An efficient method for predicting zero-lift or boundary-layer drag including aeroelastic effects for the design environment

Size: px
Start display at page:

Download "An efficient method for predicting zero-lift or boundary-layer drag including aeroelastic effects for the design environment"

Transcription

1 The Aeronautical Journal November 2015 Volume 119 No An efficient method for predicting zero-lift or boundary-layer drag including aeroelastic effects for the design environment J. A. Camberos R. M. Kolonay US Air Force Research Laboratory Dayton, Ohio USA F. E. Eastep University of Dayton Dayton, Ohio USA R. F. Taylor Wright State University Dayton, Ohio USA ABSTRACT One of the aerospace design engineer s goals aims to reduce drag for increased aircraft performance, in terms of range, endurance, or speed in the various flight regimes. To accomplish this, the designer must have rapid and accurate techniques for computing drag. At subsonic Mach numbers drag is primarily a sum of lift-induced drag and zero-lift drag. While lift-induced drag is easily and efficiently determined by a far field method, using the Trefftz plane analysis, the same cannot be said of zero-lift drag. Zero-lift drag (C D,0 ) usually requires consideration of the Navier-Stokes equations, the solution of which is as yet unknown except by using approximate numerical techniques with computational fluid dynamics (CFD). The approximate calculation of zero-lift drag from CFD is normally computed with so-called near-field techniques, which can be inaccurate and too time consuming for consideration in the design environment. This paper presents a technique to calculate zero-lift and boundary-layer drag in the subsonic regime that includes aeroelastic effects and is suitable for the design environment. The technique loosely Paper No Manuscript received 6 June 2014, revised version received 17 December 2014, accepted 10 July This is an adapted version of a paper first presented at The 2014 Royal Aeronautical Society Biennial Applied Aerodynamics Research Conference, Advanced Aero Concepts, Design and Operations.

2 1452 The Aeronautical Journal november 2015 couples a two-dimensional aerofoil boundary-layer model with a 3D aeroelastic solver to compute zero-lift drag. We show results for a rectangular wing (baseline), a swept wing, and a tapered wing. Then compare with a rectangular wing with variable thickness and camber, thinning out from the root to tip (spanwise direction), thus demonstrating the practicality of the technique and its utility for rapid conceptual design. 1.0 INTRODUCTION An aerospace design engineer often seeks to reduce drag in order to increase aircraft performance, such as improved range/endurance or speed in the various flight regimes. To accomplish this, one must have rapid and accurate techniques for computing total drag. For subsonic Mach numbers, drag is primarily the sum of lift-induced drag and zero-lift drag. While lift-induced drag is easily and efficiently calculated by far field methods using the Trefftz plane technique (1) the same cannot be said of zero-lift drag (the drag that exists when the wing is not generating lift). For conceptual design studies, zero-lift drag can be approximated from historical data or from heuristically determined formulas for skin friction, as in a compu ter code like FRICTION (2). However, in the preliminary design environment a more accurate computational method with viscous and aeroelastic effects is needed. Zero-lift drag usually requires consideration of the Navier-Strokes equations, solutions of which are as yet unobtainable in general except by using approximate numerical techniques with computational fluid dynamics (CFD). The approximate calculation of drag from CFD is normally computed by so-called near field techniques (discrete integration of the pressure field over the body surface), but has been shown to be inaccurate and too time consuming for the conceptual or preliminary design environment. This research focuses on a simple technique to calculate zero-lift drag in the subsonic regime that includes aeroelastic effects and is suitable for the design environment. The technique loosely couples a two-dimensional aerofoil boundary-layer model with a 3D aeroelastic solver to obtain zero-lift drag. The technique itself was inspired from a paper by Jepson, et al (3) who investigated automated drag reduction on a wing with multiple trailing-edge flaps. In the present investigation we use a similar technique to computationally determine zero-lift drag, with aeroelastic effects included, on a generic wing flying at design conditions. 2.0 TECHNICAL APPROACH CALCULATION OF WING C D,0 OR BOUNDARY LAYER DRAG ON LIFTING WING Zero-lift drag in the subsonic regime may be calculated in a simplified manner. For a specified configuration and flight conditions, the wing is divided into a number of span-wise strips and the wing is placed at angle-of-attack so that the total wing lift equals zero. The span-wise lift distribution of lift can then be determined by efficient codes such as a vortex lattice approach in the ASTROS software (4). Further, at each wing strip, the sectional drag polar is calculated for a specified sectional profile using the computational code PABLO (5). PABLO allows one to compute the sectional zero-lift drag for both the laminar and turbulent portions of the boundary layer with a prediction of the sectional drag polar. The sectional drag polars are then over-laid on curves representing lift variation at various span locations on a selected number of spanwise strips (see for example Fig. 12 in the discussion below). The intersection of the sectional drag polar with lift distribution for a wing under zero-lift conditions yields the

