASSAN, ASST. PROF 18 RGCET

19 PROJECTIONS In drawing practice, a 3-dimensional object is represented on a plane paper. Similarly in computer graphics a 3-dimensional object is viewed on a 2-dimensional display. A projection is a transformation that performs this conversion. Three types of projections are commonly used in engineering practice: parallel, perspective and isometric. PARALLEL (ORTHOGONAL) PROJECTION This is the simplest of the projection methods. Fig. shows the projection of a cube on to a projection plane. The projectors, which are lines passing through the corners of the object are all parallel to each other. It is only necessary to project the end points of a line in 3-D and then join these projected points. This speeds up the transformation process. However a major disadvantage of parallel projection is lack of depth information. M.SRINIVASSAN, ASST. PROF 19 RGCET

20 PERSPECTIVE PROJECTION The perspective projection enhances the realism of displayed image by providing the viewer with a sense of depth. Portions of the object farther away from the viewer are drawn smaller than those in the foreground. This is more realistic as it is the way we see an object. In perspective projection the projections connect the eye with every point of the object and therefore all projections converge to the eye. As the display screen is a two-dimensional space, we cannot display three-dimensional objects but only their projections. Computationally, projection transformations are in general quite expensive. Since the generation of a perspective view of a given object may require the projection transformation of a considerable number of points, the projection applied is usually restricted to the central projection and sometimes to even simpler parallel or orthographic projection in order to keep the execution time for the generation of a perspective view within reasonable limits. Figure explains the central projection as it is usually applied in computer graphics. The problem is to determine the projection of an object point, located somewhere in a threedimensional space, onto a plane in that space, called the image plane. This projection is called the image point of the corresponding object point. In a central projection, the center of projection, also called the viewpoint, is located on one of the axes of the three dimensional orthogonal coordinate systems. In Figure the viewpoint is arbitrarily located on the Z-axis. This fact can also be expressed by saying that the optical axis is aligned with the Z-axis of the co-ordinate system. The image plane is perpendicular to the optical axis; i.e., in figure it is parallel to the xy-plane of the co-ordinate system. This fact accounts for the simplicity of a central projection. Let the coordinates in the two-dimensional co-ordinate system of the image plane, which we may call the image co-ordinate system, be denoted by X and Y. Let the distance of the image plane to the origin of the spatial co-ordinate system be denoted by Z and the distance of the viewpoint to the origin of the co-ordinate system by Z. M.SRINIVASSAN, ASST. PROF 20 RGCET

21 This projection is called orthographic. The orthographic projection is a special form of the parallel projection by which parallel lines of the three-dimensional object are transformed into parallel lines of its image. ISOMETRIC PROJECTION In isometric projection the three orthogonal edges of an object are inclined equally to the projection plane. Because of the relative ease of projection and the ability to give 3-D perception, isometric projection is widely used in computer aided design. In computer aided design the coordinates of the drawing are available in their natural co-ordinate system. These are transformed suitably to enable the viewer different views or rotate the object in such away that all the faces of the object are made visible continuously. There are several uses for this technique in product design. Hence good design packages incorporate several viewing transformation techniques. The viewing parameters depend upon the system graphics standard followed in developing the graphics package. The algorithms for these viewing transformations are available in literature. 21

22 M.SRINIVASSAN, ASST. PROF 42 RGCET

Part 3: 2D Transformation

Part 3: 2D Transformation Part 3: 2D Transformation 1. What do you understand by geometric transformation? Also define the following operation performed by ita. Translation. b. Rotation. c. Scaling. d. Reflection. 2. Explain two

More information

Institutionen för systemteknik

Institutionen för systemteknik Code: Day: Lokal: M7002E 19 March E1026 Institutionen för systemteknik Examination in: M7002E, Computer Graphics and Virtual Environments Number of sections: 7 Max. score: 100 (normally 60 is required

More information

UNIT 2 2D TRANSFORMATIONS

UNIT 2 2D TRANSFORMATIONS UNIT 2 2D TRANSFORMATIONS Introduction With the procedures for displaying output primitives and their attributes, we can create variety of pictures and graphs. In many applications, there is also a need

More information

Chapter - 2: Geometry and Line Generations

Chapter - 2: Geometry and Line Generations Chapter - 2: Geometry and Line Generations In Computer graphics, various application ranges in different areas like entertainment to scientific image processing. In defining this all application mathematics

More information

Output Primitives Lecture: 3. Lecture 3. Output Primitives. Assuming we have a raster display, a picture is completely specified by:

Output Primitives Lecture: 3. Lecture 3. Output Primitives. Assuming we have a raster display, a picture is completely specified by: Lecture 3 Output Primitives Assuming we have a raster display, a picture is completely specified by: - A set of intensities for the pixel positions in the display. - A set of complex objects, such as trees

More information

OpenGL Graphics System. 2D Graphics Primitives. Drawing 2D Graphics Primitives. 2D Graphics Primitives. Mathematical 2D Primitives.

