diffraction patterns obtained with convergent electron beams yield more information than patterns obtained with parallel electron beams:

Size: px
Start display at page:

Download "diffraction patterns obtained with convergent electron beams yield more information than patterns obtained with parallel electron beams:"

Transcription

1 CBED-Patterns Principle of CBED diffraction patterns obtained with convergent electron beams yield more information than patterns obtained with parallel electron beams: specimen thickness more precise information on lattice parameters crystal system and true 3D symmetry of the atom arrangement enantimorphism, if present moreover: high spatial resolution! electron diffraction with parallel beams: resolution diameter of SAD aperture CBED: resolution minimum probe diameter experimental problems: contamination CBED requires clean specimens, UHV in the microscope local specimen heating thermal expansion, thermal stresses measured lattice parameters may not correspond to bulk values ideally, use double-tilt cooling holder for the specimen 155

2 Obtaining CBED Patterns increase beam convergence by switching off C1 upper half of the objective lens forms highly convergent beams C2 aperture C2 lens upper objective lens specimen lower objective lens diffraction discs back focal plane 156

3 microscope variables for CBED beam-convergence semi-angle, C2 aperture limits for fully focused C2 ( brightness ) switch during CBED observation calibrate using pattern of known crystal thin specimen small 2 medium 2 large 2 Kossel Möllenstedt pattern Kossel pattern camera length, L (magnification of the diffraction pattern) choose depending on desired information (fine detail in the 000 disk: 1500 mm; whole view of Kossel pattern: 500 mm) 157

4 effect of decreasing the camera length: focus of the diffraction pattern adjust minimum beam diameter with C2 ( brightness ) adjust objective lens pre-field overfocus focus underfocus size of the beam (diameter) C1, spot size determines resolution (but mind beam broadening) use small beam for specimens with strong spatial variation of strain specimen thickness thin specimen kinematical electron diffraction minimum specimen thickness required for CBED (!) 158

5 Version 120 beam tilt final adjustment to make CBED pattern symmetric mechanical tilt often too coarse preferentially use dark-field tilt (DF tilt) using bright-field tilt for this purpose misaligns the microscope for bright-field imaging position of the C2 aperture often used to adjust symmetry of the CBED pattern but: misaligns the illumination system prefer beam tilt (DF) CBED in STEM Mode obtain a STEM image of the region of interest stop the beam over the point of interest 159

6 in STEM mode, the viewing screen and the STEM detector view a diffraction pattern the scanning electron beam is focused and highly convergent when stopping the beam, a CBED image appears on the screen both, the CBED pattern and image can be viewed conveniently Laue-Zones large camera length L CBED pattern SAD pattern small camera length L higher order Laue-zones 160

7 ZOLZ patterns SAD reflecting planes normal to the direction [UVW] of the primary beam: hu + kv + lw = 0 HOLZ intersection of the Ewald sphere with higher REL planes appear as HOLZ rings if convergence (C2 aperture) is small diffraction from planes that are not parallel to the primary beam FOLZ: hu + kv + lw = 1 SOLZ: hu + kv + lw = 2 and so on 161

8 radius of HOLZ ring interception of Ewald sphere with REL planes spacing of the planes normal to the direction [UVW] of the primary beam this means: CBED patterns contain 3D information. thermal vibration weakens HOLZ intensity use N 2 cooling smaller accelerating voltage increases curvature of the Ewald sphere facilitates observation of HOLZ rings Indexing HOLZ Patterns index the ZOLZ for which hu + kv + lw = 0 identify the poles of the principal planes constitution the FOLZ, where hu + kv + lw = 1 identify the poles of the principal planes constitution the SOLZ, where hu + kv + lw = 2 check for forbidden reflections 162

9 index the HOLZ maxima Examples of ZOLZ, FOLZ, and SOLZ patterns face-centered cubic crystals 163

10 body-centered cubic crystals each HOLZ pattern retains the symmetry of the [UVW] zone but: HOLZ patterns are often shifted relative to the ZOLZ pattern 164

11 Kikuchi Lines in CBED Patterns SAD patterns: diffuse Kikuchi lines CBED patterns: sharp lines CBED versus SAD: from smaller object regions ( sharper) contribution of elastic scattering where the lines cross CBED disks inelastic scattering center distribution of inelastic scatter zone axis <uvw> B incident parallel beam hkl diffraction lines thin specimen electrons within probe at exact Bragg angle to hkl plane 2 B incident convergent probe hkl diffraction lines thin specimen back focal plane 2 B Kikuchi lines back focal plane 2 B 000 Kikuchi lines nevertheless, the lines in CBED patterns are also named Kikuchi lines 165

12 HOLZ Lines Kikuchi lines also arise from inelastic scattering by HOLZ planes HOLZ Kikuchi lines more useful than ZOLZ Kikuchi lines because from planes with much larger Bragg angles (larger g ) more sensitive to changes in lattice parameter g = 1 d hkl g = d hkl ( d hkl ) 2 the smaller d hkl, the larger g at the same d hkl particularly useful: HOLZ lines elastic part of HOLZ Kikuchi lines ( part of HOLZ Kikuchi lines within CBED disks) formation mechanism (analogy with Kikuchi lines): electrons within the incident beam at Bragg angle for diffraction at a HOLZ plane scattered out to high angles bright line through the corresponding HOLZ disk corresponding intensity deficiency in the 000 disk dark line HOLZ lines occur in pairs of bright (excess) and dark (deficiency) lines 166

