Finding All Real Points of a Complex Algebraic Curve

Size: px
Start display at page:

Download "Finding All Real Points of a Complex Algebraic Curve"

Transcription

1 Finding All Real Points of a Complex Algebraic Curve Charles Wampler General Motors R&D Center In collaboration with Ye Lu (MIT), Daniel Bates (IMA), & Andrew Sommese (University of Notre Dame)

2 Outline Real points in a curve Relationship between a complex curve and its real points Morse-like representation for real curves Numerical algorithm Find isolated real points Find boundary points, B, of real curve arcs Find arcs and how they connect to B Find how components meet each other Examples A Griffis-Duffy platform with a curious real motion 2

3 Real Solutions & Complex Dimension At complex dimension 0, a point is either real or not Just check the imaginary part A complex curve may contain Real arcs y Isolated real points Example: [x(x-1)(x-2)] 2 +[y(y-1)y-2)] 2 =0 x 9 isolated points in one complex curve Example: an isolated and a 1-dim real pieces in the same complex curve y 2 -x 2 (x-1)=0 Real dimension = complex dimension 3

4 Conjugation Let κ : C C be the conjugation operation x is real iff κ(x)=x Complex conjugation conj(a+bi)=a-bi Real part of V(xy-1) is a unit hyperbola Other conjugation operations Hermitian transpose of a square matrix, A* κ(x,y)=(conj(y),conj(x)) real part of V(xy-1) consists of pairs of complex conjugate points on the unit circle in C 1 Algorithms require only minor adjustments for different conjugation operators i.e., sweep with a real hyperplane y x y C 1 x 4

5 Conjugate components Let f(x) be polynomial system with real coefficients If f(z)=0, then f(κ(z))=0 Suppose f -1 (0) has several 1-dimensional irreducible components The components must either: Be self-conjugate, κ(z)=z, or Appear in conjugate pairs, κ(z)=z? Z 5

6 Real points of conjugate pairs If κ(z)=z? Z, the real points of Z and Z must be their intersection Z Z These points must be isolated We can numerically intersect any two algebraic sets Use a diagonal homotopy This is all we need to handle conjugate pairs. Self-conjugate components are another matter 6

7 Local smoothness Let Z be Quasiprojective complex algebraic set Reduced Dimension 1 Let sing(z) be its singular points Let reg(z)=z\sing(z) Suppose z reg(z) is real, Then there is an open complex neighborhood of z such that the real points of Z in the neighborhood form a smooth connected curve. Upshot: real points = real smooth arcs + R N (sing(z)) 7

8 Sweeping out the curve Pick a general real projection π V(π(x)-t) as t varies along R is a sweep hyperplane For general t, V(π(x)-t) Z consists of isolated regular points Witness set of size d=deg Z On an open real interval of t, we can numerically sweep out arcs Sweep fails where: Tangent to curve lies inside the sweep plane Jacobian matrix at point on curve is corank = 2 8

9 Morse-like representation Let B* be the real points where the sweep will fail Note: sing(z) B* Let B = π Ζ 1 (π(b*)) R N Morse-like representation of Z consists of The generic real linear projection π The boundary points B={B 1,,B n }, The edges E={e 1,,e k }, where each edge is {x,l,r}: x is a point on an arc of Z R N (l,r) are pointers to B: B l is left endpoint of the arc or l=-8 B r is right endpoint of the arc or r=+8 9

10 Algorithm for self-conjugate curves 1. Define π 2. Find B* 3. Slice between B* 4. Track to find endpoints and extend B* to B Key: = B* = edge point 10

11 Full algorithm in outline For polynomial system f(x) 1. Find the 1-dimensional components Numerical irreducible decomposition Deflate any nonreduced components 2. Test to find each component s conjugate 3. Intersect conjugate pairs Use diagonal intersection Result is isolated real points 4. Compute the Morse-like representation for the real part of each self-conjugate component Result is boundary points B and edges E Some boundary points B* may be isolated 5. (Optional) Find where components not related by conjugation meet Let s look at some steps in more detail 11

12 Determining conjugate pairs Numerical irreducible decomposition gives us witness sets for the components Let Z,Z be components Move the slicing plane (for all components) to the same generic real plane Let W Z, W Z be the witness sets for Z,Z Considering all 1-dim components of f -1 (0), witness points must appear in conjugate pairs We have κ(z)=z iff κ(w Z )=W Z With probability 1 This identifies self-conjugacy too 12

13 Determining B* Let s consider a reduced component, Z Nonreduced introduces technicalities Easy and not so interesting Let a be the sweep direction: π(x)=a T x Find B, a basis for the sweep tangents [a B] is full rank, B T a=0 Let J(x) be the Jacobian matrix of f(x) Define h(x,y)=j(x)b y y parameterizes the tangent space of the sweep Define π x and π y, natural projections B* = π x ((Z P N-2 ) V(h)) B* are isolated ((Z P N-2 ) V(h)) can be any dimension 0,,N-2 Find by a witness cascade 13