OpenGL Graphics System. 2D Graphics Primitives. Drawing 2D Graphics Primitives. 2D Graphics Primitives. Mathematical 2D Primitives. D Graphics Primitives Eye sees Displays - CRT/LCD Frame buffer - Addressable pixel array (D) Graphics processor s main function is to map application model (D) by projection on to D primitives: points,

More information

Chapter 5. Projections and Rendering

Chapter 5. Projections and Rendering Chapter 5 Projections and Rendering Topics: Perspective Projections The rendering pipeline In order to view manipulate and view a graphics object we must find ways of storing it a computer-compatible way.

More information

(a) rotating 45 0 about the origin and then translating in the direction of vector I by 4 units and (b) translating and then rotation.

(a) rotating 45 0 about the origin and then translating in the direction of vector I by 4 units and (b) translating and then rotation. Code No: R05221201 Set No. 1 1. (a) List and explain the applications of Computer Graphics. (b) With a neat cross- sectional view explain the functioning of CRT devices. 2. (a) Write the modified version

More information

Viewing with Computers (OpenGL)

Viewing with Computers (OpenGL) We can now return to three-dimension?', graphics from a computer perspective. Because viewing in computer graphics is based on the synthetic-camera model, we should be able to construct any of the classical

More information

From Vertices to Fragments: Rasterization. Reading Assignment: Chapter 7. Special memory where pixel colors are stored.

From Vertices to Fragments: Rasterization. Reading Assignment: Chapter 7. Special memory where pixel colors are stored. From Vertices to Fragments: Rasterization Reading Assignment: Chapter 7 Frame Buffer Special memory where pixel colors are stored. System Bus CPU Main Memory Graphics Card -- Graphics Processing Unit (GPU)

More information

Computer Science 426 Midterm 3/11/04, 1:30PM-2:50PM

Computer Science 426 Midterm 3/11/04, 1:30PM-2:50PM NAME: Login name: Computer Science 46 Midterm 3//4, :3PM-:5PM This test is 5 questions, of equal weight. Do all of your work on these pages (use the back for scratch space), giving the answer in the space

More information

End-Term Examination

End-Term Examination Paper Code: MCA-108 Paper ID : 44108 Second Semester [MCA] MAY-JUNE 2006 Q. 1 Describe the following in brief :- (3 x 5 = 15) (a) QUADRATIC SURFACES (b) RGB Color Models. (c) BSP Tree (d) Solid Modeling

More information

Chapter 3. Sukhwinder Singh

Chapter 3. Sukhwinder Singh Chapter 3 Sukhwinder Singh PIXEL ADDRESSING AND OBJECT GEOMETRY Object descriptions are given in a world reference frame, chosen to suit a particular application, and input world coordinates are ultimately

More information

CS 4204 Computer Graphics

CS 4204 Computer Graphics CS 4204 Computer Graphics 3D Viewing and Projection Yong Cao Virginia Tech Objective We will develop methods to camera through scenes. We will develop mathematical tools to handle perspective projection.

More information

Chapter 8: Implementation- Clipping and Rasterization

Chapter 8: Implementation- Clipping and Rasterization Chapter 8: Implementation- Clipping and Rasterization Clipping Fundamentals Cohen-Sutherland Parametric Polygons Circles and Curves Text Basic Concepts: The purpose of clipping is to remove objects or

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Computer Graphics

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Computer Graphics r About the Tutorial To display a picture of any size on a computer screen is a difficult process. Computer graphics are used to simplify this process. Various algorithms and techniques are used to generate

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theory, Algorithms, and Applications Hong Qin Stony Brook University (SUNY at Stony Brook) Stony Brook, New York 11794-2424 Tel: (631)632-845; Fax: (631)632-8334 qin@cs.stonybrook.edu

