Combinatorial Auctions: A Survey by de Vries and Vohra

Size: px
Start display at page:

Download "Combinatorial Auctions: A Survey by de Vries and Vohra"

Transcription

1 Combinatorial Auctions: A Survey by de Vries and Vohra Ashwin Ganesan EE228, Fall 2003 September 30, 2003

2 1 Combinatorial Auctions Problem N is the set of bidders, M is the set of objects b j (S) is the amount agent j N is willing to pay for S M Let b(s) = max j N b j (S) CAP1: max S M b(s)x S such that S i x S 1 i M, x S = 0, 1 S M. Here, x S = 1 means the highest bid on S is accepted.

3 2 Decentralized Methods The integer programming problem is NP-hard in general. One way to reduce the computational burden is set up a fictitious market to determine allocation and prices in a decentralized way. Auctioneer announces prices for objects. Bidders announce which set of objects they will purchase at the posted prices. If two or more bidders compete for same object, auctioneer adjusts the price vector.

4 3 Lagrangean Relaxation The Set Packing Problem formulation: Let c j = highest bid on j-th subset. Z = max j V c jx j s.t. j V a ijx j 1 i M x j = 0, 1 j V. Linear programming relaxation: Z LP = max j V c jx j s.t. j V a ijx j 1 i M 0 x j 1 j V. Z Z LP

5 4 Lagrangean Relaxation Linear programming relaxation: Z LP = max j V c j x j s.t. j V a ij x j 1 i M, 0 x j 1 j V. Consider the problem: Z(λ) = max j V c j x j + i M λ i (1 j V a ij x j ) s.t. 0 x j 1 j V.

6 5 Easy to compute Z(λ) for each λ: Lagrangean Relaxation Z(λ) = max j V c j x j + i M λ i (1 j V a ij x j ) s.t. 0 x j 1 j V. Note that c j x j + i M λ i (1 j V a ij x j ) = j V (c j i M λ i a ij )x j + i M λ i. j V Theorem: Z LP = min λ 0 Z(λ).

7 6 Subgradient Algorithm Use the subgradient algorithm to find: min Z(λ). λ 0 Suppose the value of λ at iteration t is λ t. If x t is the optimal solution associated with Z(λ t ), then where θ t is step size. λ t+1 = λ t + θ t (Ax t 1), Notice that λ t+1 i > λ t i for any i such that j a ijx t j term increased on any constraint being violated. > 1. Penalty

8 7 Market Interpretation The market interpretation of the above algorithm: The auctioneer chooses a price vector λ for individual objects, and bidders submit bids. If c j, the highest bid on j-th bundle exceeds i M a ijλ i, this bundle is tentatively assigned to the bidder. After λ is announced, bidders can simply state which objects are acceptable to them at the announced prices. If conflict in assignment, auctioneer uses subgradient algorithm to adjust prices and repeats the process.

9 8 Cutting Plane Methods Can solve an integer programming (IP) problem by solving a sequence of linear programming (LP) problems. A generic cutting plane algorithm: Solve the LP relaxation. Let x be the optimal solution. If x is integer, stop; x is an optimal solution. If not, add a linear inequality constraint to the LP relaxation that all integer solutions to the IP problem satisfy, but x does not; go to first step. Performance of the algorithm depends on choice of inequality used to cut x May take an exponential number of iterations.

10 9 An Example There are 6 objects, with highest bids on subsets as follows: b({1, 2}) = b({2, 3}) = b({3, 4}) = b({4, 5}) = b({1, 5, 6}) = 2, b({6}) = 1. LP relaxation: max 2x x x x x x 6 s.t. x 12 + x 156 1, x 12 + x 23 1 x 23 + x 34 1, x 34 + x 45 1 x 45 + x 156 1, x x 6 1, x i 0 Optimal fractional solution is to set all variables equal to half. Add inequality: x 12 + x 23 + x 34 + x 45 + x

11 10 Incentive Issues So far, problems focused on choosing allocation to maximize seller s revenue. But no guarantee that bidders submit their true valuations. For example, suppose there are 3 bidders and two objects {x, y}, with true values of subsets to bidders given by v 1 (x, y) = 100, v 1 (x) = v 1 (y) = 0 v 2 (x, y) = 0, v 2 (x) = v 2 (y) = 75 v 3 (x, y) = 0, v 3 (x) = v 3 (y) = 40 If bidders bid truthfully, auctioneer should award x to 2 and y to 3, to maximize revenue. Bidder 2, under the assumption that bidder 3 bids truthfully, has the incentive to shade his bid down to 65.