14 Extra points in B* Suppose f(x):c N C m has m=n-1 equations For a 1-dim l component Z square up f(x) as g(x)=qf(x), Q is (N-1) m This can introduce an extraneous component, Z Z,Z V(g) We may get extra points Z Z in B* Not a problem, just makes extra edges Deflation of nonreduced components can similarly add extra points to B* 14

15 Examples Three easy One substantial A foldable Griffis-Duffy platform 15

16 Example 1 Suppose f(x)=x 2 +y 2 V(f) is two lines (x,y) = (u,ui) and (x,y)=(u,-ui), u C These are a conjugate pair The lines intersect in the real point (0,0) 16

17 Example 2 f ( x, y) x( y 1) ( y 1) = 2 (0,1) is an embedded point in V(y-1) 17

18 Example 3 f ( x, y) 2 2 = y x ( x 1)( x 2) A single irreducible self-conjugate complex curve Double point in B* 18

19 Example 4: Foldable Griffis-Duffy Griffis-Duffy platform with Equal triangles Joints at midpoints of sides Leg lengths all equal to altitude of the triangles Deg 28 irreducible motion in Study Coords (legs not equal) What about this one? 19

20 Foldable Platform: Step 1 Numerical Irreducible Decomposition gives 1 double quadric surface Nonphysical, throw away 12 nonphysical lines (throw these away) 3 double lines (deflate these) 3 quadric curves Find real points 4 quartic curves Remark: 2x3+3x2+4x4=28 20

21 Foldable platform (cont) All 10 components are self-conjugate Each of the 3 lines are completely determined by their witness point and the tangent at it. Do nothing more to these Run the algorithm on the other 7 pieces 3 real points show up in the B* set for several components Each quadric passes through 2 of these Three quartics have: no real B* no real points on a random real slice hence no real points. The other quartic has a double point in its B* set 21

22 The special B* points An example of how a numerical result can lead one to see an exact result (The numerics were done to 12 digits. Only 4 are shown.) 22

23 A projection of the real curves Curves live in P 7. Project onto a C 7 patch, then project down to C 2. Key: + = B* = B\B* = edge point 23

24 Foldable Griffis-Duffy views 24

25 More views 25

26 And finally 26

27 Summary We have described a method to find the real points in a complex curve Uses the following operations of numerical algebraic geometry Irreducible decomposition Deflation Intersection of components Tracking on a component The foldable Griffis-Duffy is fully analyzed 1 quartic, 3 quadrics, 3 double lines All connect via 4 singularities 27

Mechanism and Robot Kinematics, Part II: Numerical Algebraic Geometry

Mechanism and Robot Kinematics, Part II: Numerical Algebraic Geometry Mechanism and Robot Kinematics, Part II: Numerical Algebraic Geometry Charles Wampler General Motors R&D Center Including joint work with Andrew Sommese, University of Notre Dame Jan Verschelde, Univ.

More information

Mechanism and Robot Kinematics, Part I: Algebraic Foundations

Mechanism and Robot Kinematics, Part I: Algebraic Foundations Mechanism and Robot Kinematics, Part I: Algebraic Foundations Charles Wampler General Motors R&D Center In collaboration with Andrew Sommese University of Notre Dame Overview Why kinematics is (mostly)

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

Cell decomposition of almost smooth real algebraic surfaces

Cell decomposition of almost smooth real algebraic surfaces Cell decomposition of almost smooth real algebraic surfaces Gian Mario Besana Sandra Di Rocco Jonathan D. Hauenstein Andrew J. Sommese Charles W. Wampler April 16, 2012 Abstract Let Z be a two dimensional

More information

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane?

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane? Math 4 Practice Problems for Midterm. A unit vector that is perpendicular to both V =, 3, and W = 4,, is (a) V W (b) V W (c) 5 6 V W (d) 3 6 V W (e) 7 6 V W. In three dimensions, the graph of the equation

More information

Chapter 3. Quadric hypersurfaces. 3.1 Quadric hypersurfaces Denition.

Chapter 3. Quadric hypersurfaces. 3.1 Quadric hypersurfaces Denition. Chapter 3 Quadric hypersurfaces 3.1 Quadric hypersurfaces. 3.1.1 Denition. Denition 1. In an n-dimensional ane space A; given an ane frame fo;! e i g: A quadric hypersurface in A is a set S consisting

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 More on Single View Geometry Lecture 11 2 In Chapter 5 we introduced projection matrix (which

More information

Conic Sections. College Algebra

Conic Sections. College Algebra Conic Sections College Algebra Conic Sections A conic section, or conic, is a shape resulting from intersecting a right circular cone with a plane. The angle at which the plane intersects the cone determines

More information

Gift Wrapping for Pretropisms

Gift Wrapping for Pretropisms Gift Wrapping for Pretropisms Jan Verschelde University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/ jan jan@math.uic.edu Graduate Computational

More information

The Convex Hull of a Space Curve. Bernd Sturmfels, UC Berkeley (two papers with Kristian Ranestad)

The Convex Hull of a Space Curve. Bernd Sturmfels, UC Berkeley (two papers with Kristian Ranestad) The Convex Hull of a Space Curve Bernd Sturmfels, UC Berkeley (two papers with Kristian Ranestad) Convex Hull of a Trigonometric Curve { (cos(θ), sin(2θ), cos(3θ) ) R 3 : θ [0, 2π] } = { (x, y, z) R 3

More information

= f (a, b) + (hf x + kf y ) (a,b) +

= f (a, b) + (hf x + kf y ) (a,b) + Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

Each point P in the xy-plane corresponds to an ordered pair (x, y) of real numbers called the coordinates of P.