13 Version 120 schematic drawing of the arrangement: deficient HOLZ lines Deficient HOLZ Kikuchi lines ZOLZ Kikuchi lines ZOLZ diffraction discs example: 167

14 Indexing HOLZ lines allowed FOLZ reflection but not intercepted by Ewald sphere expanded view of 000 allowed FOLZ reflection intercepted by Ewald sphere 168

15 requires two CBED patterns: one at large L (HOLZ lines) and one at small L (HOLZ disks) each HOLZ line pair will be perpendicular to the g-vector from 000 to the HOLZ maximum there should be a parallel HOLZ deficiency line in the 000 disk this line can be assigned the same indices as the HOLZ maximum Using CBED Techniques Determination of the Foil Thickness knowledge of the local foil thickness is important for many TEM techniques (example: absolute quantification in EELS) determination of foil thickness is an important application of CBED two-beam condition (only one strong reflection hkl) disks contain parallel intensity oscillations number of maxima and minima increases as one moves the beam from thinner regions to thicker regions of the foil the oscillations are symmetric in the hkl disk and asymmetric in the 000 disk 169

16 example: intensity variation corresponds to rocking curve (variation of diffracted intensity with the direction of the incident beam) similar to bend contours: procedure to extract thickness: 170

17 in the hkl disk measure distance between the central bright fringe and each of the dark fringes the central bright fringe is at the exact Bragg condition, where s = 0 the fringe spacings correspond to angles i from these spacings on obtains the deviations s i for the i th fringe from the equation s i = i 2 2 B d hkl B : Bragg angle for the diffracting hkl plane; d hkl : spacing of the reflecting lattice planes; s: magnitude of the excitation error s. hkl is given by the separation of the centers of the two disks 171

18 if the extinction distance g is known for the reflection hkl under consideration, one can determine the foil thickness t from where n k is an integer. s i 2 n k g 2 n k 2 = 1 t 2 if g is not known, one can determine t by the following graphical method: arbitrarily assign n = 1 to the first fringe, where s = s 1 assign n = 2 to the second fringe, where s = s 2, and so on plot (s i /n k ) 2 versus (1/n k ) 2 if the result is a straight line, the assumption n = 1 for the first fringe was good, which will be true if t < g if the result is a curved line, repeat with n = 2 for the first fringe, then n = 3, n = 4, until a straight line is obtained once a straight line is obtained, the slope of the line corresponds to (1/ g ) 2 the intercept with the y-axis corresponds to (1/t) 2 Lattice Parameters fundamental translations of the crystal lattice: a, b, c SAD pattern only contains information about repeat distances normal to the direction of the primary electron beam CBED: radii of HOLZ rings repeat distance parallel to primary beam 172

19 from a single CBED patterns one can determine all the lattice parameters (a, b, c) of the unit cell relation between spacing H of the REL planes parallel to the electron beam and radii G 1 and G 2 of the two innermost HOLZ rings: G 1 = 2H H 1 = 2 G 1 2 G 2 = 2 H H 1 = 4 G 2 2 for a known crystal system, one can determine all three lattice parameters from a single CBED pattern experimental problems if HOLZ rings are split, measure the inner radius 173

20 mind distortions for large diffraction angles ( 10 ) experimentally, it may be easiest to measure HOLZ ring radii from Kossel patterns rather than from Kossel-Möllenstedt patterns Lattice Centering comparison of ZOLZ and FOLZ reflections in Kossel-Möllenstedt patterns primitive lattice: no forbidden reflections FOLZ reflections directly superimpose ZOLZ reflections face-centered cubic lattice or body centered cubic lattice: forbidden reflections FOLZ reflections shifted versus ZOLZ reflections 174

21 Point Group point group set of macroscopic symmetry elements (identity, rotation, inversion, mirror symmetry) CBED: enables direct determination of point group from two or three low-index zone-axis patterns (ZAPs) advantage over X-ray diffraction: much smaller areas unambiguous result (non-trivial in X-ray diffraction) X-ray diffraction kinematical diffraction Friedel s law: I hkl = I h k l always inversion symmetry cannot distinguish, for example, between point groups m and 2 175

22 the 32 point groups: 176

23 X-ray diffraction can only distinguish among 11 different Laue groups (obtained by adding inversion symmetry to each one of the 32 point groups) CBED: Friedel s law breaks down because of dynamical diffraction. CBED can distinguish the 32 point groups point symmetry becomes apparent in CBED zone-axis patterns (ZAPs) whole-pattern symmetry symmetry of the complete pattern, including HOLZ Kikuchi lines most important bright-field symmetry 000 disk only, when HOLZ lines are present in this case, the 000 disk also contains 3D information combination of whole-pattern and bright-field symmetry in three ZAPs usually suffices to determine the point group Point Group Determination Steed method uses several different ZAPs determine whole-pattern symmetry and bright-field symmetry in each one of them and ensure that they are consistent with the projection symmetry (diffuse intensity in the 000 disk without HOLZ lines) 177

24 for this purpose, use Buxton table of CBED pattern symmetries this table shows diffraction group (full 3D symmetry of a DP) the projection-diffraction group (full 2D symmetry) the Buxton table describes the possible diffraction groups consistent with the whole-pattern and bright-field pattern symmetry the following table describes the point groups that are consistent with the individual diffraction groups 178

25 for a sufficient number of ZAPs, there will be a unique solution for the point group Space Group Determination space group refers to the microscopic symmetry of crystal structures, thus point symmetry elements combined with microscopic translations (screw axes and glide planes, for example) 179