12 11 Incentive Issues To discuss incentive issues, we first need a model of bidder preferences - simplest model is a list {v j (S)} S M. Choose an auction design that does three things: Induces bidders to reveal actual valuations (incentive compatibility) No bidder is made worse off (in expectation) by participating in the auction. Subject to the above, seller maximizes expected revenue. We can restrict to auctions with a single round. Optimal auction design is not known. Under the additional restriction of efficiency, the optimal auction is the VCG scheme.

13 12 Efficiency An auction is efficient if the allocation of objects to bidders chosen by seller solves the following: s.t. max j N S i j N S M S M v j (S)y(S, j) y(s, j) 1 i M y(s, j) 1 j N y(s, j) = 0, 1 S M, j N. This is just CAP2 with b i replaced by v i.

14 13 Vickrey-Clarke-Grove Scheme The VCG scheme is an optimal auction that is also efficient. Bidder j reports v j. Seller chooses the allocation that solves for y : V = max j N S M vj (S)y(S, j) s.t. y(s, j) 1 i M S M S i j N y(s, j) 1 j N y(s, j) = 0, 1 S M, j N.

15 14 Vickrey-Clarke-Grove Scheme For each k, solve for y k : V k = max j N\k S M vj (S)y(S, j) s.t. S i j N\k y(s, j) 1 i M S M y(s, j) 1 j N\k y(s, j) = 0, 1 S M, j N\k. y k is the optimal allocation when bidder k is excluded from the auction. The payment made by bidder k is V k [V S M vk y (S, k)]. The VCG scheme is impractical to implement. Computing approximately optimal solutions for y and y k need not preserve incentive compatibility.

16 15 Computational Experiments Done using the branch and bound exact method solver of CPLEX. They provide plots of log of running time versus number of bids (for a fixed number of items) for CAP1. Problems belong to four classes of distributions Random: For each bid, pick the number of items randomly from 1,...,m. Randomly choose that many items without replacement. Pick the prices randomly from [0, 1]. When the problems become large, many singletons in optimal allocation. Weighted Random: As above, but price is a real number between 0 and number of items in the bid. Modelling issue: how to model how bidders values different subsets of objects?

17 16 References Bertsimas and Tsitsiklis, Introduction to Linear Optimization, (for IP and LP) R. Myerson, Optimal Auction Design, Mathematics of Operations Research, 6, p , (direct revelation principle) Krishna and Perry, Efficient Mechanism Design, manuscript, 1998, available online. (on VCG scheme)

Homework 2: Multi-unit combinatorial auctions (due Nov. 7 before class)

Homework 2: Multi-unit combinatorial auctions (due Nov. 7 before class) CPS 590.1 - Linear and integer programming Homework 2: Multi-unit combinatorial auctions (due Nov. 7 before class) Please read the rules for assignments on the course web page. Contact Vince (conitzer@cs.duke.edu)

More information

Solving lexicographic multiobjective MIPs with Branch-Cut-Price

Solving lexicographic multiobjective MIPs with Branch-Cut-Price Solving lexicographic multiobjective MIPs with Branch-Cut-Price Marta Eso (The Hotchkiss School) Laszlo Ladanyi (IBM T.J. Watson Research Center) David Jensen (IBM T.J. Watson Research Center) McMaster

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2018 04 24 Lecture 9 Linear and integer optimization with applications

More information

Approximation Techniques for Utilitarian Mechanism Design

Approximation Techniques for Utilitarian Mechanism Design Approximation Techniques for Utilitarian Mechanism Design Department of Computer Science RWTH Aachen Germany joint work with Patrick Briest and Piotr Krysta 05/16/2006 1 Introduction to Utilitarian Mechanism

More information

Introduction to Mathematical Programming IE406. Lecture 20. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 20. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 20 Dr. Ted Ralphs IE406 Lecture 20 1 Reading for This Lecture Bertsimas Sections 10.1, 11.4 IE406 Lecture 20 2 Integer Linear Programming An integer

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

Spectrum Auction Framework for Access Allocation in Cognitive Radio Networks

Spectrum Auction Framework for Access Allocation in Cognitive Radio Networks University of Pennsylvania ScholarlyCommons Departmental Papers (ESE) Department of Electrical & Systems Engineering 12-17-2010 Spectrum Auction Framework for Access Allocation in Cognitive Radio Networks

More information

Approximation Algorithms for Item Pricing

Approximation Algorithms for Item Pricing Approximation Algorithms for Item Pricing Maria-Florina Balcan July 2005 CMU-CS-05-176 Avrim Blum School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 School of Computer Science,

More information

Combinatorial Auctions: A Survey

Combinatorial Auctions: A Survey Combinatorial Auctions: A Survey Sven de Vries & Rakesh Vohra May 9, 2000 Abstract Many auctions involve the sale of a variety of distinct assets. Examples are airport time slots, delivery routes and furniture.