3 Kolonay et al An efficient method for predicting zero-lift or boundary layer 1453 zero-lift drag for that interval. Finally, the computed sections boundary-layer zero-lift data is summed over all the selected spanwise strips to yield a simple total zero-lift drag coefficient for a selected wing. The same procedure can be used to determine the boundary-layer drag on a lifting, aeroelastic wing. 2.1 Sectional drag polar The simplified technique of calculating zero-lift drag, C D,0, first requires consideration of sectional drag on a selected two-dimensional aerofoil. A MATLAB-based boundary-layer code called PABLO (5) allows one to compute the sectional drag for both the laminar and turbulent portions of the boundary layer. Additionally, the lift versus angle-of-attack can be obtained and the drag polar plots generated for a particular aerofoil profile. For example, the selected aerofoil used for this investigation is the NACA aerofoil shown in Fig. 1. The aerofoil has a 12% chord thickness with a maximum camber of 2% chord located at 40% of the aerofoil chord. PABLO is a pedagogical, low-speed aerofoil analysis program written in MATLAB. It uses a one-way coupled inviscid plus boundary-layer model. The inviscid flow is solved using a panel method (7) with options of three different kinds of singularity distributions. The boundary-layer equations use the inviscid flow velocity-field provided by the panel method, but the effect of the boundary layer on the inviscid flow is not taken into account, as in PANDA (8). The boundary-layer model is described in greater detail by Moran (9). With flow conditions specified by a Mach number of 0 7 (with Prandtl-Glauert compressibility correction) and a Reynolds number of , the drag polar curve shown in Fig. 2 was calculated from the PABLO based code for NACA 2412 aerofoil. calculated from the PABLO based code for NACA 2412 airfoil. Profile, y/c Chord, x/c Figure 1. Aerofoil geometry for NACA C l Figure 2. Sectional drag polar for a NACA 2412 aerofoil at M 0 and M = 0 7 (using P-G compressibility correction).

4 1454 The Aeronautical Journal november 2015 Figure 3. Structural wing model dimensions (blue lines) for rectangular planform with aerodynamic shape shown overlaid in green. 2.2 Zero-lift condition for cruise of flexible wing As mentioned above, consider a simple rectangular flexible wing flying at Mach number 0 7 and dynamic pressure of 5psi. The wing structural model consisted of three spars, five ribs and the NACA 2412 aerofoil with constant skin thickness. The finite element model of this wing is shown in Fig. 3 and represents a wing structure with uniform stiffness in the span direction. The computational code ASTROS (4) produced the span variation of lift shown in Fig. 4 for the cruise conditions at zero-lift, including (static) aeroelastic and inertial effects. To determine the span variation of C l when the total wing lift is zero, the angle-of-attack is varied until the total lift is approximately zero for the wing including aeroelastic and inertial effects. Total lift of zero occurs at an angle-of-attack of about 1 7. for this planform and flight conditions; the span variation of C l is shown in Fig Wing total drag for zero-lift condition To determine wing drag for the zero lift condition the wing is divided into N strips (eight shown for display purposes). At the mid-span location of each strip we overlay the sectional drag polar from Fig. 2 as shown in Fig. 4. The intersection of the C l versus span curve with the sectional drag polar curve determines the sectional drag coefficient associated with each strip. Sectional drag coefficient c d,0 is assumed to be constant over each strip and the strip c d,0 can be obtained by multiplying c d,0 by the strip span length. It is then a simple matter of summing each strip c d,0 to obtain the wing drag coefficient C D,0 for a wing in a zero-lift condition, according to the summation equation (1): C N c ( y) cydy ( ) c ( y ) cy ( ) yi S s D d d i i i... (1) where c d (y i ) is determined from Fig. (4) and y i is the interval length.

5 Kolonay et al An efficient method for predicting zero-lift or boundary layer 1455 Figure 4. Spanwise lift distribution for rectangular, flexible wing at zero-lift condition with wing angle-of-attack of Figure 5. Spanwise twist angle distribution. 2.4 Boundary-layer drag for wing in lifting condition In the previous section, a technique was described to calculate zero-lift drag. This required a determination of the wing angle-of-attack such that the total lift on a flexible wing was zero. The same technique can be used to determine boundary-layer drag on a lifting wing without adjusting the wing angle-of-attack. Here we select an appropriate flight condition and calculate the wing angle-of-attack and the coefficient of lift distribution along with span from an aeroelastic trim analysis within ASTROS. The lift distribution along the span is shown in Fig. 6 for a straight, rectangular wing for selected aerofoil profile (NACA 2412) and flight conditions described previously. The spanwise twist angle has the same shape as shown in Fig. 5, which is the zero lift twist distribution, but a different vertical scale. We next overlay the sectional drag polar over a number of intervals (eight intervals shown for display purposes). The intersection of the drag polar with the C l distribution will allow one to determine the sectional boundary-layer drag coefficient