26 after determining (or knowing) the Bravais lattice and the point group, several space groups may still be possible CBED: analyze kinematically forbidden reflections reflections can be kinematically forbidden because the crystal lattice is centered or because the structure possesses symmetry elements like screw axes or glide planes example: glide plane because of the glide plane (dashed line), the waves reflected by the atom layers on the hkl planes destructively interfere with the waves reflected by the atom layers between theses layers the (hkl) reflection is kinematically forbidden in CBED patterns, kinematically forbidden reflections often occur because of double diffraction strong interaction between electrons and matter strong Bragg reflections ( dynamical electron diffraction ) strong Bragg reflections act as new primary beams, which are diffracted again by the crystal 180

27 possible effect in the diffraction pattern: additional reflections kinematically forbidden reflections appear for example consider g 1, g 2 REL primary reflection: S = s - s 0 = g 1 double diffraction: S = s - s = g 2 add: S + S = s - s 0 = g 1 + g 2 example: Si <110> diffraction pattern 200 reflections are kinematically forbidden nevertheless, 200 reflections appear by double diffraction: 200 = = CBED: if two or more equivalent double diffraction paths exist, the kinematically forbidden reflections will have a central line of zero intensity passing through the disk reason: diffracted beams from two equivalent paths interfere destructively in the center of the disk these dark lines in a kinematically forbidden reflection are denoted as dynamical absences or Gjønnes-Moodie lines 181

28 Gjønnes-Moodie lines usually occur along systematic rows of reflections Gjønnes-Moodie lines indicate the presence of screw aces and glide planes to ascertain whether screw axes, glide planes, or both are present, one needs to analyze the orientation of the Gjønnes-Moodie lines with respect to the BF mirrors within the 000 disk 182

29 183

30 Strain Analysis ZOLZ reflections and HOLZ-ring diameters yield lattice parameters with an accuracy of about 2 % best method: use positions of HOLZ lines in the BF disk arise from very high order reflections very sensitive to changes in lattice parameter technical procedure: record HOLZ lines in the BF disk simulate HOLZ-line pattern in the BF disk using appropriate software compare simulation with experimental data accuracy of this method in determining lattice parameters: 0.2 % focused electron beam CBED enables sensitive measurement of local lattice parameters measure spatial variation of lattice parameters owing to stresses or compositional changes limitations average over foil thickness local heating by electron beam specimen cooling advisable, but may introduce thermal stresses 184

31 surface relaxation measurement does not reflect bulk properties example: effects of compositional lattice parameter variation in Cu-Al alloys 185

CHEM-E5225 :Electron Microscopy Imaging I

CHEM-E5225 :Electron Microscopy Imaging I CHEM-E5225 :Electron Microscopy Imaging I 2018.11 Yanling Ge Outline Amplitude Contrast Phase Contrast Images Thickness and Bending Effects Amplitude Contrast Amplitude phase TEM STEM Incoherent elastic

More information

TEM Imaging and Dynamical Scattering

TEM Imaging and Dynamical Scattering TEM Imaging and Dynamical Scattering Duncan Alexander EPFL-CIME 1 Aspects of TEM imaging Objective lens focus Objective lens astigmatism Image delocalization Dynamical scattering 2-beam theory Thickness

More information

Chapter 36. Diffraction. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 36. Diffraction. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 36 Diffraction Copyright 36-1 Single-Slit Diffraction Learning Objectives 36.01 Describe the diffraction of light waves by a narrow opening and an edge, and also describe the resulting interference

More information

Simulation and Analysis of Kikuchi Patterns Including Double Diffraction Effect. (SAKI3d) User s manual. X.Z. LI, Ph. D.

Simulation and Analysis of Kikuchi Patterns Including Double Diffraction Effect. (SAKI3d) User s manual. X.Z. LI, Ph. D. Simulation and Analysis of Kikuchi Patterns Including Double Diffraction Effect (SAKI3d) User s manual X.Z. LI, Ph. D (May 6, 2018) Copyright 2011-2018 LANDYNE All Right Reserved 1 Contents 1. Introduction...3

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

Diffraction I - Geometry. Chapter 3

Diffraction I - Geometry. Chapter 3 Diffraction I - Geometry Chapter 3 Outline ❽ Diffraction basics ❽ Braggs law ❽ Laue equations ❽ Reciprocal space and diffraction ❽ Units for x-ray wavelengths ❽ Diffraction methods Laue photographs Rotation

More information

Crystal Quality Analysis Group

Crystal Quality Analysis Group Crystal Quality Analysis Group Contents Contents 1. Overview...1 2. Measurement principles...3 2.1 Considerations related to orientation and diffraction conditions... 3 2.2 Rocking curve measurement...