More information

QUESTION BANK 10CS65 : COMPUTER GRAPHICS AND VISUALIZATION

QUESTION BANK 10CS65 : COMPUTER GRAPHICS AND VISUALIZATION QUESTION BANK 10CS65 : COMPUTER GRAPHICS AND VISUALIZATION INTRODUCTION OBJECTIVE: This chapter deals the applications of computer graphics and overview of graphics systems and imaging. UNIT I 1 With clear

More information

CSE328 Fundamentals of Computer Graphics

CSE328 Fundamentals of Computer Graphics CSE328 Fundamentals of Computer Graphics Hong Qin State University of New York at Stony Brook (Stony Brook University) Stony Brook, New York 794--44 Tel: (63)632-845; Fax: (63)632-8334 qin@cs.sunysb.edu

More information

3D Polygon Rendering. Many applications use rendering of 3D polygons with direct illumination

3D Polygon Rendering. Many applications use rendering of 3D polygons with direct illumination Rendering Pipeline 3D Polygon Rendering Many applications use rendering of 3D polygons with direct illumination 3D Polygon Rendering What steps are necessary to utilize spatial coherence while drawing

More information

So we have been talking about 3D viewing, the transformations pertaining to 3D viewing. Today we will continue on it. (Refer Slide Time: 1:15)

So we have been talking about 3D viewing, the transformations pertaining to 3D viewing. Today we will continue on it. (Refer Slide Time: 1:15) Introduction to Computer Graphics Dr. Prem Kalra Department of Computer Science and Engineering Indian Institute of Technology, Delhi Lecture - 8 3D Viewing So we have been talking about 3D viewing, the

More information

Figure 1. Lecture 1: Three Dimensional graphics: Projections and Transformations

Figure 1. Lecture 1: Three Dimensional graphics: Projections and Transformations Lecture 1: Three Dimensional graphics: Projections and Transformations Device Independence We will start with a brief discussion of two dimensional drawing primitives. At the lowest level of an operating

More information

Tópicos de Computação Gráfica Topics in Computer Graphics 10509: Doutoramento em Engenharia Informática. Chap. 2 Rasterization.

Tópicos de Computação Gráfica Topics in Computer Graphics 10509: Doutoramento em Engenharia Informática. Chap. 2 Rasterization. Tópicos de Computação Gráfica Topics in Computer Graphics 10509: Doutoramento em Engenharia Informática Chap. 2 Rasterization Rasterization Outline : Raster display technology. Basic concepts: pixel, resolution,

More information

COMP30019 Graphics and Interaction Scan Converting Polygons and Lines

COMP30019 Graphics and Interaction Scan Converting Polygons and Lines COMP30019 Graphics and Interaction Scan Converting Polygons and Lines Department of Computer Science and Software Engineering The Lecture outline Introduction Scan conversion Scan-line algorithm Edge coherence

More information

VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203. DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year & Semester : III Year, V Semester Section : CSE - 1 & 2 Subject Code : CS6504 Subject

More information

(Refer Slide Time: 00:02:00)

(Refer Slide Time: 00:02:00) Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 18 Polyfill - Scan Conversion of a Polygon Today we will discuss the concepts

More information

L1 - Introduction. Contents. Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming

L1 - Introduction. Contents. Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming L1 - Introduction Contents Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming 1 Definitions Computer-Aided Design (CAD) The technology concerned with the

More information

CS 130 Final. Fall 2015

CS 130 Final. Fall 2015 CS 130 Final Fall 2015 Name Student ID Signature You may not ask any questions during the test. If you believe that there is something wrong with a question, write down what you think the question is trying

More information

Advantages: Disadvantages: Q.1 Explain raster scan display with its advantages and disadvantages?

Advantages: Disadvantages: Q.1 Explain raster scan display with its advantages and disadvantages? Max Marks: 10 Subject: Computer Graphics & Multimedia (7 th Semester IT 2017-18) Time: 1hr Q.1 Explain raster scan display with its advantages and disadvantages? Ans: In a raster scan system, the electron

More information

UNIT 2 GRAPHIC PRIMITIVES

UNIT 2 GRAPHIC PRIMITIVES UNIT 2 GRAPHIC PRIMITIVES Structure Page Nos. 2.1 Introduction 46 2.2 Objectives 46 2.3 Points and Lines 46 2.4 Line Generation Algorithms 48 2.4.1 DDA Algorithm 49 2.4.2 Bresenhams Line Generation Algorithm