6 1456 The Aeronautical Journal november 2015 Figure 6. Sectional drag coefficient overlaid across spanwise lift distribution for rectangular, aeroelastic trim condition. M = 0 7, q = 5psi, and aeroelastic trimmed angle-of-attack of 1 37, rigid trimmed angle-of-attack = for that interval. Next the total wing boundary-layer drag can be determined from Equation (1). It was determined that the selected aerofoil profile (NACA 2412) that the boundary-layer drag for a lifting wing was approximately equal to the zero-lift drag case. Hence for this case, computing the viscous drag at the trimmed lift condition or at the zero lift condition yielded the same results. This should not be expected for other aerofoil profiles or when the aerofoil profiles vary along the span. 3.0 PLANFORM VARIATIONS AND RESULTS In addition to the rectangular wing used above to describe the simple procedure for determining C D,0, other planforms were considered. These included a swept wing 30. sweep angle, untapered) as show in Fig. 7. The wing angle-of-attack resulting in zero-lift was found to be and the lift coefficient variation is displayed in Fig. 8. Next, a tapered wing planform (taper ratio of 0 4) with no sweep was considered as shown in Fig. 9. The wing angle-of-attack resulting in zero lift was determined to be and the lift coefficient variation is shown in Fig. 10. The above results were obtained when the aerofoil profile was uniform in the spanwise direction. In general, a wing has aerofoil sections which are similar but the thickness and camber have some variation from root to tip. A study of the effect of aerofoil section on C D,0 was conducted for the rectangular wing. At the wing root the aerofoil was again the NACA 2412 section. The thickness and camber at the tip was reduced in a linear manner to 50% of root values, as shown in Fig. 11. The wing angle-of-attack resulting in zero lift is and the sectional lift coefficient variation is shown in Fig. 12. The sectional drag polars are overlaid at five intervals as shown in Fig. 13. Notice that the sectional drag polar curves change from interval to interval. 4.0 DISCUSSION OF RESULTS Following the computational method described above, the wing zero-lift drag coefficient for an unswept wing with no taper was determined as C D,0 = The wing with the same aerofoil was then swept through an angle of 30 and C D,0 calculated. Next, an unswept wing but with the

7 Kolonay et al An efficient method for predicting zero-lift or boundary layer 1457 Figure 7. Wing planform geometry with 30. sweep, untapered. Figure 8. Spanwise lift distribution for 30 sweep, untapered, at wing angle-of-attack of chord taper ratio of 0 4 and the same aerofoil profile was considered. There was only a slight change in the C D,0 calculated for the swept and tapered wing when compared to the value of C D,0 for the rectangular wing (both were about ). Hence, for the configurations studied, the value of C D,0 is insensitive to sweep angle and taper ratio. For the cases studied, a good approximation for the value of wing C D,0 can be obtained from the sectional drag polar curve at a sectional lift coefficient of zero if the drag polar curves are constant along the span. We next removed this simplifying restriction and consider a wing with decreasing thickness and camber along the span. The value of C D,0 was found to be in this case. In conclusion, the simple computational procedure as described allows for the calculation of zero-lift drag in the subsonic flight regime, including the effects of viscosity and static aeroelasticity. The technique loosely couples a two-dimensional boundary-layer model with a 3D aeroelastic solver to compute zero-lift drag. The technique is accurate and efficient for use in the preliminary design environment, where the engineer seeks to reduce flight vehicle drag. 5.0 FUTURE INVESTIGATIONS Currently, the procedure described in this paper will allow one to determine zero-lift drag in the transonic Mach regime. However, the span-wise lift variation must be calculated from a numerical

8 1458 The Aeronautical Journal november 2015 Figure 9. Tapered wing geometry, with a taper ratio of 0 4 used. Figure 10. Spanwise lift distribution for tapered wing, no sweep, wing angle-of-attack at Figure 11. Variable thickness wing geometry (50% thinned wing from root-to-tip).

9 Kolonay et al An efficient method for predicting zero-lift or boundary layer 1459 Figure 12. Spanwise lift coefficient for 50% thinned wing from root-to-tip, wing angle-of-attack Figure 13. Sectional drag polar overlaid with spanwise lift distribution for 50% thinned wing, root-to-tip. solution of the Euler equations to account for the nonlinear effects that are not present in standard panel codes for the subsonic regime. It also will require that the sectional drag polar be determined numerically or experimentally. An efficient numerical solution of the two-dimensional Navier- Stokes equations could be effective and accurate for capturing the surface shock wave effects for the sectional drag polar. With this modified procedure as described, the zero-lift drag can be determined up to the drag divergence Mach number in the transonic Mach regime. Additionally, the reduction of zero-lift and induced drag can be considered for vehicles flying at off-design Mach numbers. It is also proposed to investigate the settings of external control surfaces to reduce total drag coefficients at those off-design conditions. REFERENCES 1. Kolonay, R. and Eastep, E. Optimal scheduling of control surfaces on flexible wings to reduce induced drag, J Aircr, November-Decemter 2006, 43, (06), pp Mason, W.H. FRICTION: From the Virginia Tech Aerodynamics and Design Software Collection, Website, 2011, f/friction.f. 3. Jepson, J.K. and Gopalarathnam, A. Computational study of automated adaption of a wing with multiple trailing- edge flaps, AIAA Aerospace Sciences Meeting & Exhibition, January 2005.