More information

5.3 Cutting plane methods and Gomory fractional cuts

5.3 Cutting plane methods and Gomory fractional cuts 5.3 Cutting plane methods and Gomory fractional cuts (ILP) min c T x s.t. Ax b x 0integer feasible region X Assumption: a ij, c j and b i integer. Observation: The feasible region of an ILP can be described

More information

Why VCG auctions can hardly be applied to the pricing of inter-domain and ad hoc networks

Why VCG auctions can hardly be applied to the pricing of inter-domain and ad hoc networks Why VCG auctions can hardly be applied to the pricing of inter-domain and ad hoc networks Patrick Maillé GET/ENST Bretagne 2, rue de la Châtaigneraie - CS 17607 35576 Cesson Sévigné Cedex - FRANCE Email:

More information

Fundamentals of Integer Programming

Fundamentals of Integer Programming Fundamentals of Integer Programming Di Yuan Department of Information Technology, Uppsala University January 2018 Outline Definition of integer programming Formulating some classical problems with integer

More information

3 INTEGER LINEAR PROGRAMMING

3 INTEGER LINEAR PROGRAMMING 3 INTEGER LINEAR PROGRAMMING PROBLEM DEFINITION Integer linear programming problem (ILP) of the decision variables x 1,..,x n : (ILP) subject to minimize c x j j n j= 1 a ij x j x j 0 x j integer n j=

More information

LP-Modelling. dr.ir. C.A.J. Hurkens Technische Universiteit Eindhoven. January 30, 2008

LP-Modelling. dr.ir. C.A.J. Hurkens Technische Universiteit Eindhoven. January 30, 2008 LP-Modelling dr.ir. C.A.J. Hurkens Technische Universiteit Eindhoven January 30, 2008 1 Linear and Integer Programming After a brief check with the backgrounds of the participants it seems that the following

More information

OPTIMIZATION. joint course with. Ottimizzazione Discreta and Complementi di R.O. Edoardo Amaldi. DEIB Politecnico di Milano

OPTIMIZATION. joint course with. Ottimizzazione Discreta and Complementi di R.O. Edoardo Amaldi. DEIB Politecnico di Milano OPTIMIZATION joint course with Ottimizzazione Discreta and Complementi di R.O. Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Website: http://home.deib.polimi.it/amaldi/opt-16-17.shtml

More information

Wireless frequency auctions: Mixed Integer Programs and Dantzig-Wolfe decomposition

Wireless frequency auctions: Mixed Integer Programs and Dantzig-Wolfe decomposition Wireless frequency auctions: Mixed Integer Programs and Dantzig-Wolfe decomposition Laszlo Ladanyi (IBM T.J. Watson Research Center) joint work with Marta Eso (The Hotchkiss School) David Jensen (IBM T.J.

More information

The Index Coding Problem: A Game-Theoretical Perspective

The Index Coding Problem: A Game-Theoretical Perspective The Index Coding Problem: A Game-Theoretical Perspective Yu-Pin Hsu, I-Hong Hou, and Alex Sprintson Department of Electrical and Computer Engineering Texas A&M University {yupinhsu, ihou, spalex}@tamu.edu

More information

A BGP-Based Mechanism for Lowest-Cost Routing

A BGP-Based Mechanism for Lowest-Cost Routing A BGP-Based Mechanism for Lowest-Cost Routing Joan Feigenbaum, Christos Papadimitriou, Rahul Sami, Scott Shenker Presented by: Tony Z.C Huang Theoretical Motivation Internet is comprised of separate administrative

More information

Approximation Algorithms: The Primal-Dual Method. My T. Thai

Approximation Algorithms: The Primal-Dual Method. My T. Thai Approximation Algorithms: The Primal-Dual Method My T. Thai 1 Overview of the Primal-Dual Method Consider the following primal program, called P: min st n c j x j j=1 n a ij x j b i j=1 x j 0 Then the

More information

Introduction to algorithmic mechanism design

Introduction to algorithmic mechanism design Introduction to algorithmic mechanism design Elias Koutsoupias Department of Computer Science University of Oxford EWSCS 2014 March 5-7, 2014 Part I Game Theory and Computer Science Why Game Theory and

More information

Auctions for Multi-robot Coordination and Task Allocation

Auctions for Multi-robot Coordination and Task Allocation Decision Making in Robots and Autonomous Agents Auctions for Multi-robot Coordination and Task Allocation Subramanian Ramamoorthy School of Informatics 15 March, 2013 Motion Problems with Many Agents What

More information

Department of Mathematics Oleg Burdakov of 30 October Consider the following linear programming problem (LP):

Department of Mathematics Oleg Burdakov of 30 October Consider the following linear programming problem (LP): Linköping University Optimization TAOP3(0) Department of Mathematics Examination Oleg Burdakov of 30 October 03 Assignment Consider the following linear programming problem (LP): max z = x + x s.t. x x