More information

CMSC427: Computer Graphics Lecture Notes Last update: November 21, 2014

CMSC427: Computer Graphics Lecture Notes Last update: November 21, 2014 CMSC427: Computer Graphics Lecture Notes Last update: November 21, 2014 TA: Josh Bradley 1 Linear Algebra Review 1.1 Vector Multiplication Suppose we have a vector a = [ x a y a ] T z a. Then for some

More information

Graphics for VEs. Ruth Aylett

Graphics for VEs. Ruth Aylett Graphics for VEs Ruth Aylett Overview VE Software Graphics for VEs The graphics pipeline Projections Lighting Shading VR software Two main types of software used: off-line authoring or modelling packages

More information

Overview of Computer Graphics

Overview of Computer Graphics Application of Computer Graphics UNIT- 1 Overview of Computer Graphics Computer-Aided Design for engineering and architectural systems etc. Objects maybe displayed in a wireframe outline form. Multi-window

More information

4.5 VISIBLE SURFACE DETECTION METHODES

4.5 VISIBLE SURFACE DETECTION METHODES 4.5 VISIBLE SURFACE DETECTION METHODES A major consideration in the generation of realistic graphics displays is identifying those parts of a scene that are visible from a chosen viewing position. There

More information

(Refer Slide Time: 00:03:51)

(Refer Slide Time: 00:03:51) Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 17 Scan Converting Lines, Circles and Ellipses Hello and welcome everybody

More information

SAZ4C COMPUTER GRAPHICS. Unit : 1-5. SAZ4C Computer Graphics

SAZ4C COMPUTER GRAPHICS. Unit : 1-5. SAZ4C Computer Graphics SAZ4C COMPUTER GRAPHICS Unit : 1-5 1 UNIT :1 SYLLABUS Introduction to computer Graphics Video display devices Raster scan Systems Random Scan Systems Interactive input devices Hard copy devices Graphics

More information

Introduction Rasterization Z-buffering Shading. Graphics 2012/2013, 4th quarter. Lecture 09: graphics pipeline (rasterization and shading)

Introduction Rasterization Z-buffering Shading. Graphics 2012/2013, 4th quarter. Lecture 09: graphics pipeline (rasterization and shading) Lecture 9 Graphics pipeline (rasterization and shading) Graphics pipeline - part 1 (recap) Perspective projection by matrix multiplication: x pixel y pixel z canonical 1 x = M vpm per M cam y z 1 This

More information

(Refer Slide Time: 00:01:26)

(Refer Slide Time: 00:01:26) Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 9 Three Dimensional Graphics Welcome back everybody to the lecture on computer

More information

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY SRM INSTITUTE OF SCIENCE AND TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK SUB.NAME: COMPUTER GRAPHICS SUB.CODE: IT307 CLASS : III/IT UNIT-1 2-marks 1. What is the various applications

More information

Aptitude Test Question

Aptitude Test Question Aptitude Test Question Q.1) Which software is not used for Image processing? a) MatLab b) Visual Basic c) Java d) Fortran Q.2) Which software is not used for Computer graphics? a) C b) Java c) Fortran

More information

Viewing. Reading: Angel Ch.5

Viewing. Reading: Angel Ch.5 Viewing Reading: Angel Ch.5 What is Viewing? Viewing transform projects the 3D model to a 2D image plane 3D Objects (world frame) Model-view (camera frame) View transform (projection frame) 2D image View

More information

CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY CS2401 COMPUTER GRAPHICS QUESTION BANK

CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY CS2401 COMPUTER GRAPHICS QUESTION BANK CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CS2401 COMPUTER GRAPHICS QUESTION BANK PART A UNIT I-2D PRIMITIVES 1. Define Computer graphics. 2. Define refresh

More information

EXAMINATIONS 2017 TRIMESTER 2

EXAMINATIONS 2017 TRIMESTER 2 EXAMINATIONS 2017 TRIMESTER 2 CGRA 151 INTRODUCTION TO COMPUTER GRAPHICS Time Allowed: TWO HOURS CLOSED BOOK Permitted materials: Silent non-programmable calculators or silent programmable calculators

More information

CSCI 4620/8626. Coordinate Reference Frames

CSCI 4620/8626. Coordinate Reference Frames CSCI 4620/8626 Computer Graphics Graphics Output Primitives Last update: 2014-02-03 Coordinate Reference Frames To describe a picture, the world-coordinate reference frame (2D or 3D) must be selected.