Each point P in the xy-plane corresponds to an ordered pair (x, y) of real numbers called the coordinates of P. Lecture 7, Part I: Section 1.1 Rectangular Coordinates Rectangular or Cartesian coordinate system Pythagorean theorem Distance formula Midpoint formula Lecture 7, Part II: Section 1.2 Graph of Equations

More information

Section 4.2 selected answers Math 131 Multivariate Calculus D Joyce, Spring 2014

Section 4.2 selected answers Math 131 Multivariate Calculus D Joyce, Spring 2014 4. Determine the nature of the critical points of Section 4. selected answers Math 11 Multivariate Calculus D Joyce, Spring 014 Exercises from section 4.: 6, 1 16.. Determine the nature of the critical

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) CS480: Computer Graphics Curves and Surfaces Sung-Eui Yoon ( 윤성의 ) Course URL: http://jupiter.kaist.ac.kr/~sungeui/cg Today s Topics Surface representations Smooth curves Subdivision 2 Smooth Curves and

More information

Describing algebraic varieties to a computer

Describing algebraic varieties to a computer Describing algebraic varieties to a computer Jose Israel Rodriguez University of Chicago String Pheno 2017 July 6, 2017 Outline Degree of a curve Component membership test Monodromy and trace test Witness

More information

Dubna 2018: lines on cubic surfaces

Dubna 2018: lines on cubic surfaces Dubna 2018: lines on cubic surfaces Ivan Cheltsov 20th July 2018 Lecture 1: projective plane Complex plane Definition A line in C 2 is a subset that is given by ax + by + c = 0 for some complex numbers

More information

The Convex Hull of a Space Curve

The Convex Hull of a Space Curve The Convex Hull of a Space Curve Bernd Sturmfels, UC Berkeley (joint work with Kristian Ranestad) The Mathematics of Klee & Grünbaum: 100 Years in Seattle Friday, July 30, 2010 Convex Hull of a Trigonometric

More information

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 covers essentially the same material as MAT201, but is more in depth and theoretical. Exam problems are often more sophisticated in scope and difficulty

More information

The end of affine cameras

The end of affine cameras The end of affine cameras Affine SFM revisited Epipolar geometry Two-view structure from motion Multi-view structure from motion Planches : http://www.di.ens.fr/~ponce/geomvis/lect3.pptx http://www.di.ens.fr/~ponce/geomvis/lect3.pdf

More information

Assignment 4: Mesh Parametrization

Assignment 4: Mesh Parametrization CSCI-GA.3033-018 - Geometric Modeling Assignment 4: Mesh Parametrization In this exercise you will Familiarize yourself with vector field design on surfaces. Create scalar fields whose gradients align

More information

Math 814 HW 2. September 29, p. 43: 1,4,6,13,15, p. 54 1, 3 (cos z only). u(x, y) = x 3 3xy 2, u(x, y) = x/(x 2 + y 2 ),

Math 814 HW 2. September 29, p. 43: 1,4,6,13,15, p. 54 1, 3 (cos z only). u(x, y) = x 3 3xy 2, u(x, y) = x/(x 2 + y 2 ), Math 814 HW 2 September 29, 2007 p. 43: 1,4,6,13,15, p. 54 1, 3 (cos z only). u(x, y) = x 3 3xy 2, u(x, y) = x/(x 2 + y 2 ), p.43, Exercise 1. Show that the function f(z) = z 2 = x 2 + y 2 has a derivative

More information

Hw 4 Due Feb 22. D(fg) x y z (

Hw 4 Due Feb 22. D(fg) x y z ( Hw 4 Due Feb 22 2.2 Exercise 7,8,10,12,15,18,28,35,36,46 2.3 Exercise 3,11,39,40,47(b) 2.4 Exercise 6,7 Use both the direct method and product rule to calculate where f(x, y, z) = 3x, g(x, y, z) = ( 1

More information

21-256: Lagrange multipliers

21-256: Lagrange multipliers 21-256: Lagrange multipliers Clive Newstead, Thursday 12th June 2014 Lagrange multipliers give us a means of optimizing multivariate functions subject to a number of constraints on their variables. Problems

More information

Curve and Surface Basics

Curve and Surface Basics Curve and Surface Basics Implicit and parametric forms Power basis form Bezier curves Rational Bezier Curves Tensor Product Surfaces ME525x NURBS Curve and Surface Modeling Page 1 Implicit and Parametric

More information

Algebraic Geometry of Segmentation and Tracking

Algebraic Geometry of Segmentation and Tracking Ma191b Winter 2017 Geometry of Neuroscience Geometry of lines in 3-space and Segmentation and Tracking This lecture is based on the papers: Reference: Marco Pellegrini, Ray shooting and lines in space.