10 1460 The Aeronautical Journal november Neill, D.J. and Herendeen, D.L. ASTROS User s Manual, Agency: Universal Analytics, WL-TR , Tech rep, Universal Analytics, May Wauquiez, C. and Rizzi, A. PABLO: Potential Flow Around Aerofoils with Boundary Layer Coupled One-Way, Tech rep, The Royal Institute of Technology, 1999, chris/pablo/pablo. html. 6. Abbot, I.H. and Von Doenhoff, A.E. Theory of Wing Sections, Dover Publications, New York, NY, Katz, J. and Plotkin, A. Low-Speed Aerodynamics, Cambridge University Press, Cambridge, UK, Kroo, I. PANDA A Program for Analysis and Design of Aerofoils. Tech rep, Moran, J. An Introduction to Theoretical and Computational Aerodynamics, John Wiley & Sons, Inc, New York, US, 1984.

AERODYNAMIC DESIGN OF FLYING WING WITH EMPHASIS ON HIGH WING LOADING

AERODYNAMIC DESIGN OF FLYING WING WITH EMPHASIS ON HIGH WING LOADING AERODYNAMIC DESIGN OF FLYING WING WITH EMPHASIS ON HIGH WING LOADING M. Figat Warsaw University of Technology Keywords: Aerodynamic design, CFD Abstract This paper presents an aerodynamic design process

More information

Post Stall Behavior of a Lifting Line Algorithm

Post Stall Behavior of a Lifting Line Algorithm Post Stall Behavior of a Lifting Line Algorithm Douglas Hunsaker Brigham Young University Abstract A modified lifting line algorithm is considered as a low-cost approach for calculating lift characteristics

More information

THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS

THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS March 18-20, 2013 THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS Authors: M.R. Chiarelli, M. Ciabattari, M. Cagnoni, G. Lombardi Speaker:

More information

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING Review of the Air Force Academy No.3 (35)/2017 NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING Cvetelina VELKOVA Department of Technical Mechanics, Naval Academy Nikola Vaptsarov,Varna, Bulgaria (cvetelina.velkova1985@gmail.com)

More information

Keywords: CFD, aerofoil, URANS modeling, flapping, reciprocating movement

Keywords: CFD, aerofoil, URANS modeling, flapping, reciprocating movement L.I. Garipova *, A.N. Kusyumov *, G. Barakos ** * Kazan National Research Technical University n.a. A.N.Tupolev, ** School of Engineering - The University of Liverpool Keywords: CFD, aerofoil, URANS modeling,

More information

Optimization of Laminar Wings for Pro-Green Aircrafts

Optimization of Laminar Wings for Pro-Green Aircrafts Optimization of Laminar Wings for Pro-Green Aircrafts André Rafael Ferreira Matos Abstract This work falls within the scope of aerodynamic design of pro-green aircraft, where the use of wings with higher

More information

Subsonic Airfoils. W.H. Mason Configuration Aerodynamics Class

Subsonic Airfoils. W.H. Mason Configuration Aerodynamics Class Subsonic Airfoils W.H. Mason Configuration Aerodynamics Class Most people don t realize that mankind can be divided into two great classes: those who take airfoil selection seriously, and those who don

More information

Aerodynamic Analysis of Forward Swept Wing Using Prandtl-D Wing Concept

Aerodynamic Analysis of Forward Swept Wing Using Prandtl-D Wing Concept Aerodynamic Analysis of Forward Swept Wing Using Prandtl-D Wing Concept Srinath R 1, Sahana D S 2 1 Assistant Professor, Mangalore Institute of Technology and Engineering, Moodabidri-574225, India 2 Assistant

More information

(c)2002 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

(c)2002 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization. VIIA Adaptive Aerodynamic Optimization of Regional Introduction The starting point of any detailed aircraft design is (c)2002 American Institute For example, some variations of the wing planform may become

More information

Estimation of Flow Field & Drag for Aerofoil Wing

Estimation of Flow Field & Drag for Aerofoil Wing Estimation of Flow Field & Drag for Aerofoil Wing Mahantesh. HM 1, Prof. Anand. SN 2 P.G. Student, Dept. of Mechanical Engineering, East Point College of Engineering, Bangalore, Karnataka, India 1 Associate