More information

Points and lines, Line drawing algorithms. Circle generating algorithms, Midpoint circle Parallel version of these algorithms

Points and lines, Line drawing algorithms. Circle generating algorithms, Midpoint circle Parallel version of these algorithms Jahangirabad Institute Of Technology Assistant Prof. Ankur Srivastava COMPUTER GRAPHICS Semester IV, 2016 MASTER SCHEDULE Unit-I Unit-II Class 1,2,3,4 Mon, Jan19,Tue20,Sat23,Mon 25 Class 5 Wed, Jan 27

More information

Graphics (Output) Primitives. Chapters 3 & 4

Graphics (Output) Primitives. Chapters 3 & 4 Graphics (Output) Primitives Chapters 3 & 4 Graphic Output and Input Pipeline Scan conversion converts primitives such as lines, circles, etc. into pixel values geometric description a finite scene area

More information

Efficient Plotting Algorithm

Efficient Plotting Algorithm Efficient Plotting Algorithm Sushant Ipte 1, Riddhi Agarwal 1, Murtuza Barodawala 1, Ravindra Gupta 1, Prof. Shiburaj Pappu 1 Computer Department, Rizvi College of Engineering, Mumbai, Maharashtra, India

More information

Course Title: Computer Graphics Course no: CSC209

Course Title: Computer Graphics Course no: CSC209 Course Title: Computer Graphics Course no: CSC209 Nature of the Course: Theory + Lab Semester: III Full Marks: 60+20+20 Pass Marks: 24 +8+8 Credit Hrs: 3 Course Description: The course coversconcepts of

More information

Graphics for VEs. Ruth Aylett

Graphics for VEs. Ruth Aylett Graphics for VEs Ruth Aylett Overview VE Software Graphics for VEs The graphics pipeline Projections Lighting Shading Runtime VR systems Two major parts: initialisation and update loop. Initialisation

More information

(Refer Slide Time: 00:04:20)

(Refer Slide Time: 00:04:20) Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 8 Three Dimensional Graphics Welcome back all of you to the lectures in Computer

More information

From 3D World to 2D Screen. Hendrik Speleers

From 3D World to 2D Screen. Hendrik Speleers Hendrik Speleers Overview Synthetic camera Rendering pipeline World window versus viewport Clipping Cohen-Sutherland algorithm Rasterizing Bresenham algorithm Three different actors in a scene Objects:

More information

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc.

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc. Chapter 1 Linear Equations and Straight Lines 2 of 71 Outline 1.1 Coordinate Systems and Graphs 1.4 The Slope of a Straight Line 1.3 The Intersection Point of a Pair of Lines 1.2 Linear Inequalities 1.5

More information

Write C++/Java program to draw line using DDA and Bresenham s algorithm. Inherit pixel class and Use function overloading.

Write C++/Java program to draw line using DDA and Bresenham s algorithm. Inherit pixel class and Use function overloading. Group A Assignment No A1. Write C++/Java program to draw line using DDA and Bresenham s algorithm. Inherit pixel class and Use function overloading. Aim: To draw line using DDA and Bresenham s algorithm

More information

(Refer Slide Time: 00:02:02)

(Refer Slide Time: 00:02:02) Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 20 Clipping: Lines and Polygons Hello and welcome everybody to the lecture

More information

Computer Graphics : Bresenham Line Drawing Algorithm, Circle Drawing & Polygon Filling

Computer Graphics : Bresenham Line Drawing Algorithm, Circle Drawing & Polygon Filling Computer Graphics : Bresenham Line Drawing Algorithm, Circle Drawing & Polygon Filling Downloaded from :www.comp.dit.ie/bmacnamee/materials/graphics/006- Contents In today s lecture we ll have a loo at:

More information

CS 184, Fall 1996 Midterm #1 Professor: unknown

CS 184, Fall 1996 Midterm #1 Professor: unknown CS 184, Fall 1996 Midterm #1 Professor: unknown Problem #1, Transformations (8pts) All questions assume a right handed coordinate system. Circle the correct answer: (2 pts each) a) In 3 space, two rotations

More information

Notes on Assignment. Notes on Assignment. Notes on Assignment. Notes on Assignment

Notes on Assignment. Notes on Assignment. Notes on Assignment. Notes on Assignment Notes on Assignment Notes on Assignment Objects on screen - made of primitives Primitives are points, lines, polygons - watch vertex ordering The main object you need is a box When the MODELVIEW matrix