More information

KEMATH1 Calculus for Chemistry and Biochemistry Students. Francis Joseph H. Campeña, De La Salle University Manila

KEMATH1 Calculus for Chemistry and Biochemistry Students. Francis Joseph H. Campeña, De La Salle University Manila KEMATH1 Calculus for Chemistry and Biochemistry Students Francis Joseph H Campeña, De La Salle University Manila January 26, 2015 Contents 1 Conic Sections 2 11 A review of the coordinate system 2 12 Conic

More information

Implicit Matrix Representations of Rational Bézier Curves and Surfaces

Implicit Matrix Representations of Rational Bézier Curves and Surfaces Implicit Matrix Representations of Rational Bézier Curves and Surfaces Laurent Busé INRIA Sophia Antipolis, France Laurent.Buse@inria.fr GD/SPM Conference, Denver, USA November 11, 2013 Overall motivation

More information

The point (x, y) lies on the circle of radius r and center (h, k) iff. x h y k r

The point (x, y) lies on the circle of radius r and center (h, k) iff. x h y k r NOTES +: ANALYTIC GEOMETRY NAME LESSON. GRAPHS OF EQUATIONS IN TWO VARIABLES (CIRCLES). Standard form of a Circle The point (x, y) lies on the circle of radius r and center (h, k) iff x h y k r Center:

More information

The x coordinate tells you how far left or right from center the point is. The y coordinate tells you how far up or down from center the point is.

The x coordinate tells you how far left or right from center the point is. The y coordinate tells you how far up or down from center the point is. We will review the Cartesian plane and some familiar formulas. College algebra Graphs 1: The Rectangular Coordinate System, Graphs of Equations, Distance and Midpoint Formulas, Equations of Circles Section

More information

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces Chapter 6 Curves and Surfaces In Chapter 2 a plane is defined as the zero set of a linear function in R 3. It is expected a surface is the zero set of a differentiable function in R n. To motivate, graphs

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Projective 3D Geometry (Back to Chapter 2) Lecture 6 2 Singular Value Decomposition Given a

More information

Unit 12 Topics in Analytic Geometry - Classwork

Unit 12 Topics in Analytic Geometry - Classwork Unit 1 Topics in Analytic Geometry - Classwork Back in Unit 7, we delved into the algebra and geometry of lines. We showed that lines can be written in several forms: a) the general form: Ax + By + C =

More information

CS3621 Midterm Solution (Fall 2005) 150 points

CS3621 Midterm Solution (Fall 2005) 150 points CS362 Midterm Solution Fall 25. Geometric Transformation CS362 Midterm Solution (Fall 25) 5 points (a) [5 points] Find the 2D transformation matrix for the reflection about the y-axis transformation (i.e.,

More information

CONNECTED SPACES AND HOW TO USE THEM

CONNECTED SPACES AND HOW TO USE THEM CONNECTED SPACES AND HOW TO USE THEM 1. How to prove X is connected Checking that a space X is NOT connected is typically easy: you just have to find two disjoint, non-empty subsets A and B in X, such

More information

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 Lecture 25: Bezier Subdivision And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 1. Divide and Conquer If we are going to build useful

More information

Spline Curves. Spline Curves. Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1

Spline Curves. Spline Curves. Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1 Spline Curves Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1 Problem: In the previous chapter, we have seen that interpolating polynomials, especially those of high degree, tend to produce strong

More information

4 = 1 which is an ellipse of major axis 2 and minor axis 2. Try the plane z = y2

4 = 1 which is an ellipse of major axis 2 and minor axis 2. Try the plane z = y2 12.6 Quadrics and Cylinder Surfaces: Example: What is y = x? More correctly what is {(x,y,z) R 3 : y = x}? It s a plane. What about y =? Its a cylinder surface. What about y z = Again a cylinder surface

More information

Multivariable Calculus

Multivariable Calculus Multivariable Calculus Chapter 10 Topics in Analytic Geometry (Optional) 1. Inclination of a line p. 5. Circles p. 4 9. Determining Conic Type p. 13. Angle between lines p. 6. Parabolas p. 5 10. Rotation

More information

Cremona transformations

Cremona transformations Synopsis for Tuesday, November 1 Cremona transformations Let N be a net with base-points. It gives a generically one-to-one map of P 2 into N blowing up the base-points and blowing-down the lines joining

More information

A1:Orthogonal Coordinate Systems

A1:Orthogonal Coordinate Systems A1:Orthogonal Coordinate Systems A1.1 General Change of Variables Suppose that we express x and y as a function of two other variables u and by the equations We say that these equations are defining a

More information

Curves and Surfaces 1

Curves and Surfaces 1 Curves and Surfaces 1 Representation of Curves & Surfaces Polygon Meshes Parametric Cubic Curves Parametric Bi-Cubic Surfaces Quadric Surfaces Specialized Modeling Techniques 2 The Teapot 3 Representing

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 1 3.1 Linearization and Optimization of Functions of Vectors 1 Problem Notation 2 Outline 3.1.1 Linearization 3.1.2 Optimization of Objective Functions 3.1.3 Constrained

More information

Math 414 Lecture 2 Everyone have a laptop?