More information

Figure 1: Derivation of Bragg s Law

Figure 1: Derivation of Bragg s Law What is Bragg s Law and why is it Important? Bragg s law refers to a simple equation derived by English physicists Sir W. H. Bragg and his son Sir W. L. Bragg in 1913. This equation explains why the faces

More information

Scattering/Wave Terminology A few terms show up throughout the discussion of electron microscopy:

Scattering/Wave Terminology A few terms show up throughout the discussion of electron microscopy: 1. Scattering and Diffraction Scattering/Wave Terology A few terms show up throughout the discussion of electron microscopy: First, what do we mean by the terms elastic and inelastic? These are both related

More information

Chapter 38. Diffraction Patterns and Polarization

Chapter 38. Diffraction Patterns and Polarization Chapter 38 Diffraction Patterns and Polarization Diffraction Light of wavelength comparable to or larger than the width of a slit spreads out in all forward directions upon passing through the slit This

More information

Chapter 36. Diffraction. Dr. Armen Kocharian

Chapter 36. Diffraction. Dr. Armen Kocharian Chapter 36 Diffraction Dr. Armen Kocharian Diffraction Light of wavelength comparable to or larger than the width of a slit spreads out in all forward directions upon passing through the slit This phenomena

More information

AP Physics: Curved Mirrors and Lenses

AP Physics: Curved Mirrors and Lenses The Ray Model of Light Light often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but is very useful for geometric

More information

OPTICS MIRRORS AND LENSES

OPTICS MIRRORS AND LENSES Downloaded from OPTICS MIRRORS AND LENSES 1. An object AB is kept in front of a concave mirror as shown in the figure. (i)complete the ray diagram showing the image formation of the object. (ii) How will

More information

d has a relationship with ψ

d has a relationship with ψ Principle of X-Ray Stress Analysis Metallic materials consist of innumerable crystal grains. Each grain usually faces in a random direction. When stress is applied on such materials, the interatomic distance

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

I sinc seff. sinc. 14. Kinematical Diffraction. Two-beam intensity Remember the effective excitation error for beam g?

I sinc seff. sinc. 14. Kinematical Diffraction. Two-beam intensity Remember the effective excitation error for beam g? 1 14. Kinematical Diffraction Two-beam intensity Remember the effective excitation error for beam g? seff s 1 The general two-beam result for g was: sin seff T ist g Ti e seff Next we find the intensity

More information

DETERMINATION OF THE ORIENTATION OF AN EPITAXIAL THIN FILM BY A NEW COMPUTER PROGRAM CrystalGuide

DETERMINATION OF THE ORIENTATION OF AN EPITAXIAL THIN FILM BY A NEW COMPUTER PROGRAM CrystalGuide The Rigaku Journal Vol. 16/ number 1/ 1999 Technical Note DETERMINATION OF THE ORIENTATION OF AN EPITAXIAL THIN FILM BY A NEW COMPUTER PROGRAM CrystalGuide R. YOKOYAMA AND J. HARADA X-Ray Research Laboratory,

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Diffraction Huygen s principle requires that the waves spread out after they pass through slits This spreading out of light from its initial line of travel is called diffraction

More information

CHAPTER 26 INTERFERENCE AND DIFFRACTION

CHAPTER 26 INTERFERENCE AND DIFFRACTION CHAPTER 26 INTERFERENCE AND DIFFRACTION INTERFERENCE CONSTRUCTIVE DESTRUCTIVE YOUNG S EXPERIMENT THIN FILMS NEWTON S RINGS DIFFRACTION SINGLE SLIT MULTIPLE SLITS RESOLVING POWER 1 IN PHASE 180 0 OUT OF

More information

Chapter 2: Wave Optics

Chapter 2: Wave Optics Chapter : Wave Optics P-1. We can write a plane wave with the z axis taken in the direction of the wave vector k as u(,) r t Acos tkzarg( A) As c /, T 1/ and k / we can rewrite the plane wave as t z u(,)

More information

Lecture 16 Diffraction Ch. 36

Lecture 16 Diffraction Ch. 36 Lecture 16 Diffraction Ch. 36 Topics Newtons Rings Diffraction and the wave theory Single slit diffraction Intensity of single slit diffraction Double slit diffraction Diffraction grating Dispersion and

More information

Chapter 24 The Wave Nature of Light

Chapter 24 The Wave Nature of Light Chapter 24 The Wave Nature of Light 24.1 Waves Versus Particles; Huygens Principle and Diffraction Huygens principle: Every point on a wave front acts as a point source; the wavefront as it develops is

More information

Dynamical Theory of X-Ray Diffraction

Dynamical Theory of X-Ray Diffraction Dynamical Theory of X-Ray Diffraction ANDRE AUTHIER Universite P. et M. Curie, Paris OXFORD UNIVERSITY PRESS Contents I Background and basic results 1 1 Historical developments 3 1.1 Prologue 3 1.2 The

More information

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal.

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal. Diffraction Chapter 38 Huygens construction may be used to find the wave observed on the downstream side of an aperture of any shape. Diffraction The interference pattern encodes the shape as a Fourier

More information

Wave Optics. April 11, 2014 Chapter 34 1

Wave Optics. April 11, 2014 Chapter 34 1 Wave Optics April 11, 2014 Chapter 34 1 Announcements! Exam tomorrow! We/Thu: Relativity! Last week: Review of entire course, no exam! Final exam Wednesday, April 30, 8-10 PM Location: WH B115 (Wells Hall)

More information

3. Image formation, Fourier analysis and CTF theory. Paula da Fonseca

3. Image formation, Fourier analysis and CTF theory. Paula da Fonseca 3. Image formation, Fourier analysis and CTF theory Paula da Fonseca EM course 2017 - Agenda - Overview of: Introduction to Fourier analysis o o o o Sine waves Fourier transform (simple examples of 1D

More information

Light: Geometric Optics (Chapter 23)

Light: Geometric Optics (Chapter 23) Light: Geometric Optics (Chapter 23) Units of Chapter 23 The Ray Model of Light Reflection; Image Formed by a Plane Mirror Formation of Images by Spherical Index of Refraction Refraction: Snell s Law 1

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Apr 22, 2012 Light from distant things We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics 23.1 The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization,

More information

Chapter 82 Example and Supplementary Problems

Chapter 82 Example and Supplementary Problems Chapter 82 Example and Supplementary Problems Nature of Polarized Light: 1) A partially polarized beam is composed of 2.5W/m 2 of polarized and 4.0W/m 2 of unpolarized light. Determine the degree of polarization

More information

INTERFERENCE. (i) When the film is quite thin as compared to the wavelength of light,

INTERFERENCE. (i) When the film is quite thin as compared to the wavelength of light, (a) Reflected System: For the thin film in air the ray BG suffers reflection at air medium (rare to denser) boundary, it undergoes a phase change of π and a path change of λ/2, while the ray DF does not,

More information

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light.