More information

03 Vector Graphics. Multimedia Systems. 2D and 3D Graphics, Transformations

03 Vector Graphics. Multimedia Systems. 2D and 3D Graphics, Transformations Multimedia Systems 03 Vector Graphics 2D and 3D Graphics, Transformations Imran Ihsan Assistant Professor, Department of Computer Science Air University, Islamabad, Pakistan www.imranihsan.com Lectures

More information

Game Architecture. 2/19/16: Rasterization

Game Architecture. 2/19/16: Rasterization Game Architecture 2/19/16: Rasterization Viewing To render a scene, need to know Where am I and What am I looking at The view transform is the matrix that does this Maps a standard view space into world

More information

Introduction to Visualization and Computer Graphics

Introduction to Visualization and Computer Graphics Introduction to Visualization and Computer Graphics DH2320, Fall 2015 Prof. Dr. Tino Weinkauf Introduction to Visualization and Computer Graphics Visibility Shading 3D Rendering Geometric Model Color Perspective

More information

Clipping and Scan Conversion

Clipping and Scan Conversion 15-462 Computer Graphics I Lecture 14 Clipping and Scan Conversion Line Clipping Polygon Clipping Clipping in Three Dimensions Scan Conversion (Rasterization) [Angel 7.3-7.6, 7.8-7.9] March 19, 2002 Frank

More information

Computer Graphics Solved MCQs -Part 2 MCQs Questions

Computer Graphics Solved MCQs -Part 2 MCQs Questions http://itbookshub.com/ Computer Graphics Solved MCQs -Part 2 MCQs Multiple Choice Questions Computer Graphics Solved MCQs -Part 2 Two consecutive scaling transformation s1 and s2 are Additive Multiplicative

More information

Solution Notes. COMP 151: Terms Test

Solution Notes. COMP 151: Terms Test Family Name:.............................. Other Names:............................. ID Number:............................... Signature.................................. Solution Notes COMP 151: Terms

More information

CHAPTER 1 Graphics Systems and Models 3

CHAPTER 1 Graphics Systems and Models 3 ?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........

More information

CS602 Midterm Subjective Solved with Reference By WELL WISHER (Aqua Leo)

CS602 Midterm Subjective Solved with Reference By WELL WISHER (Aqua Leo) CS602 Midterm Subjective Solved with Reference By WELL WISHER (Aqua Leo) www.vucybarien.com Question No: 1 What are the two focusing methods in CRT? Explain briefly. Page no : 26 1. Electrostatic focusing

More information

CS 184, Fall 1996 Midterm #1 Professor: unknown

CS 184, Fall 1996 Midterm #1 Professor: unknown CS 184, Fall 1996 Midterm #1 Professor: unknown Problem #1, Transformations (8pts) All questions assume a right handed coordinate system. Circle the correct answer: (2 pts each) a) In 3 space, two rotations

More information

Computer Graphics and GPGPU Programming

Computer Graphics and GPGPU Programming Computer Graphics and GPGPU Programming Donato D Ambrosio Department of Mathematics and Computer Science and Center of Excellence for High Performace Computing Cubo 22B, University of Calabria, Rende 87036,

More information

OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING LIST OF QUESTIONS

OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING LIST OF QUESTIONS OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING LIST OF QUESTIONS YEAR/SEM.: III/V STAFF NAME: T.ELANGOVAN SUBJECT NAME: Computer Graphics SUB. CODE:

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Last Time? The Traditional Graphics Pipeline Participating Media Measuring BRDFs 3D Digitizing & Scattering BSSRDFs Monte Carlo Simulation Dipole Approximation Today Ray Casting / Tracing Advantages? Ray

More information

Lecture 4. Viewing, Projection and Viewport Transformations

Lecture 4. Viewing, Projection and Viewport Transformations Notes on Assignment Notes on Assignment Hw2 is dependent on hw1 so hw1 and hw2 will be graded together i.e. You have time to finish both by next monday 11:59p Email list issues - please cc: elif@cs.nyu.edu

More information

(Refer Slide Time 05:03 min)

(Refer Slide Time 05:03 min) Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture # 27 Visible Surface Detection (Contd ) Hello and welcome everybody to the