Math 414 Lecture 2 Everyone have a laptop? Math 44 Lecture 2 Everyone have a laptop? THEOREM. Let v,...,v k be k vectors in an n-dimensional space and A = [v ;...; v k ] v,..., v k independent v,..., v k span the space v,..., v k a basis v,...,

More information

Chapter 11. Parametric Equations And Polar Coordinates

Chapter 11. Parametric Equations And Polar Coordinates Instructor: Prof. Dr. Ayman H. Sakka Chapter 11 Parametric Equations And Polar Coordinates In this chapter we study new ways to define curves in the plane, give geometric definitions of parabolas, ellipses,

More information

Until now we have worked with flat entities such as lines and flat polygons. Fit well with graphics hardware Mathematically simple

Until now we have worked with flat entities such as lines and flat polygons. Fit well with graphics hardware Mathematically simple Curves and surfaces Escaping Flatland Until now we have worked with flat entities such as lines and flat polygons Fit well with graphics hardware Mathematically simple But the world is not composed of

More information

Math 213 Exam 2. Each question is followed by a space to write your answer. Please write your answer neatly in the space provided.

Math 213 Exam 2. Each question is followed by a space to write your answer. Please write your answer neatly in the space provided. Math 213 Exam 2 Name: Section: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used other than a onepage cheat

More information

An introduction to Finite Geometry

An introduction to Finite Geometry An introduction to Finite Geometry Geertrui Van de Voorde Ghent University, Belgium Pre-ICM International Convention on Mathematical Sciences Delhi INCIDENCE STRUCTURES EXAMPLES Designs Graphs Linear spaces

More information

(Refer Slide Time: 00:02:24 min)

(Refer Slide Time: 00:02:24 min) CAD / CAM Prof. Dr. P. V. Madhusudhan Rao Department of Mechanical Engineering Indian Institute of Technology, Delhi Lecture No. # 9 Parametric Surfaces II So these days, we are discussing the subject

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 14

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 14 FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 14 RAVI VAKIL CONTENTS 1. Introduction 1 2. The Proj construction 2 3. Examples 7 4. Maps of graded rings and maps of projective schemes 8 5. Important exercises

More information

Software for numerical algebraic geometry: a paradigm and progress towards its implementation

Software for numerical algebraic geometry: a paradigm and progress towards its implementation Software for numerical algebraic geometry: a paradigm and progress towards its implementation Daniel J. Bates Jonathan D. Hauenstein Andrew J. Sommese Charles W. Wampler II February 16, 2007 Abstract Though

More information

CGT 581 G Geometric Modeling Curves

CGT 581 G Geometric Modeling Curves CGT 581 G Geometric Modeling Curves Bedrich Benes, Ph.D. Purdue University Department of Computer Graphics Technology Curves What is a curve? Mathematical definition 1) The continuous image of an interval

More information

Chapter 8: Applications of Definite Integrals

Chapter 8: Applications of Definite Integrals Name: Date: Period: AP Calc AB Mr. Mellina Chapter 8: Applications of Definite Integrals v v Sections: 8.1 Integral as Net Change 8.2 Areas in the Plane v 8.3 Volumes HW Sets Set A (Section 8.1) Pages

More information

Measuring Lengths The First Fundamental Form

Measuring Lengths The First Fundamental Form Differential Geometry Lia Vas Measuring Lengths The First Fundamental Form Patching up the Coordinate Patches. Recall that a proper coordinate patch of a surface is given by parametric equations x = (x(u,

More information

An experienced mathematics teacher guides students through the use of a number of very important skills in coordinate geometry.

An experienced mathematics teacher guides students through the use of a number of very important skills in coordinate geometry. Mathematics Stills from our new series Coordinates An experienced mathematics teacher guides students through the use of a number of very important skills in coordinate geometry. Distance between Two Points

More information

Week 5: Geometry and Applications

Week 5: Geometry and Applications Week 5: Geometry and Applications Introduction Now that we have some tools from differentiation, we can study geometry, motion, and few other issues associated with functions of several variables. Much

More information

Solution 2. ((3)(1) (2)(1), (4 3), (4)(2) (3)(3)) = (1, 1, 1) D u (f) = (6x + 2yz, 2y + 2xz, 2xy) (0,1,1) = = 4 14