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light. Chapter 7: Geometrical Optics The branch of physics which studies the properties of light using the ray model of light. Overview Geometrical Optics Spherical Mirror Refraction Thin Lens f u v r and f 2

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature10934 Supplementary Methods Mathematical implementation of the EST method. The EST method begins with padding each projection with zeros (that is, embedding

More information

Chapter 24 - The Wave Nature of Light

Chapter 24 - The Wave Nature of Light Chapter 24 - The Wave Nature of Light Summary Four Consequences of the Wave nature of Light: Diffraction Dispersion Interference Polarization Huygens principle: every point on a wavefront is a source of

More information

MICHELSON S INTERFEROMETER

MICHELSON S INTERFEROMETER MICHELSON S INTERFEROMETER Objectives: 1. Alignment of Michelson s Interferometer using He-Ne laser to observe concentric circular fringes 2. Measurement of the wavelength of He-Ne Laser and Na lamp using

More information

PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves

PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves Print Your Name Print Your Partners' Names Instructions April 17, 2015 Before lab, read the

More information

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses LIGHT Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses Light = Electromagnetic Wave Requires No Medium to Travel Oscillating Electric and Magnetic Field Travel at the speed of light

More information

4. Recommended alignment procedure:

4. Recommended alignment procedure: 4. Recommended alignment procedure: 4.1 Introduction The described below procedure presents an example of alignment of beam shapers Shaper and Focal- Shaper (F- Shaper) with using the standard Shaper Mount

More information

Where n = 0, 1, 2, 3, 4

Where n = 0, 1, 2, 3, 4 Syllabus: Interference and diffraction introduction interference in thin film by reflection Newton s rings Fraunhofer diffraction due to single slit, double slit and diffraction grating Interference 1.

More information

Algebra Based Physics

Algebra Based Physics Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Table of ontents Slide 3 / 66 lick on the topic to go to that section Reflection Spherical Mirror Refraction and

More information

Basic optics. Geometrical optics and images Interference Diffraction Diffraction integral. we use simple models that say a lot! more rigorous approach

Basic optics. Geometrical optics and images Interference Diffraction Diffraction integral. we use simple models that say a lot! more rigorous approach Basic optics Geometrical optics and images Interference Diffraction Diffraction integral we use simple models that say a lot! more rigorous approach Basic optics Geometrical optics and images Interference

More information

Optics II. Reflection and Mirrors

Optics II. Reflection and Mirrors Optics II Reflection and Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media The

More information

General Physics Experiment 11

General Physics Experiment 11 Physics Labs General Physics Experiment 11 Interference and Diffraction of Light Objectives: To measure the wavelength of light emitted by a Helium-Neon laser. To observe the character of single slit diffraction.

More information

homework Question: T P417, and select 2 other questions from the rest questions of chapter 22 and 24.

homework Question: T P417, and select 2 other questions from the rest questions of chapter 22 and 24. homework Question: T 24.13 P417, and select 2 other questions from the rest questions of chapter 22 and 24. 22 Amplitude Contrast CHAPTER PREVIEW We ve already mentioned in Chapters 2 4 that TEM image

More information

LIGHT CLASS X STUDY MATERIAL & QUESTION BANK:

LIGHT CLASS X STUDY MATERIAL & QUESTION BANK: LIGHT CLASS X STUDY MATERIAL & QUESTION BANK: 1. REFLECTION OF LIGHT: The phenomenon of light coming back into the same medium after it strikes a smooth surface is called reflection. 2. LAWS OF REFLECTION:

More information

Chapter 25. Wave Optics

Chapter 25. Wave Optics Chapter 25 Wave Optics Interference Light waves interfere with each other much like mechanical waves do All interference associated with light waves arises when the electromagnetic fields that constitute

More information

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

DIFFRACTION 4.1 DIFFRACTION Difference between Interference and Diffraction Classification Of Diffraction Phenomena

DIFFRACTION 4.1 DIFFRACTION Difference between Interference and Diffraction Classification Of Diffraction Phenomena 4.1 DIFFRACTION Suppose a light wave incident on a slit AB of sufficient width b, as shown in Figure 1. According to concept of rectilinear propagation of light the region A B on the screen should be uniformly

More information

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE 58 UNIT VI OPTICS ALL THE POSSIBLE FORMULAE Relation between focal length and radius of curvature of a mirror/lens, f = R/2 Mirror formula: Magnification produced by a mirror: m = - = - Snell s law: 1