More information

Robert H. Smith School of Business, University of Maryland, College Park, MD 20742

Robert H. Smith School of Business, University of Maryland, College Park, MD 20742 An Ecient Approximation Algorithm for Combinatorial Auctions G. Anandalingam, R.Kwon, L.H. Ungar Robert H. Smith School of Business, University of Maryland, College Park, MD 20742 Department of Systems

More information

VCG Auction-based Bandwidth Allocation with Network Coding in Wireless Networks

VCG Auction-based Bandwidth Allocation with Network Coding in Wireless Networks VCG Auction-based Bandwidth Allocation with Network Coding in Wireless Networks PIRIYA CHAIKIJWATANA TAKUJI TACHIBANA Nara Institute of Science and Technology Graduate School of Information Science 8916-5

More information

Truthful Approximation Mechanisms for Restricted Combinatorial Auctions

Truthful Approximation Mechanisms for Restricted Combinatorial Auctions From: AAAI-02 Proceedings. Copyright 2002, AAAI (www.aaai.org). All rights reserved. Truthful Approximation Mechanisms for Restricted Combinatorial Auctions Extended Abstract Ahuva Mu alem and Noam Nisan

More information

Financial Optimization ISE 347/447. Lecture 13. Dr. Ted Ralphs

Financial Optimization ISE 347/447. Lecture 13. Dr. Ted Ralphs Financial Optimization ISE 347/447 Lecture 13 Dr. Ted Ralphs ISE 347/447 Lecture 13 1 Reading for This Lecture C&T Chapter 11 ISE 347/447 Lecture 13 2 Integer Linear Optimization An integer linear optimization

More information

Unit.9 Integer Programming

Unit.9 Integer Programming Unit.9 Integer Programming Xiaoxi Li EMS & IAS, Wuhan University Dec. 22-29, 2016 (revised) Operations Research (Li, X.) Unit.9 Integer Programming Dec. 22-29, 2016 (revised) 1 / 58 Organization of this

More information

Modelling of LP-problems (2WO09)

Modelling of LP-problems (2WO09) Modelling of LP-problems (2WO09) assignor: Judith Keijsper room: HG 9.31 email: J.C.M.Keijsper@tue.nl course info : http://www.win.tue.nl/ jkeijspe Technische Universiteit Eindhoven meeting 1 J.Keijsper

More information

Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem

Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem L. De Giovanni M. Di Summa The Traveling Salesman Problem (TSP) is an optimization problem on a directed

More information

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs 15.082J and 6.855J Lagrangian Relaxation 2 Algorithms Application to LPs 1 The Constrained Shortest Path Problem (1,10) 2 (1,1) 4 (2,3) (1,7) 1 (10,3) (1,2) (10,1) (5,7) 3 (12,3) 5 (2,2) 6 Find the shortest

More information

Profit Maximization in Mobile Crowdsourcing: A Truthful Auction Mechanism

Profit Maximization in Mobile Crowdsourcing: A Truthful Auction Mechanism Profit Maximization in Mobile Crowdsourcing: A Truthful Auction Mechanism Hamed Shah-Mansouri and Vincent W.S. Wong Department of Electrical and Computer Engineering The University of British Columbia,

More information

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs Introduction to Mathematical Programming IE496 Final Review Dr. Ted Ralphs IE496 Final Review 1 Course Wrap-up: Chapter 2 In the introduction, we discussed the general framework of mathematical modeling

More information

Lagrangian Relaxation: An overview

Lagrangian Relaxation: An overview Discrete Math for Bioinformatics WS 11/12:, by A. Bockmayr/K. Reinert, 22. Januar 2013, 13:27 4001 Lagrangian Relaxation: An overview Sources for this lecture: D. Bertsimas and J. Tsitsiklis: Introduction

More information

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem Presented by: Ted Ralphs Joint work with: Leo Kopman Les Trotter Bill Pulleyblank 1 Outline of Talk Introduction Description

More information

Combinatorial Optimization

Combinatorial Optimization Combinatorial Optimization Frank de Zeeuw EPFL 2012 Today Introduction Graph problems - What combinatorial things will we be optimizing? Algorithms - What kind of solution are we looking for? Linear Programming

More information

The MIP-Solving-Framework SCIP

The MIP-Solving-Framework SCIP The MIP-Solving-Framework SCIP Timo Berthold Zuse Institut Berlin DFG Research Center MATHEON Mathematics for key technologies Berlin, 23.05.2007 What Is A MIP? Definition MIP The optimization problem

More information

A 2-APPROXIMATION ALGORITHM FOR THE MINIMUM KNAPSACK PROBLEM WITH A FORCING GRAPH. Yotaro Takazawa Shinji Mizuno Tokyo Institute of Technology