More information

THE EFFECT OF REPLACING THE JOUKOWSKI MAP WITH THE GENERALIZED KARMAN-TREFFTZ MAP IN THE METHOD OF ZEDAN

THE EFFECT OF REPLACING THE JOUKOWSKI MAP WITH THE GENERALIZED KARMAN-TREFFTZ MAP IN THE METHOD OF ZEDAN GSJ: VOLUME 6, ISSUE 2, FEBRUARY 2018 1 GSJ: Volume 6, Issue 2, February 2018, Online: ISSN 2320-9186 THE EFFECT OF REPLACING THE JOUKOWSKI MAP WITH THE GENERALIZED KARMAN-TREFFTZ MAP IN THE METHOD OF

More information

Aerodynamic Design of a Tailless Aeroplan J. Friedl

Aerodynamic Design of a Tailless Aeroplan J. Friedl Acta Polytechnica Vol. 4 No. 4 5/2 Aerodynamic Design of a Tailless Aeroplan J. Friedl The paper presents an aerodynamic analysis of a one-seat ultralight (UL) tailless aeroplane named L2k, with a very

More information

AIRFOIL SHAPE OPTIMIZATION USING EVOLUTIONARY ALGORITHMS

AIRFOIL SHAPE OPTIMIZATION USING EVOLUTIONARY ALGORITHMS AIRFOIL SHAPE OPTIMIZATION USING EVOLUTIONARY ALGORITHMS Emre Alpman Graduate Research Assistant Aerospace Engineering Department Pennstate University University Park, PA, 6802 Abstract A new methodology

More information

AERODYNAMIC DESIGN FOR WING-BODY BLENDED AND INLET

AERODYNAMIC DESIGN FOR WING-BODY BLENDED AND INLET 25 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES AERODYNAMIC DESIGN FOR WING-BODY BLENDED AND INLET Qingzhen YANG*,Yong ZHENG* & Thomas Streit** *Northwestern Polytechincal University, 772,Xi

More information

Subsonic Airfoils. W.H. Mason Configuration Aerodynamics Class

Subsonic Airfoils. W.H. Mason Configuration Aerodynamics Class Subsonic Airfoils W.H. Mason Configuration Aerodynamics Class Typical Subsonic Methods: Panel Methods For subsonic inviscid flow, the flowfield can be found by solving an integral equation for the potential

More information

SPC 307 Aerodynamics. Lecture 1. February 10, 2018

SPC 307 Aerodynamics. Lecture 1. February 10, 2018 SPC 307 Aerodynamics Lecture 1 February 10, 2018 Sep. 18, 2016 1 Course Materials drahmednagib.com 2 COURSE OUTLINE Introduction to Aerodynamics Review on the Fundamentals of Fluid Mechanics Euler and

More information

LAMDES User s Manual VLMpc

LAMDES User s Manual VLMpc LAMDES User s Manual This is a modified version of John Lamar s design program (Ref. 1). It is based on the vortex lattice program VLMpc, but converted to do design and optimization. Basic capabilities

More information

Lift Superposition and Aerodynamic Twist Optimization for Achieving Desired Lift Distributions

Lift Superposition and Aerodynamic Twist Optimization for Achieving Desired Lift Distributions 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 4-7 January 2010, Orlando, Florida AIAA 2010-1227 Lift Superposition and Aerodynamic Twist Optimization for

More information

COMPARISON OF SHOCK WAVE INTERACTION FOR THE THREE-DIMENSIONAL SUPERSONIC BIPLANE WITH DIFFERENT PLANAR SHAPES

COMPARISON OF SHOCK WAVE INTERACTION FOR THE THREE-DIMENSIONAL SUPERSONIC BIPLANE WITH DIFFERENT PLANAR SHAPES 26 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES COMPARISON OF SHOCK WAVE INTERACTION FOR THE THREE-DIMENSIONAL SUPERSONIC BIPLANE WITH DIFFERENT PLANAR SHAPES M. Yonezawa*, H. Yamashita* *Institute

More information

Aeroelasticity Consideration in Aerodynamic Adaptation of Wing

Aeroelasticity Consideration in Aerodynamic Adaptation of Wing International Journal of Engineering Science Invention (IJESI) ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 www.ijesi.org ǁ PP.32-41 Aeroelasticity Consideration in Aerodynamic Adaptation of Wing

More information

How to Enter and Analyze a Wing

How to Enter and Analyze a Wing How to Enter and Analyze a Wing Entering the Wing The Stallion 3-D built-in geometry creation tool can be used to model wings and bodies of revolution. In this example, a simple rectangular wing is modeled

More information

39th AIAA Aerospace Sciences Meeting and Exhibit January 8 11, 2001/Reno, NV

39th AIAA Aerospace Sciences Meeting and Exhibit January 8 11, 2001/Reno, NV AIAA 1 717 Static Aero-elastic Computation with a Coupled CFD and CSD Method J. Cai, F. Liu Department of Mechanical and Aerospace Engineering University of California, Irvine, CA 92697-3975 H.M. Tsai,