More information

1. Introduction 1 2. Starting the SAED pattern indexing 1 3. Analyzing the indexing solutions 8 4. Remarks 10 Contents

1. Introduction 1 2. Starting the SAED pattern indexing 1 3. Analyzing the indexing solutions 8 4. Remarks 10 Contents SAED PATTERN INDEXING USING JEMS P. STADELMANN CIME-EPFL STATION 12 CH-1015 LAUSANNE SWITZERLAND 1. Introduction 1 2. Starting the SAED pattern indexing 1 3. Analyzing the indexing solutions 8 4. Remarks

More information

DAMAGE INSPECTION AND EVALUATION IN THE WHOLE VIEW FIELD USING LASER

DAMAGE INSPECTION AND EVALUATION IN THE WHOLE VIEW FIELD USING LASER DAMAGE INSPECTION AND EVALUATION IN THE WHOLE VIEW FIELD USING LASER A. Kato and T. A. Moe Department of Mechanical Engineering Chubu University Kasugai, Aichi 487-8501, Japan ABSTRACT In this study, we

More information

PH 222-3A Fall Diffraction Lectures Chapter 36 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-3A Fall Diffraction Lectures Chapter 36 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-3A Fall 2012 Diffraction Lectures 28-29 Chapter 36 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 36 Diffraction In Chapter 35, we saw how light beams passing through

More information

Interference and Diffraction of Light

Interference and Diffraction of Light Name Date Time to Complete h m Partner Course/ Section / Grade Interference and Diffraction of Light Reflection by mirrors and refraction by prisms and lenses can be analyzed using the simple ray model

More information

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

ACCURATE TEXTURE MEASUREMENTS ON THIN FILMS USING A POWDER X-RAY DIFFRACTOMETER

ACCURATE TEXTURE MEASUREMENTS ON THIN FILMS USING A POWDER X-RAY DIFFRACTOMETER ACCURATE TEXTURE MEASUREMENTS ON THIN FILMS USING A POWDER X-RAY DIFFRACTOMETER MARK D. VAUDIN NIST, Gaithersburg, MD, USA. Abstract A fast and accurate method that uses a conventional powder x-ray diffractometer

More information

Mirror Example Consider a concave mirror radius -10 cm then = = Now consider a 1 cm candle s = 15 cm from the vertex Where is the image.

Mirror Example Consider a concave mirror radius -10 cm then = = Now consider a 1 cm candle s = 15 cm from the vertex Where is the image. Mirror Example Consider a concave mirror radius -10 cm then r 10 f = = = 5 cm 2 2 Now consider a 1 cm candle s = 15 cm from the vertex Where is the image 1 s 2 1 = = r s 1 1 2 + = = s s r 1 1 = 0.13333

More information

Fast scanning method for one-dimensional surface profile measurement by detecting angular deflection of a laser beam

Fast scanning method for one-dimensional surface profile measurement by detecting angular deflection of a laser beam Fast scanning method for one-dimensional surface profile measurement by detecting angular deflection of a laser beam Ryo Shinozaki, Osami Sasaki, and Takamasa Suzuki A fast scanning method for one-dimensional

More information

Ray Optics. Physics 11. Sources of Light Rays: Self-Luminous Objects. The Ray Model of Light

Ray Optics. Physics 11. Sources of Light Rays: Self-Luminous Objects. The Ray Model of Light Physics 11 Ray Optics Ray Model of Light Reflection Plane Mirrors Spherical Mirrors Ray Tracing Images from a Concave Mirror Images from a Convex Mirror Slide 18-3 The Ray Model of Light Sources of Light

More information

Review Session 1. Dr. Flera Rizatdinova

Review Session 1. Dr. Flera Rizatdinova Review Session 1 Dr. Flera Rizatdinova Summary of Chapter 23 Index of refraction: Angle of reflection equals angle of incidence Plane mirror: image is virtual, upright, and the same size as the object

More information

The image is virtual and erect. When a mirror is rotated through a certain angle, the reflected ray is rotated through twice this angle.

The image is virtual and erect. When a mirror is rotated through a certain angle, the reflected ray is rotated through twice this angle. 1 Class XII: Physics Chapter 9: Ray optics and Optical Instruments Top Concepts 1. Laws of Reflection. The reflection at a plane surface always takes place in accordance with the following two laws: (i)

More information

PHY 171 Lecture 6 (January 18, 2012)

PHY 171 Lecture 6 (January 18, 2012) PHY 171 Lecture 6 (January 18, 2012) Light Throughout most of the next 2 weeks, we will be concerned with the wave properties of light, and phenomena based on them (interference & diffraction). Light also

More information

Stress and Texture by XRD Bob He, Bruker AXS

Stress and Texture by XRD Bob He, Bruker AXS Stress and Texture by XRD Bob He, Bruker AXS Intensity Conventional X-ray Diffractometer Divergence slit Antiscatter slit Monochromator Bragg-Brentano Geometry. Scanning over range to collect XRD pattern.