A 2-APPROXIMATION ALGORITHM FOR THE MINIMUM KNAPSACK PROBLEM WITH A FORCING GRAPH. Yotaro Takazawa Shinji Mizuno Tokyo Institute of Technology Journal of the Operations Research Society of Japan Vol. 60, No. 1, January 2017, pp. 15 23 c The Operations Research Society of Japan A 2-APPROXIMATION ALGORITHM FOR THE MINIMUM KNAPSACK PROBLEM WITH

More information

Cross-Monotonic Multicast

Cross-Monotonic Multicast Cross-Monotonic Multicast Zongpeng Li Department of Computer Science University of Calgary April 17, 2008 1 Multicast Multicast models one-to-many data dissemination in a computer network Example: live

More information

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Mathematical programming (optimization) problem: min f (x) s.t. x X R n set of feasible solutions with linear objective function

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 36 CS 473: Algorithms, Spring 2018 LP Duality Lecture 20 April 3, 2018 Some of the

More information

Column Generation Based Primal Heuristics

Column Generation Based Primal Heuristics Column Generation Based Primal Heuristics C. Joncour, S. Michel, R. Sadykov, D. Sverdlov, F. Vanderbeck University Bordeaux 1 & INRIA team RealOpt Outline 1 Context Generic Primal Heuristics The Branch-and-Price

More information

Lagrangean relaxation - exercises

Lagrangean relaxation - exercises Lagrangean relaxation - exercises Giovanni Righini Set covering We start from the following Set Covering Problem instance: min z = x + 2x 2 + x + 2x 4 + x 5 x + x 2 + x 4 x 2 + x x 2 + x 4 + x 5 x + x

More information

ACO Comprehensive Exam October 12 and 13, Computability, Complexity and Algorithms

ACO Comprehensive Exam October 12 and 13, Computability, Complexity and Algorithms 1. Computability, Complexity and Algorithms Given a simple directed graph G = (V, E), a cycle cover is a set of vertex-disjoint directed cycles that cover all vertices of the graph. 1. Show that there

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

Parallel Branch & Bound

Parallel Branch & Bound Parallel Branch & Bound Bernard Gendron Université de Montréal gendron@iro.umontreal.ca Outline Mixed integer programming (MIP) and branch & bound (B&B) Linear programming (LP) based B&B Relaxation and

More information

Noam Nisan. Abstract. When an auction of multiple items is performed, it is often desirable to allow bids on combinations

Noam Nisan. Abstract. When an auction of multiple items is performed, it is often desirable to allow bids on combinations Bidding and Allocation in Combinatorial Auctions Noam Nisan April 17, 2000 Abstract When an auction of multiple items is performed, it is often desirable to allow bids on combinations of items, as opposed

More information

February 19, Integer programming. Outline. Problem formulation. Branch-andbound

February 19, Integer programming. Outline. Problem formulation. Branch-andbound Olga Galinina olga.galinina@tut.fi ELT-53656 Network Analysis and Dimensioning II Department of Electronics and Communications Engineering Tampere University of Technology, Tampere, Finland February 19,

More information

A Faster Core Constraint Generation Algorithm for Combinatorial Auctions

A Faster Core Constraint Generation Algorithm for Combinatorial Auctions A Faster Core Constraint Generation Algorithm for Combinatorial Auctions Benedikt Bünz Department of Computer Science Stanford University buenz@cs.stanford.edu Sven Seuken Department of Informatics University

More information

Representations and Parameterizations of Combinatorial Auctions

Representations and Parameterizations of Combinatorial Auctions Representations and Parameterizations of Combinatorial Auctions by David Ryan Loker A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of

More information

DM515 Spring 2011 Weekly Note 7

DM515 Spring 2011 Weekly Note 7 Institut for Matematik og Datalogi Syddansk Universitet May 18, 2011 JBJ DM515 Spring 2011 Weekly Note 7 Stuff covered in Week 20: MG sections 8.2-8,3 Overview of the course Hints for the exam Note that

More information

Project: A survey and Critique on Algorithmic Mechanism Design

Project: A survey and Critique on Algorithmic Mechanism Design Project: A survey and Critique on Algorithmic Mechanism Design 1 Motivation One can think of many systems where agents act according to their self interest. Therefore, when we are in the process of designing

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 22.1 Introduction We spent the last two lectures proving that for certain problems, we can

More information

A Non-exact Approach and Experiment Studies on the Combinatorial Auction Problem

A Non-exact Approach and Experiment Studies on the Combinatorial Auction Problem A Non-exact Approach and Experiment Studies on the Combinatorial Auction Problem Y. Guo 1, A. Lim 2, B. Rodrigues 3 and Y. Zhu 2 1 Department of Computer Science, National University of Singapore 3 Science