Solution 2. ((3)(1) (2)(1), (4 3), (4)(2) (3)(3)) = (1, 1, 1) D u (f) = (6x + 2yz, 2y + 2xz, 2xy) (0,1,1) = = 4 14 Vector and Multivariable Calculus L Marizza A Bailey Practice Trimester Final Exam Name: Problem 1. To prepare for true/false and multiple choice: Compute the following (a) (4, 3) ( 3, 2) Solution 1. (4)(

More information

LECTURE 13, THURSDAY APRIL 1, 2004

LECTURE 13, THURSDAY APRIL 1, 2004 LECTURE 13, THURSDAY APRIL 1, 2004 FRANZ LEMMERMEYER 1. Parametrizing Curves of Genus 0 As a special case of the theorem that curves of genus 0, in particular those with the maximal number of double points,

More information

MH2800/MAS183 - Linear Algebra and Multivariable Calculus

MH2800/MAS183 - Linear Algebra and Multivariable Calculus MH28/MAS83 - Linear Algebra and Multivariable Calculus SEMESTER II EXAMINATION 2-22 Solved by Tao Biaoshuai Email: taob@e.ntu.edu.sg QESTION Let A 2 2 2. Solve the homogeneous linear system Ax and write

More information

Worksheet 2.7: Critical Points, Local Extrema, and the Second Derivative Test

Worksheet 2.7: Critical Points, Local Extrema, and the Second Derivative Test Boise State Math 275 (Ultman) Worksheet 2.7: Critical Points, Local Extrema, and the Second Derivative Test From the Toolbox (what you need from previous classes) Algebra: Solving systems of two equations

More information

ED degree of smooth projective varieties

ED degree of smooth projective varieties ED degree of smooth projective varieties Paolo Aluffi and Corey Harris December 9, 2017 Florida State University Max Planck Institute for Mathematics in the Sciences, Leipzig Euclidean distance degrees

More information

Reliable Location with Respect to the Projection of a Smooth Space Curve

Reliable Location with Respect to the Projection of a Smooth Space Curve Reliable Location with Respect to the Projection of a Smooth Space Curve Rémi Imbach Marc Pouget INRIA Nancy Grand Est, LORIA laboratory, Nancy, France. firstname.name@inria.fr Guillaume Moroz Abstract

More information

Chapter 15: Functions of Several Variables

Chapter 15: Functions of Several Variables Chapter 15: Functions of Several Variables Section 15.1 Elementary Examples a. Notation: Two Variables b. Example c. Notation: Three Variables d. Functions of Several Variables e. Examples from the Sciences

More information

Honors Precalculus: Solving equations and inequalities graphically and algebraically. Page 1

Honors Precalculus: Solving equations and inequalities graphically and algebraically. Page 1 Solving equations and inequalities graphically and algebraically 1. Plot points on the Cartesian coordinate plane. P.1 2. Represent data graphically using scatter plots, bar graphs, & line graphs. P.1

More information

4.2 and 4.6 filled in notes.notebook. December 08, Integration. Copyright Cengage Learning. All rights reserved.

4.2 and 4.6 filled in notes.notebook. December 08, Integration. Copyright Cengage Learning. All rights reserved. 4 Integration Copyright Cengage Learning. All rights reserved. 1 4.2 Area Copyright Cengage Learning. All rights reserved. 2 Objectives Use sigma notation to write and evaluate a sum. Understand the concept

More information

Some algebraic geometry problems arising in the field of mechanism theory. J-P. Merlet INRIA, BP Sophia Antipolis Cedex France

Some algebraic geometry problems arising in the field of mechanism theory. J-P. Merlet INRIA, BP Sophia Antipolis Cedex France Some algebraic geometry problems arising in the field of mechanism theory J-P. Merlet INRIA, BP 93 06902 Sophia Antipolis Cedex France Abstract Mechanism theory has always been a favorite field of study

More information

A Numerical Method for Computing Border Curves of Bi-parametric Real Polynomial Systems and Applications

A Numerical Method for Computing Border Curves of Bi-parametric Real Polynomial Systems and Applications A Numerical Method for Computing Border Curves of Bi-parametric Real Polynomial Systems and Applications Changbo Chen and Wenyuan Wu Chongqing Key Laboratory of Automated Reasoning and Cognition, Chongqing

More information

Mirror Symmetry Through Reflexive Polytopes

Mirror Symmetry Through Reflexive Polytopes Mirror Symmetry Through Reflexive Polytopes Physical and Mathematical Dualities Ursula Whitcher Harvey Mudd College April 2010 Outline String Theory and Mirror Symmetry Some Complex Geometry Reflexive

More information

Inverse and Implicit functions

Inverse and Implicit functions CHAPTER 3 Inverse and Implicit functions. Inverse Functions and Coordinate Changes Let U R d be a domain. Theorem. (Inverse function theorem). If ϕ : U R d is differentiable at a and Dϕ a is invertible,

More information

9.1 Parametric Curves

9.1 Parametric Curves Math 172 Chapter 9A notes Page 1 of 20 9.1 Parametric Curves So far we have discussed equations in the form. Sometimes and are given as functions of a parameter. Example. Projectile Motion Sketch and axes,