More information

Chapter 7: Geometrical Optics

Chapter 7: Geometrical Optics Chapter 7: Geometrical Optics 7. Reflection at a Spherical Surface L.O 7.. State laws of reflection Laws of reflection state: L.O The incident ray, the reflected ray and the normal all lie in the same

More information

Chapter 36 Diffraction

Chapter 36 Diffraction Chapter 36 Diffraction In Chapter 35, we saw how light beams passing through different slits can interfere with each other and how a beam after passing through a single slit flares diffracts in Young's

More information

Lab 10 - GEOMETRICAL OPTICS

Lab 10 - GEOMETRICAL OPTICS L10-1 Name Date Partners OBJECTIVES OVERVIEW Lab 10 - GEOMETRICAL OPTICS To examine Snell s Law. To observe total internal reflection. To understand and use the lens equations. To find the focal length

More information

Chapter 12 Notes: Optics

Chapter 12 Notes: Optics Chapter 12 Notes: Optics How can the paths traveled by light rays be rearranged in order to form images? In this chapter we will consider just one form of electromagnetic wave: visible light. We will be

More information

ksa MOS Ultra-Scan Performance Test Data

ksa MOS Ultra-Scan Performance Test Data ksa MOS Ultra-Scan Performance Test Data Introduction: ksa MOS Ultra Scan 200mm Patterned Silicon Wafers The ksa MOS Ultra Scan is a flexible, highresolution scanning curvature and tilt-measurement system.

More information

Diffraction Basics (prepared by James R. Connolly, for EPS , Introduction to X-Ray Powder Diffraction, Spring 2012

Diffraction Basics (prepared by James R. Connolly, for EPS , Introduction to X-Ray Powder Diffraction, Spring 2012 Introduction The use of X-rays for crystallographic analysis relies on a few basic principals:. When an incident beam of x-rays interacts with a target material, one of the primary effects observed is

More information

Announcement. Fraunhofer Diffraction. Physics Waves & Oscillations 4/17/2016. Spring 2016 Semester Matthew Jones

Announcement. Fraunhofer Diffraction. Physics Waves & Oscillations 4/17/2016. Spring 2016 Semester Matthew Jones Physics 42200 Waves & Oscillations Lecture 39 Fresnel Diffraction Spring 2016 Semester Matthew Jones Announcement Final Exam Tuesday, May 3 rd 7:00 9:00 pm Room PHYS 112 You can bring one sheet of notes,

More information

Mirror Example Consider a concave mirror radius r = -10 cm then. Now consider a 1 cm candle s = 15 cm from the vertex Where is the image.

Mirror Example Consider a concave mirror radius r = -10 cm then. Now consider a 1 cm candle s = 15 cm from the vertex Where is the image. Mirror Example Consider a concave mirror radius r = -0 cm then r 0 f 5 cm 2 2 Now consider a cm candle s = 5 cm from the vertex Where is the image s 2 r s 2 s s r 0.3333 5 5 f s' 0.333 M ' s 7.5 Magnification

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but

More information

Geometrical Optics. Chapter General Comments. 1.2 Snell s Law

Geometrical Optics. Chapter General Comments. 1.2 Snell s Law Chapter 1 Geometrical Optics 1.1 General Comments A light wave is an electromagnetic wave, and the wavelength that optics studies ranges from the ultraviolet (0.2 mm) to the middle infrared (10 mm). The

More information

AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light AP Physics Problems -- Waves and Light 1. 1975-4 (Physical Optics) a. Light of a single wavelength is incident on a single slit of width w. (w is a few wavelengths.) Sketch a graph of the intensity as

More information

OPSE FINAL EXAM Fall CLOSED BOOK. Two pages (front/back of both pages) of equations are allowed.

OPSE FINAL EXAM Fall CLOSED BOOK. Two pages (front/back of both pages) of equations are allowed. CLOSED BOOK. Two pages (front/back of both pages) of equations are allowed. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED.

More information

Lab 9 - Geometrical Optics

Lab 9 - Geometrical Optics Lab 9 Geometrical Optics L9-1 Name Date Partners Lab 9 - Geometrical Optics OBJECTIVES To examine Snell s Law To observe total internal reflection. To understand and use the lens equations. To find the

More information

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from Lecture 5-3 Interference and Diffraction of EM Waves During our previous lectures we have been talking about electromagnetic (EM) waves. As we know, harmonic waves of any type represent periodic process

More information

2/26/2016. Chapter 23 Ray Optics. Chapter 23 Preview. Chapter 23 Preview

2/26/2016. Chapter 23 Ray Optics. Chapter 23 Preview. Chapter 23 Preview Chapter 23 Ray Optics Chapter Goal: To understand and apply the ray model of light. Slide 23-2 Chapter 23 Preview Slide 23-3 Chapter 23 Preview Slide 23-4 1 Chapter 23 Preview Slide 23-5 Chapter 23 Preview

More information

Light & Optical Systems Reflection & Refraction. Notes

Light & Optical Systems Reflection & Refraction. Notes Light & Optical Systems Reflection & Refraction Notes What is light? Light is electromagnetic radiation Ultra-violet + visible + infra-red Behavior of Light Light behaves in 2 ways particles (photons)

More information

X-ray Diffraction from Materials

X-ray Diffraction from Materials X-ray Diffraction from Materials 2008 Spring Semester Lecturer; Yang Mo Koo Monday and Wednesday 14:45~16:00 8. Experimental X-ray Diffraction Procedures 8.1 Diffraction Experiments using Films 8.1.1 Laue

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 39 Fresnel Diffraction Spring 2016 Semester Matthew Jones Announcement Final Exam Tuesday, May 3 rd 7:00 9:00 pm Room PHYS 112 You can bring one sheet of notes,

More information

Lecture Notes (Reflection & Mirrors)

Lecture Notes (Reflection & Mirrors) Lecture Notes (Reflection & Mirrors) Intro: - plane mirrors are flat, smooth surfaces from which light is reflected by regular reflection - light rays are reflected with equal angles of incidence and reflection

More information

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well Pre AP Physics Light & Optics Chapters 14-16 Light is an electromagnetic wave Electromagnetic waves: Oscillating electric and magnetic fields that are perpendicular to the direction the wave moves Difference