More information

Math Models of OR: The Simplex Algorithm: Practical Considerations

Math Models of OR: The Simplex Algorithm: Practical Considerations Math Models of OR: The Simplex Algorithm: Practical Considerations John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA September 2018 Mitchell Simplex Algorithm: Practical Considerations

More information

Monotone Branch-and-Bound Search for Restricted Combinatorial Auctions

Monotone Branch-and-Bound Search for Restricted Combinatorial Auctions Monotone Branch-and-Bound Search for Restricted Combinatorial Auctions The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation

More information

6 Randomized rounding of semidefinite programs

6 Randomized rounding of semidefinite programs 6 Randomized rounding of semidefinite programs We now turn to a new tool which gives substantially improved performance guarantees for some problems We now show how nonlinear programming relaxations can

More information

Comparing Winner Determination Algorithms for Mixed Multi-Unit Combinatorial Auctions

Comparing Winner Determination Algorithms for Mixed Multi-Unit Combinatorial Auctions Comparing Winner Determination Algorithms for Mixed Multi-Unit Combinatorial Auctions MSc Thesis Afstudeerscriptie) written by Brammert Ottens born 29-08-1982 in Amsterdam) under the supervision of dr.

More information

Some Tractable Combinatorial Auctions

Some Tractable Combinatorial Auctions From: AAAI-00 Proceedings. Copyright 2000, AAAI (www.aaai.org). All rights reserved. Some Tractable Combinatorial Auctions Moshe Tennenholtz Faculty of Industrial Engineering and Management Technion, Israel

More information

Algorithms for Integer Programming

Algorithms for Integer Programming Algorithms for Integer Programming Laura Galli November 9, 2016 Unlike linear programming problems, integer programming problems are very difficult to solve. In fact, no efficient general algorithm is

More information

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 Part A: Answer any four of the five problems. (15 points each) 1. Transportation problem 2. Integer LP Model Formulation

More information

Two-stage column generation

Two-stage column generation Two-stage column generation A novel framework Ilaria Vacca and Matteo Salani Transport and Mobility Laboratory EPFL 6th Joint Operations Research Days September 12, 2008 Two stage column generation p.1/15

More information

3 No-Wait Job Shops with Variable Processing Times

3 No-Wait Job Shops with Variable Processing Times 3 No-Wait Job Shops with Variable Processing Times In this chapter we assume that, on top of the classical no-wait job shop setting, we are given a set of processing times for each operation. We may select

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Frédéric Giroire FG Simplex 1/11 Motivation Goal: Find good solutions for difficult problems (NP-hard). Be able to quantify the goodness of the given solution. Presentation of

More information

1. Lecture notes on bipartite matching February 4th,

1. Lecture notes on bipartite matching February 4th, 1. Lecture notes on bipartite matching February 4th, 2015 6 1.1.1 Hall s Theorem Hall s theorem gives a necessary and sufficient condition for a bipartite graph to have a matching which saturates (or matches)

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Group Members: 1. Geng Xue (A0095628R) 2. Cai Jingli (A0095623B) 3. Xing Zhe (A0095644W) 4. Zhu Xiaolu (A0109657W) 5. Wang Zixiao (A0095670X) 6. Jiao Qing (A0095637R) 7. Zhang

More information

Resource Allocation (p. 254)

Resource Allocation (p. 254) Linear Optimization 4.2 120 Resource Allocation (p. 254) Determine the linear program corresponding to the following problem. A farmer has set aside 18 acres of land to be used entirely for plots of grapes,

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 7 Discrete optimization models and applications; complexity

MVE165/MMG631 Linear and integer optimization with applications Lecture 7 Discrete optimization models and applications; complexity MVE165/MMG631 Linear and integer optimization with applications Lecture 7 Discrete optimization models and applications; complexity Ann-Brith Strömberg 2019 04 09 Lecture 7 Linear and integer optimization

More information

A Row-and-Column Generation Method to a Batch Machine Scheduling Problem

A Row-and-Column Generation Method to a Batch Machine Scheduling Problem The Ninth International Symposium on Operations Research and Its Applications (ISORA 10) Chengdu-Jiuzhaigou, China, August 19 23, 2010 Copyright 2010 ORSC & APORC, pp. 301 308 A Row-and-Column Generation

More information

Femto-Matching: Efficient Traffic Offloading in Heterogeneous Cellular Networks

Femto-Matching: Efficient Traffic Offloading in Heterogeneous Cellular Networks Femto-Matching: Efficient Traffic Offloading in Heterogeneous Cellular Networks Wei Wang, Xiaobing Wu, Lei Xie and Sanglu Lu Nanjing University April 28, 2015 1/1 Heterogeneous Cellular Networks femto-cell

More information

Minimum Weight Constrained Forest Problems. Problem Definition

Minimum Weight Constrained Forest Problems. Problem Definition Slide 1 s Xiaoyun Ji, John E. Mitchell Department of Mathematical Sciences Rensselaer Polytechnic Institute Troy, NY, USA jix@rpi.edu, mitchj@rpi.edu 2005 Optimization Days Montreal, Canada May 09, 2005