More information

UNSTEADY RANS BASED IMPULSE RESPONSE STUDIES OF AGARD WING FOR AEROELASTIC AND FLUTTER ANALYSIS

UNSTEADY RANS BASED IMPULSE RESPONSE STUDIES OF AGARD WING FOR AEROELASTIC AND FLUTTER ANALYSIS Symposium on Applied Aerodynamics and Design of Aerospace Vehicles (SAROD 2) November 68, 2, Bangalore, India UNSTEADY RANS BASED IMPULSE RESPONSE STUDIES OF AGARD WING FOR AEROELASTIC AND FLUTTER ANALYSIS

More information

The Spalart Allmaras turbulence model

The Spalart Allmaras turbulence model The Spalart Allmaras turbulence model The main equation The Spallart Allmaras turbulence model is a one equation model designed especially for aerospace applications; it solves a modelled transport equation

More information

CFD Analysis of conceptual Aircraft body

CFD Analysis of conceptual Aircraft body CFD Analysis of conceptual Aircraft body Manikantissar 1, Dr.Ankur geete 2 1 M. Tech scholar in Mechanical Engineering, SD Bansal college of technology, Indore, M.P, India 2 Associate professor in Mechanical

More information

Optimum Design of a Flexible Wing Structure to Enhance Roll Maneuver in Supersonic Flow

Optimum Design of a Flexible Wing Structure to Enhance Roll Maneuver in Supersonic Flow Optimum Design of a Flexible Wing Structure to Enhance Roll Maneuver in Supersonic Flow Duane E. Veley, Narendra S. Khot, Jeffrey V. Zweber Structures Division, Air Vehicles Directorate, Air Force Research

More information

Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization

Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization Siva Nadarajah Antony Jameson Stanford University 15th AIAA Computational Fluid Dynamics Conference

More information

MCG 4345 Aerodynamics Computational Assignment I. Report Presented to Dr. Stavros Tavoularis. Prepared By

MCG 4345 Aerodynamics Computational Assignment I. Report Presented to Dr. Stavros Tavoularis. Prepared By MCG 4345 Aerodynamics Computational Assignment I Report Presented to Dr. Stavros Tavoularis Prepared By University of Ottawa November 21 st 2014 Table of Contents Table of Contents... ii List of Figures...

More information

Estimating Vertical Drag on Helicopter Fuselage during Hovering

Estimating Vertical Drag on Helicopter Fuselage during Hovering Estimating Vertical Drag on Helicopter Fuselage during Hovering A. A. Wahab * and M.Hafiz Ismail ** Aeronautical & Automotive Dept., Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310

More information

The Numerical Simulation of Civil Transportation High-lift Configuration

The Numerical Simulation of Civil Transportation High-lift Configuration Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 00 (2014) 000 000 www.elsevier.com/locate/procedia APISAT2014, 2014 Asia-Pacific International Symposium on Aerospace Technology,

More information

DETERMINATION OF FLIGHT STABILITY COEFFICIENTS USING A FINITE ELEMENT CFD

DETERMINATION OF FLIGHT STABILITY COEFFICIENTS USING A FINITE ELEMENT CFD DETERMINATION OF FLIGHT STABILITY OEFFIIENTS USING A FINITE ELEMENT FD harles R. O Neill Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 7477 Abstract A 3D finite element

More information

Application of STAR-CCM+ to Helicopter Rotors in Hover

Application of STAR-CCM+ to Helicopter Rotors in Hover Application of STAR-CCM+ to Helicopter Rotors in Hover Lakshmi N. Sankar and Chong Zhou School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA Ritu Marpu Eschol CD-Adapco, Inc.,

More information

Introduction to CFX. Workshop 2. Transonic Flow Over a NACA 0012 Airfoil. WS2-1. ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved.

Introduction to CFX. Workshop 2. Transonic Flow Over a NACA 0012 Airfoil. WS2-1. ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved. Workshop 2 Transonic Flow Over a NACA 0012 Airfoil. Introduction to CFX WS2-1 Goals The purpose of this tutorial is to introduce the user to modelling flow in high speed external aerodynamic applications.