More information

TracePro Stray Light Simulation

TracePro Stray Light Simulation TracePro Stray Light Simulation What Is Stray Light? A more descriptive term for stray light is unwanted light. In an optical imaging system, stray light is caused by light from a bright source shining

More information

Lens Design I. Lecture 4: Properties of optical systems III Herbert Gross. Summer term

Lens Design I. Lecture 4: Properties of optical systems III Herbert Gross. Summer term Lens Design I Lecture 4: Properties of optical systems III 018-05-03 Herbert Gross Summer term 018 www.iap.uni-jena.de Preliminary Schedule - Lens Design I 018 1 1.04. Basics 19.04. Properties of optical

More information

Physical Optics. You can observe a lot just by watching. Yogi Berra ( )

Physical Optics. You can observe a lot just by watching. Yogi Berra ( ) Physical Optics You can observe a lot just by watching. Yogi Berra (1925-2015) OBJECTIVES To observe some interference and diffraction phenomena with visible light. THEORY In a previous experiment you

More information

Final Exam. Today s Review of Optics Polarization Reflection and transmission Linear and circular polarization Stokes parameters/jones calculus

Final Exam. Today s Review of Optics Polarization Reflection and transmission Linear and circular polarization Stokes parameters/jones calculus Physics 42200 Waves & Oscillations Lecture 40 Review Spring 206 Semester Matthew Jones Final Exam Date:Tuesday, May 3 th Time:7:00 to 9:00 pm Room: Phys 2 You can bring one double-sided pages of notes/formulas.

More information

Transmission Electron Microscopy 2. Scattering and Diffraction

Transmission Electron Microscopy 2. Scattering and Diffraction Transmission Electron Microscopy 2. Scattering and Diffraction EMA 6518 Spring 2007 01/07 Outline Why are we interested in electron scattering? Terminology of scattering The characteristics of electron

More information

Optics. a- Before the beginning of the nineteenth century, light was considered to be a stream of particles.

Optics. a- Before the beginning of the nineteenth century, light was considered to be a stream of particles. Optics 1- Light Nature: a- Before the beginning of the nineteenth century, light was considered to be a stream of particles. The particles were either emitted by the object being viewed or emanated from

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 28: REFLECTION & REFRACTION This lecture will help you understand: Reflection Principle of Least Time Law of Reflection Refraction Cause of Refraction Dispersion

More information

Diffraction. Introduction: Diffraction is bending of waves around an obstacle (barrier) or spreading of waves passing through a narrow slit.

Diffraction. Introduction: Diffraction is bending of waves around an obstacle (barrier) or spreading of waves passing through a narrow slit. Introduction: Diffraction is bending of waves around an obstacle (barrier) or spreading of waves passing through a narrow slit. Diffraction amount depends on λ/a proportion If a >> λ diffraction is negligible

More information

Interference of Light

Interference of Light Interference of Light Young s Double-Slit Experiment If light is a wave, interference effects will be seen, where one part of wavefront can interact with another part. One way to study this is to do a

More information

Physics 11. Unit 8 Geometric Optics Part 1

Physics 11. Unit 8 Geometric Optics Part 1 Physics 11 Unit 8 Geometric Optics Part 1 1.Review of waves In the previous section, we have investigated the nature and behaviors of waves in general. We know that all waves possess the following characteristics:

More information

(Refer Slide Time: 00:10)

(Refer Slide Time: 00:10) Fundamentals of optical and scanning electron microscopy Dr. S. Sankaran Department of Metallurgical and Materials Engineering Indian Institute of Technology, Madras Module 02 Unit-4 Phase contrast, Polarized

More information

Draft SPOTS Standard Part III (7)

Draft SPOTS Standard Part III (7) SPOTS Good Practice Guide to Electronic Speckle Pattern Interferometry for Displacement / Strain Analysis Draft SPOTS Standard Part III (7) CALIBRATION AND ASSESSMENT OF OPTICAL STRAIN MEASUREMENTS Good

More information

Ray Optics. Lecture 23. Chapter 23. Physics II. Course website:

Ray Optics. Lecture 23. Chapter 23. Physics II. Course website: Lecture 23 Chapter 23 Physics II Ray Optics Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Let s finish talking about a diffraction grating Diffraction Grating Let s improve (more

More information

Chapter 8: Physical Optics

Chapter 8: Physical Optics Chapter 8: Physical Optics Whether light is a particle or a wave had puzzled physicists for centuries. In this chapter, we only analyze light as a wave using basic optical concepts such as interference

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 40 Review Spring 2016 Semester Matthew Jones Final Exam Date:Tuesday, May 3 th Time:7:00 to 9:00 pm Room: Phys 112 You can bring one double-sided pages of notes/formulas.

More information

index of refraction-light speed

index of refraction-light speed AP Physics Study Guide Chapters 22, 23, 24 Reflection, Refraction and Interference Name Write each of the equations specified below, include units for all quantities. Law of Reflection Lens-Mirror Equation

More information

PHYSICS 116 POLARIZATION AND LIGHT MEASUREMENTS

PHYSICS 116 POLARIZATION AND LIGHT MEASUREMENTS Name Date Lab Time Lab TA PHYSICS 116 POLARIZATION AND LIGHT MEASUREMENTS I. POLARIZATION Natural unpolarized light is made up of waves vibrating in all directions. When a beam of unpolarized light is

More information