More information

Algorithms for Decision Support. Integer linear programming models

Algorithms for Decision Support. Integer linear programming models Algorithms for Decision Support Integer linear programming models 1 People with reduced mobility (PRM) require assistance when travelling through the airport http://www.schiphol.nl/travellers/atschiphol/informationforpassengerswithreducedmobility.htm

More information

Week 5. Convex Optimization

Week 5. Convex Optimization Week 5. Convex Optimization Lecturer: Prof. Santosh Vempala Scribe: Xin Wang, Zihao Li Feb. 9 and, 206 Week 5. Convex Optimization. The convex optimization formulation A general optimization problem is

More information

Viral Marketing and Outbreak Detection. Fang Jin Yao Zhang

Viral Marketing and Outbreak Detection. Fang Jin Yao Zhang Viral Marketing and Outbreak Detection Fang Jin Yao Zhang Paper 1: Maximizing the Spread of Influence through a Social Network Authors: David Kempe, Jon Kleinberg, Éva Tardos KDD 2003 Outline Problem Statement

More information

CMPSCI611: The Simplex Algorithm Lecture 24

CMPSCI611: The Simplex Algorithm Lecture 24 CMPSCI611: The Simplex Algorithm Lecture 24 Let s first review the general situation for linear programming problems. Our problem in standard form is to choose a vector x R n, such that x 0 and Ax = b,

More information

Understanding the Internet Graph. Christos H. Papadimitriou

Understanding the Internet Graph. Christos H. Papadimitriou Understanding the Internet Graph Christos H. Papadimitriou www.cs.berkeley.edu/~christos Goals To understand the Internet topology using tools from graph and game theory To contribute to the rigorous foundations

More information

OPERATIONS RESEARCH. Linear Programming Problem

OPERATIONS RESEARCH. Linear Programming Problem OPERATIONS RESEARCH Chapter 1 Linear Programming Problem Prof. Bibhas C. Giri Department of Mathematics Jadavpur University Kolkata, India Email: bcgiri.jumath@gmail.com 1.0 Introduction Linear programming

More information

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 2 Review Dr. Ted Ralphs IE316 Quiz 2 Review 1 Reading for The Quiz Material covered in detail in lecture Bertsimas 4.1-4.5, 4.8, 5.1-5.5, 6.1-6.3 Material

More information

Integer Programming. Xi Chen. Department of Management Science and Engineering International Business School Beijing Foreign Studies University

Integer Programming. Xi Chen. Department of Management Science and Engineering International Business School Beijing Foreign Studies University Integer Programming Xi Chen Department of Management Science and Engineering International Business School Beijing Foreign Studies University Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 1 / 42

More information

Tractable combinatorial auctions and b-matching

Tractable combinatorial auctions and b-matching Artificial Intelligence 140 (2002) 231 243 www.elsevier.com/locate/artint Research Note Tractable combinatorial auctions and b-matching Moshe Tennenholtz 1 Faculty of Industrial Engineering and Management,

More information

A List Heuristic for Vertex Cover

A List Heuristic for Vertex Cover A List Heuristic for Vertex Cover Happy Birthday Vasek! David Avis McGill University Tomokazu Imamura Kyoto University Operations Research Letters (to appear) Online: http://cgm.cs.mcgill.ca/ avis revised:

More information

Improved Gomory Cuts for Primal Cutting Plane Algorithms

Improved Gomory Cuts for Primal Cutting Plane Algorithms Improved Gomory Cuts for Primal Cutting Plane Algorithms S. Dey J-P. Richard Industrial Engineering Purdue University INFORMS, 2005 Outline 1 Motivation The Basic Idea Set up the Lifting Problem How to

More information

12.1 Formulation of General Perfect Matching

12.1 Formulation of General Perfect Matching CSC5160: Combinatorial Optimization and Approximation Algorithms Topic: Perfect Matching Polytope Date: 22/02/2008 Lecturer: Lap Chi Lau Scribe: Yuk Hei Chan, Ling Ding and Xiaobing Wu In this lecture,

More information

Integer Programming: Algorithms - 2

Integer Programming: Algorithms - 2 Week 8 Integer Programming: Algorithms - 2 OPR 992 Applied Mathematical Programming OPR 992 - Applied Mathematical Programming - p. 1/13 Introduction Valid Inequalities Chvatal-Gomory Procedure Gomory

More information

Integer Programming Theory

Integer Programming Theory Integer Programming Theory Laura Galli October 24, 2016 In the following we assume all functions are linear, hence we often drop the term linear. In discrete optimization, we seek to find a solution x