More information

A Sequential, Multi-Complexity Topology Optimization Process for Aeroelastic Wing Structure Design

A Sequential, Multi-Complexity Topology Optimization Process for Aeroelastic Wing Structure Design A Sequential, Multi-Complexity Topology Optimization Process for Aeroelastic Wing Structure Design Bill Crossley, crossley@purdue.edu Significant content from graduate student Mark Guiles and input from

More information

Constrained Aero-elastic Multi-Point Optimization Using the Coupled Adjoint Approach

Constrained Aero-elastic Multi-Point Optimization Using the Coupled Adjoint Approach www.dlr.de Chart 1 Aero-elastic Multi-point Optimization, M.Abu-Zurayk, MUSAF II, 20.09.2013 Constrained Aero-elastic Multi-Point Optimization Using the Coupled Adjoint Approach M. Abu-Zurayk MUSAF II

More information

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering Debojyoti Ghosh Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering To study the Dynamic Stalling of rotor blade cross-sections Unsteady Aerodynamics: Time varying

More information

Research Article A Computational Investigation of Unsteady Aerodynamics of Insect-Inspired Fixed Wing Micro Aerial Vehicle s 2D Airfoil

Research Article A Computational Investigation of Unsteady Aerodynamics of Insect-Inspired Fixed Wing Micro Aerial Vehicle s 2D Airfoil Advances in Aerospace Engineering, Article ID 5449, 7 pages http://dx.doi.org/1.1155/214/5449 Research Article A Computational Investigation of Unsteady Aerodynamics of Insect-Inspired Fixed Wing Micro

More information

GRID PATTERN EFFECTS ON AERODYNAMIC CHARACTERISTICS OF GRID FINS

GRID PATTERN EFFECTS ON AERODYNAMIC CHARACTERISTICS OF GRID FINS 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES GRID PATTERN EFFECTS ON AERODYNAMIC CHARACTERISTICS OF GRID FINS Fumiya Hiroshima, Kaoru Tatsumi* *Mitsubishi Electric Corporation, Kamakura Works,

More information

AERODYNAMIC OPTIMIZATION OF NEAR-SONIC PLANE BASED ON NEXST-1 SST MODEL

AERODYNAMIC OPTIMIZATION OF NEAR-SONIC PLANE BASED ON NEXST-1 SST MODEL 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES AERODYNAMIC OPTIMIZATION OF NEAR-SONIC PLANE BASED ON SST MODEL Department of Aeronautics & Space Engineering, Tohoku University Aramaki-Aza-Aoba01,

More information

State of the art at DLR in solving aerodynamic shape optimization problems using the discrete viscous adjoint method

State of the art at DLR in solving aerodynamic shape optimization problems using the discrete viscous adjoint method DLR - German Aerospace Center State of the art at DLR in solving aerodynamic shape optimization problems using the discrete viscous adjoint method J. Brezillon, C. Ilic, M. Abu-Zurayk, F. Ma, M. Widhalm

More information

Daedalus - A Software Package for the Design and Analysis of Airfoils

Daedalus - A Software Package for the Design and Analysis of Airfoils First South-East European Conference on Computational Mechanics, SEECCM-06, (M. Kojic, M. Papadrakakis (Eds.)) June 28-30, 2006, Kragujevac, Serbia and Montenegro University of Kragujevac Daedalus - A

More information

SUPERSONIC INVERSE DESIGN METHOD FOR WING-FUSELAGE DESIGN

SUPERSONIC INVERSE DESIGN METHOD FOR WING-FUSELAGE DESIGN SUPERSONIC INVERSE METHOD FOR WING-FUSELAGE Shinkyu Jeong, Shigeru Obayashi and Kazuhiro Nakahashi Tohoku University, 98-77, Sendai, Japan Toshiyuki Iwamiya National Aerospace Laboratory, Chofu, Tokyo

More information

Application of Wray-Agarwal Turbulence Model for Accurate Numerical Simulation of Flow Past a Three-Dimensional Wing-body

Application of Wray-Agarwal Turbulence Model for Accurate Numerical Simulation of Flow Past a Three-Dimensional Wing-body Washington University in St. Louis Washington University Open Scholarship Mechanical Engineering and Materials Science Independent Study Mechanical Engineering & Materials Science 4-28-2016 Application

More information

CONFIGURATION TEST CASES FOR AIRCRAFT WING ROOT DESIGN AND OPTIMIZATION

CONFIGURATION TEST CASES FOR AIRCRAFT WING ROOT DESIGN AND OPTIMIZATION Proc. Int. Symp. on Inverse Problems in Engineering Mechanics (ISIP 98), 24-27 March 1998, Nagano, Japan Elsevier Science, (1998) CONFIGURATION TEST CASES FOR AIRCRAFT WING ROOT DESIGN AND OPTIMIZATION

More information

Experimental study of UTM-LST generic half model transport aircraft

Experimental study of UTM-LST generic half model transport aircraft IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Experimental study of UTM-LST generic half model transport aircraft To cite this article: M I Ujang et al 2016 IOP Conf. Ser.:

More information

High-order solutions of transitional flow over the SD7003 airfoil using compact finite-differencing and filtering

High-order solutions of transitional flow over the SD7003 airfoil using compact finite-differencing and filtering High-order solutions of transitional flow over the SD7003 airfoil using compact finite-differencing and filtering Daniel J. Garmann and Miguel R. Visbal Air Force Research Laboratory, Wright-Patterson

More information

Validation of a numerical simulation tool for aircraft formation flight.