More information

9. Visible-Surface Detection Methods

9. Visible-Surface Detection Methods 9. Visible-Surface Detection Methods More information about Modelling and Perspective Viewing: Before going to visible surface detection, we first review and discuss the followings: 1. Modelling Transformation:

More information

UNIVERSITY OF NEBRASKA AT OMAHA Computer Science 4620/8626 Computer Graphics Spring 2014 Homework Set 1 Suggested Answers

UNIVERSITY OF NEBRASKA AT OMAHA Computer Science 4620/8626 Computer Graphics Spring 2014 Homework Set 1 Suggested Answers UNIVERSITY OF NEBRASKA AT OMAHA Computer Science 4620/8626 Computer Graphics Spring 2014 Homework Set 1 Suggested Answers 1. How long would it take to load an 800 by 600 frame buffer with 16 bits per pixel

More information

Orthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

Orthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015 Orthogonal Projection Matrices 1 Objectives Derive the projection matrices used for standard orthogonal projections Introduce oblique projections Introduce projection normalization 2 Normalization Rather

More information

Topics and things to know about them:

Topics and things to know about them: Practice Final CMSC 427 Distributed Tuesday, December 11, 2007 Review Session, Monday, December 17, 5:00pm, 4424 AV Williams Final: 10:30 AM Wednesday, December 19, 2007 General Guidelines: The final will

More information

CS451Real-time Rendering Pipeline

CS451Real-time Rendering Pipeline 1 CS451Real-time Rendering Pipeline JYH-MING LIEN DEPARTMENT OF COMPUTER SCIENCE GEORGE MASON UNIVERSITY Based on Tomas Akenine-Möller s lecture note You say that you render a 3D 2 scene, but what does

More information

CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination

CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination (Total: 100 marks) Figure 1: A perspective view of a polyhedron on an infinite plane. Cameras and Perspective Rendering

More information

Overview. Viewing and perspectives. Planar Geometric Projections. Classical Viewing. Classical views Computer viewing Perspective normalization

Overview. Viewing and perspectives. Planar Geometric Projections. Classical Viewing. Classical views Computer viewing Perspective normalization Overview Viewing and perspectives Classical views Computer viewing Perspective normalization Classical Viewing Viewing requires three basic elements One or more objects A viewer with a projection surface

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Last Time? The Traditional Graphics Pipeline Reading for Today A Practical Model for Subsurface Light Transport, Jensen, Marschner, Levoy, & Hanrahan, SIGGRAPH 2001 Participating Media Measuring BRDFs

More information

CPSC / Scan Conversion

CPSC / Scan Conversion CPSC 599.64 / 601.64 Computer Screens: Raster Displays pixel rasters (usually) square pixels in rectangular raster evenly cover the image problem no such things such as lines, circles, etc. scan conversion

More information

Computer Graphics I Lecture 11

Computer Graphics I Lecture 11 15-462 Computer Graphics I Lecture 11 Midterm Review Assignment 3 Movie Midterm Review Midterm Preview February 26, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

Output Primitives. Dr. S.M. Malaek. Assistant: M. Younesi

Output Primitives. Dr. S.M. Malaek. Assistant: M. Younesi Output Primitives Dr. S.M. Malaek Assistant: M. Younesi Output Primitives Output Primitives: Basic geometric structures (points, straight line segment, circles and other conic sections, quadric surfaces,

More information

Computer Graphics 7: Viewing in 3-D

Computer Graphics 7: Viewing in 3-D Computer Graphics 7: Viewing in 3-D In today s lecture we are going to have a look at: Transformations in 3-D How do transformations in 3-D work? Contents 3-D homogeneous coordinates and matrix based transformations

More information

Lecture 5 2D Transformation

Lecture 5 2D Transformation Lecture 5 2D Transformation What is a transformation? In computer graphics an object can be transformed according to position, orientation and size. Exactly what it says - an operation that transforms

More information

MODULE - 4. e-pg Pathshala

MODULE - 4. e-pg Pathshala e-pg Pathshala MODULE - 4 Subject : Computer Science Paper: Computer Graphics and Visualization Module: Midpoint Circle Drawing Procedure Module No: CS/CGV/4 Quadrant 1 e-text Before going into the Midpoint

More information

Reading. 18. Projections and Z-buffers. Required: Watt, Section , 6.3, 6.6 (esp. intro and subsections 1, 4, and 8 10), Further reading:

Reading. 18. Projections and Z-buffers. Required: Watt, Section , 6.3, 6.6 (esp. intro and subsections 1, 4, and 8 10), Further reading: Reading Required: Watt, Section 5.2.2 5.2.4, 6.3, 6.6 (esp. intro and subsections 1, 4, and 8 10), Further reading: 18. Projections and Z-buffers Foley, et al, Chapter 5.6 and Chapter 6 David F. Rogers

More information

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 14

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 14 Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 14 Scan Converting Lines, Circles and Ellipses Hello everybody, welcome again

More information

Interactive Math Glossary Terms and Definitions

Interactive Math Glossary Terms and Definitions Terms and Definitions Absolute Value the magnitude of a number, or the distance from 0 on a real number line Addend any number or quantity being added addend + addend = sum Additive Property of Area the

More information

Introduction to Computer Graphics 4. Viewing in 3D

Introduction to Computer Graphics 4. Viewing in 3D Introduction to Computer Graphics 4. Viewing in 3D National Chiao Tung Univ, Taiwan By: I-Chen Lin, Assistant Professor Textbook: E.Angel, Interactive Computer Graphics, 5 th Ed., Addison Wesley Ref: Hearn

More information

Surface Graphics. 200 polys 1,000 polys 15,000 polys. an empty foot. - a mesh of spline patches:

Surface Graphics. 200 polys 1,000 polys 15,000 polys. an empty foot. - a mesh of spline patches: Surface Graphics Objects are explicitely defined by a surface or boundary representation (explicit inside vs outside) This boundary representation can be given by: - a mesh of polygons: 200 polys 1,000

More information

Specifying Complex Scenes

Specifying Complex Scenes Transformations Specifying Complex Scenes (x,y,z) (r x,r y,r z ) 2 (,,) Specifying Complex Scenes Absolute position is not very natural Need a way to describe relative relationship: The lego is on top

More information

CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination (Total: 100 marks)

CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination (Total: 100 marks) CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination (Total: 100 marks) Cameras and Perspective Figure 1: A perspective view of a polyhedron on an infinite plane. Rendering

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Final Projects Proposals due Thursday 4/8 Proposed project summary At least 3 related papers (read & summarized) Description of series of test cases Timeline & initial task assignment The Traditional Graphics

More information

Transforms. COMP 575/770 Spring 2013

Transforms. COMP 575/770 Spring 2013 Transforms COMP 575/770 Spring 2013 Transforming Geometry Given any set of points S Could be a 2D shape, a 3D object A transform is a function T that modifies all points in S: T S S T v v S Different transforms

More information

Midterm Exam Fundamentals of Computer Graphics (COMP 557) Thurs. Feb. 19, 2015 Professor Michael Langer

Midterm Exam Fundamentals of Computer Graphics (COMP 557) Thurs. Feb. 19, 2015 Professor Michael Langer Midterm Exam Fundamentals of Computer Graphics (COMP 557) Thurs. Feb. 19, 2015 Professor Michael Langer The exam consists of 10 questions. There are 2 points per question for a total of 20 points. You

More information

Prentice Hall Mathematics: Course Correlated to: Colorado Model Content Standards and Grade Level Expectations (Grade 8)

Prentice Hall Mathematics: Course Correlated to: Colorado Model Content Standards and Grade Level Expectations (Grade 8) Colorado Model Content Standards and Grade Level Expectations (Grade 8) Standard 1: Students develop number sense and use numbers and number relationships in problemsolving situations and communicate the

More information

The University of Calgary

The University of Calgary The University of Calgary Department of Computer Science Final Examination, Questions ENEL/CPSC 555 Computer Graphics Time: 2 Hours Closed Book, calculators are permitted. The questions carry equal weight.

More information

Unit 3 Transformations and Clipping

Unit 3 Transformations and Clipping Transformation Unit 3 Transformations and Clipping Changes in orientation, size and shape of an object by changing the coordinate description, is known as Geometric Transformation. Translation To reposition

More information

Basic Elements. Geometry is the study of the relationships among objects in an n-dimensional space

Basic Elements. Geometry is the study of the relationships among objects in an n-dimensional space Basic Elements Geometry is the study of the relationships among objects in an n-dimensional space In computer graphics, we are interested in objects that exist in three dimensions We want a minimum set

More information

(Refer Slide Time 03:00)

(Refer Slide Time 03:00) Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture #30 Visible Surface Detection (Contd ) We continue the discussion on Visible

More information