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Ellipsoid Methods Barnabás Póczos & Ryan Tibshirani Outline Linear programs Simplex algorithm Running time: Polynomial or Exponential? Cutting planes & Ellipsoid methods for

More information

A Survey of Recent Results on Real-Time Wireless Networking

A Survey of Recent Results on Real-Time Wireless Networking A Survey of Recent Results on Real-Time Wireless Networking I-Hong Hou CSL and Department of Computer Science University of Illinois Urbana, IL 61801, USA ihou2@illinois.edu P. R. Kumar CSL and Department

More information

Construction of Minimum-Weight Spanners Mikkel Sigurd Martin Zachariasen

Construction of Minimum-Weight Spanners Mikkel Sigurd Martin Zachariasen Construction of Minimum-Weight Spanners Mikkel Sigurd Martin Zachariasen University of Copenhagen Outline Motivation and Background Minimum-Weight Spanner Problem Greedy Spanner Algorithm Exact Algorithm:

More information

Secretary Problems and Incentives via Linear Programming

Secretary Problems and Incentives via Linear Programming Secretary Problems and Incentives via Linear Programming Niv Buchbinder Microsoft Research, New England and Kamal Jain Microsoft Research, Redmond and Mohit Singh Microsoft Research, New England In the

More information

Notes for Lecture 24

Notes for Lecture 24 U.C. Berkeley CS170: Intro to CS Theory Handout N24 Professor Luca Trevisan December 4, 2001 Notes for Lecture 24 1 Some NP-complete Numerical Problems 1.1 Subset Sum The Subset Sum problem is defined

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I Instructor: Shaddin Dughmi Announcements Posted solutions to HW1 Today: Combinatorial problems

More information

An Optimal Dynamic Pricing Framework for Autonomous Mobile Ad Hoc Networks

An Optimal Dynamic Pricing Framework for Autonomous Mobile Ad Hoc Networks An Optimal Dynamic Pricing Framework for Autonomous Mobile Ad Hoc Networks Z. James Ji, Wei (Anthony) Yu, and K. J. Ray Liu Electrical and Computer Engineering Department and Institute for Systems Research

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Given an NP-hard problem, what should be done? Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one of three desired features. Solve problem to optimality.

More information

Linear Programming Motivation: The Diet Problem

Linear Programming Motivation: The Diet Problem Agenda We ve done Greedy Method Divide and Conquer Dynamic Programming Network Flows & Applications NP-completeness Now Linear Programming and the Simplex Method Hung Q. Ngo (SUNY at Buffalo) CSE 531 1

More information

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh Lecture 3 Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets Gérard Cornuéjols Tepper School of Business Carnegie Mellon University, Pittsburgh January 2016 Mixed Integer Linear Programming

More information

SUBSTITUTING GOMORY CUTTING PLANE METHOD TOWARDS BALAS ALGORITHM FOR SOLVING BINARY LINEAR PROGRAMMING

SUBSTITUTING GOMORY CUTTING PLANE METHOD TOWARDS BALAS ALGORITHM FOR SOLVING BINARY LINEAR PROGRAMMING ASIAN JOURNAL OF MATHEMATICS AND APPLICATIONS Volume 2014, Article ID ama0156, 11 pages ISSN 2307-7743 http://scienceasia.asia SUBSTITUTING GOMORY CUTTING PLANE METHOD TOWARDS BALAS ALGORITHM FOR SOLVING

More information

Integer Programming as Projection

Integer Programming as Projection Integer Programming as Projection H. P. Williams London School of Economics John Hooker Carnegie Mellon University INFORMS 2015, Philadelphia USA A Different Perspective on IP Projection of an IP onto

More information

NOTATION AND TERMINOLOGY

NOTATION AND TERMINOLOGY 15.053x, Optimization Methods in Business Analytics Fall, 2016 October 4, 2016 A glossary of notation and terms used in 15.053x Weeks 1, 2, 3, 4 and 5. (The most recent week's terms are in blue). NOTATION

More information

Forming Efficient Agent Groups for Completing Complex Tasks

Forming Efficient Agent Groups for Completing Complex Tasks Forming Efficient Agent Groups for Completing Complex Tasks Efrat Manisterski 1, Esther David 2 1 Computer Science Department Bar-Ilan University Ramat-Gan 52900, Israel {maniste,sarit}@cs.biu.ac.il Sarit

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A new 4 credit unit course Part of Theoretical Computer Science courses at the Department of Mathematics There will be 4 hours

More information

CSE 417 Branch & Bound (pt 4) Branch & Bound

CSE 417 Branch & Bound (pt 4) Branch & Bound CSE 417 Branch & Bound (pt 4) Branch & Bound Reminders > HW8 due today > HW9 will be posted tomorrow start early program will be slow, so debugging will be slow... Review of previous lectures > Complexity

More information