More information

1 Solution of Homework

1 Solution of Homework Math 3181 Dr. Franz Rothe February 2, 2012 All3181\4080_spr12h1.tex Name: Use the back pages for extra space due date: February 10 1 Solution of Homework Figure 1: A neutral construction of the tangents

More information

Jorg s Graphics Lecture Notes Coordinate Spaces 1

Jorg s Graphics Lecture Notes Coordinate Spaces 1 Jorg s Graphics Lecture Notes Coordinate Spaces Coordinate Spaces Computer Graphics: Objects are rendered in the Euclidean Plane. However, the computational space is better viewed as one of Affine Space

More information

9. Three Dimensional Object Representations

9. Three Dimensional Object Representations 9. Three Dimensional Object Representations Methods: Polygon and Quadric surfaces: For simple Euclidean objects Spline surfaces and construction: For curved surfaces Procedural methods: Eg. Fractals, Particle

More information

Using Monodromy to Avoid High Precision

Using Monodromy to Avoid High Precision Using Monodromy to Avoid High Precision Daniel J. Bates and Matthew Niemerg Abstract. When solving polynomial systems with homotopy continuation, the fundamental numerical linear algebra computations become

More information

FORMULAS to UNDERSTAND & MEMORIZE

FORMULAS to UNDERSTAND & MEMORIZE 1 of 6 FORMULAS to UNDERSTAND & MEMORIZE Now we come to the part where you need to just bear down and memorize. To make the process a bit simpler, I am providing all of the key info that they re going

More information

Madison County Schools Suggested Geometry Pacing Guide,

Madison County Schools Suggested Geometry Pacing Guide, Madison County Schools Suggested Geometry Pacing Guide, 2016 2017 Domain Abbreviation Congruence G-CO Similarity, Right Triangles, and Trigonometry G-SRT Modeling with Geometry *G-MG Geometric Measurement

More information

Central issues in modelling

Central issues in modelling Central issues in modelling Construct families of curves, surfaces and volumes that can represent common objects usefully; are easy to interact with; interaction includes: manual modelling; fitting to

More information

The basics of rigidity

The basics of rigidity The basics of rigidity Lectures I and II Session on Granular Matter Institut Henri Poincaré R. Connelly Cornell University Department of Mathematics 1 What determines rigidity? 2 What determines rigidity?

More information

Solving Polynomial Systems with PHCpack and phcpy

Solving Polynomial Systems with PHCpack and phcpy Solving Polynomial Systems with PHCpack and phcpy Jan Verschelde University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/ jan jan@math.uic.edu

More information

Reminder: Lecture 20: The Eight-Point Algorithm. Essential/Fundamental Matrix. E/F Matrix Summary. Computing F. Computing F from Point Matches

Reminder: Lecture 20: The Eight-Point Algorithm. Essential/Fundamental Matrix. E/F Matrix Summary. Computing F. Computing F from Point Matches Reminder: Lecture 20: The Eight-Point Algorithm F = -0.00310695-0.0025646 2.96584-0.028094-0.00771621 56.3813 13.1905-29.2007-9999.79 Readings T&V 7.3 and 7.4 Essential/Fundamental Matrix E/F Matrix Summary

More information

MATH 2400: CALCULUS 3 MAY 9, 2007 FINAL EXAM

MATH 2400: CALCULUS 3 MAY 9, 2007 FINAL EXAM MATH 4: CALCULUS 3 MAY 9, 7 FINAL EXAM I have neither given nor received aid on this exam. Name: 1 E. Kim................ (9am) E. Angel.............(1am) 3 I. Mishev............ (11am) 4 M. Daniel...........

More information

1 (5 max) 2 (10 max) 3 (20 max) 4 (30 max) 5 (10 max) 6 (15 extra max) total (75 max + 15 extra)

1 (5 max) 2 (10 max) 3 (20 max) 4 (30 max) 5 (10 max) 6 (15 extra max) total (75 max + 15 extra) Mierm Exam CS223b Stanford CS223b Computer Vision, Winter 2004 Feb. 18, 2004 Full Name: Email: This exam has 7 pages. Make sure your exam is not missing any sheets, and write your name on every page. The

More information

Curves and Surfaces Computer Graphics I Lecture 9

Curves and Surfaces Computer Graphics I Lecture 9 15-462 Computer Graphics I Lecture 9 Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] February 19, 2002 Frank Pfenning Carnegie

More information

Prime Time (Factors and Multiples)

Prime Time (Factors and Multiples) CONFIDENCE LEVEL: Prime Time Knowledge Map for 6 th Grade Math Prime Time (Factors and Multiples). A factor is a whole numbers that is multiplied by another whole number to get a product. (Ex: x 5 = ;

More information

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial.

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial. 2301-670 Graph theory 1.1 What is a graph? 1 st semester 2550 1 1.1. What is a graph? 1.1.2. Definition. A graph G is a triple (V(G), E(G), ψ G ) consisting of V(G) of vertices, a set E(G), disjoint from

More information

Parametric curves. Brian Curless CSE 457 Spring 2016

Parametric curves. Brian Curless CSE 457 Spring 2016 Parametric curves Brian Curless CSE 457 Spring 2016 1 Reading Required: Angel 10.1-10.3, 10.5.2, 10.6-10.7, 10.9 Optional Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics

More information

Know it. Control points. B Spline surfaces. Implicit surfaces

Know it. Control points. B Spline surfaces. Implicit surfaces Know it 15 B Spline Cur 14 13 12 11 Parametric curves Catmull clark subdivision Parametric surfaces Interpolating curves 10 9 8 7 6 5 4 3 2 Control points B Spline surfaces Implicit surfaces Bezier surfaces

More information

(Creating Arrays & Matrices) Applied Linear Algebra in Geoscience Using MATLAB

(Creating Arrays & Matrices) Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB (Creating Arrays & Matrices) Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional

More information

Lecture 0: Reivew of some basic material

Lecture 0: Reivew of some basic material Lecture 0: Reivew of some basic material September 12, 2018 1 Background material on the homotopy category We begin with the topological category TOP, whose objects are topological spaces and whose morphisms

More information

Parameterization. Michael S. Floater. November 10, 2011

Parameterization. Michael S. Floater. November 10, 2011 Parameterization Michael S. Floater November 10, 2011 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to generate from point

More information

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers 3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers Prof. Tesler Math 20C Fall 2018 Prof. Tesler 3.3 3.4 Optimization Math 20C / Fall 2018 1 / 56 Optimizing y = f (x) In Math 20A, we

More information

Part I. Problems in this section are mostly short answer and multiple choice. Little partial credit will be given. 5 points each.

Part I. Problems in this section are mostly short answer and multiple choice. Little partial credit will be given. 5 points each. Math 106/108 Final Exam Page 1 Part I. Problems in this section are mostly short answer and multiple choice. Little partial credit will be given. 5 points each. 1. Factor completely. Do not solve. a) 2x

More information

10.3 Probability Using Areas

10.3 Probability Using Areas CHAPTER 10. GEOMETRIC PROBABILITY Exercises 10.2.1 Let AB be a line segment of length 10. A point P is chosen at random on AB. What is the probability that P is closer to the midpoint of AB than to either

More information

GEOMETRY OF CURVES CHAPMAN & HALL/CRC. Boca Raton London New York Washington, D.C.

GEOMETRY OF CURVES CHAPMAN & HALL/CRC. Boca Raton London New York Washington, D.C. GEOMETRY OF CURVES JOHN W. RUTTER CHAPMAN & HALL/CRC Boca Raton London New York Washington, D.C. Contents Introduction 0.1 Cartesian coordinates 0.2 Polar coordinates 0.3 The Argand diagram 0.4 Polar equations

More information

Search and Intersection. O Rourke, Chapter 7 de Berg et al., Chapter 11

Search and Intersection. O Rourke, Chapter 7 de Berg et al., Chapter 11 Search and Intersection O Rourke, Chapter 7 de Berg et al., Chapter 11 Announcements Assignment 3 web-page has been updated: Additional extra credit Hints for managing a dynamic half-edge representation

More information

Singularity Loci of Planar Parallel Manipulators with Revolute Joints

Singularity Loci of Planar Parallel Manipulators with Revolute Joints Singularity Loci of Planar Parallel Manipulators with Revolute Joints ILIAN A. BONEV AND CLÉMENT M. GOSSELIN Département de Génie Mécanique Université Laval Québec, Québec, Canada, G1K 7P4 Tel: (418) 656-3474,

More information

ME 115(b): Final Exam, Spring

ME 115(b): Final Exam, Spring ME 115(b): Final Exam, Spring 2011-12 Instructions 1. Limit your total time to 5 hours. That is, it is okay to take a break in the middle of the exam if you need to ask me a question, or go to dinner,

More information

Introduction to Computer Graphics

Introduction to Computer Graphics Introduction to Computer Graphics 2016 Spring National Cheng Kung University Instructors: Min-Chun Hu 胡敏君 Shih-Chin Weng 翁士欽 ( 西基電腦動畫 ) Data Representation Curves and Surfaces Limitations of Polygons Inherently

More information

Digital Geometry Processing Parameterization I

Digital Geometry Processing Parameterization I Problem Definition Given a surface (mesh) S in R 3 and a domain find a bective F: S Typical Domains Cutting to a Disk disk = genus zero + boundary sphere = closed genus zero Creates artificial boundary

More information

Mathematically, the path or the trajectory of a particle moving in space in described by a function of time.

Mathematically, the path or the trajectory of a particle moving in space in described by a function of time. Module 15 : Vector fields, Gradient, Divergence and Curl Lecture 45 : Curves in space [Section 45.1] Objectives In this section you will learn the following : Concept of curve in space. Parametrization

More information