Validation of a numerical simulation tool for aircraft formation flight. Validation of a numerical simulation tool for aircraft formation flight. T. Melin Fluid and Mechatronic Systems, Department of Management and Engineering, the Institute of Technology, Linköping University,

More information

CFD ANALYSIS OF AN RC AIRCRAFT WING

CFD ANALYSIS OF AN RC AIRCRAFT WING CFD ANALYSIS OF AN RC AIRCRAFT WING Volume-, Issue-9, Sept.-1 1 SHREYAS KRISHNAMURTHY, SURAJ JAYASHANKAR, 3 SHARATH V RAO, ROCHEN KRISHNA T S, SHANKARGOUD NYAMANNAVAR 1,,3,, Department of Mechanical Engineering,

More information

Ail implicit finite volume nodal point scheme for the solution of two-dimensional compressible Navier-Stokes equations

Ail implicit finite volume nodal point scheme for the solution of two-dimensional compressible Navier-Stokes equations Ail implicit finite volume nodal point scheme for the solution of two-dimensional compressible Navier-Stokes equations Vimala Dutta Computational and Theoretical Fluid Dynamics Division National Aerospace

More information

Numerical Simulations of Fluid-Structure Interaction Problems using MpCCI

Numerical Simulations of Fluid-Structure Interaction Problems using MpCCI Numerical Simulations of Fluid-Structure Interaction Problems using MpCCI François Thirifay and Philippe Geuzaine CENAERO, Avenue Jean Mermoz 30, B-6041 Gosselies, Belgium Abstract. This paper reports

More information

Multi-point Aero-Structural Optimization of Wings Including Planform Variations

Multi-point Aero-Structural Optimization of Wings Including Planform Variations 45 th Aerospace Sciences Meeting and Exhibit, January 8, 007, Reno, Nevada Multi-point Aero-Structural Optimization of Wings Including Planform Variations Antony Jameson, Kasidit Leoviriyakit and Sriram

More information

Fluid-Structure Interaction Over an Aircraft Wing

Fluid-Structure Interaction Over an Aircraft Wing International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 13, Issue 4 (April 2017), PP.27-31 Fluid-Structure Interaction Over an Aircraft

More information

INVERSE METHODS FOR AERODYNAMIC DESIGN USING THE NAVIER-STOKES EQUATIONS

INVERSE METHODS FOR AERODYNAMIC DESIGN USING THE NAVIER-STOKES EQUATIONS INVERSE METHODS FOR AERODYNAMIC DESIGN USING THE NAVIER-STOKES EQUATIONS I.A. Gubanova, M.A. Gubanova Central Aerohydrodynamic Institute (TsAGI) Keywords: inverse method, Navier Stokes equations, ANSYS

More information

The Use of Computational Fluid Dynamics In the Aerospace Industry Past Present - Future

The Use of Computational Fluid Dynamics In the Aerospace Industry Past Present - Future The Use of Computational Fluid Dynamics In the Aerospace Industry Past Present - Future Douglas N. Ball Aerospace Consultant 1 The Early Days Not much CFD in these old birds! Great airplanes none the less.

More information

MSC/NASTRAN FLUTTER ANALYSES OF T-TAILS INCLUDING HORIZONTAL STABILIZER STATIC LIFT EFFECTS AND T-TAIL TRANSONIC DIP

MSC/NASTRAN FLUTTER ANALYSES OF T-TAILS INCLUDING HORIZONTAL STABILIZER STATIC LIFT EFFECTS AND T-TAIL TRANSONIC DIP MSC/NASTRAN FLUTTER ANALYSES OF T-TAILS INCLUDING HORIZONTAL STABILIZER STATIC LIFT EFFECTS AND T-TAIL TRANSONIC DIP by Emil Suciu* Gulfstream Aerospace Corporation Savannah, Georgia U.S.A. Presented at

More information

Introduction to ANSYS CFX

Introduction to ANSYS CFX Workshop 03 Fluid flow around the NACA0012 Airfoil 16.0 Release Introduction to ANSYS CFX 2015 ANSYS, Inc. March 13, 2015 1 Release 16.0 Workshop Description: The flow simulated is an external aerodynamics

More information

INTERACTIVE AERODYNAMICS ANALYSIS AND DESIGN PROGRAMS FOR USE IN THE UNDERGRADUATE ENGINEERING CURRICULUM

INTERACTIVE AERODYNAMICS ANALYSIS AND DESIGN PROGRAMS FOR USE IN THE UNDERGRADUATE ENGINEERING CURRICULUM INTERACTIVE AERODYNAMICS ANALYSIS AND DESIGN PROGRAMS FOR USE IN THE UNDERGRADUATE ENGINEERING CURRICULUM Ralph Latham, Kurt Gramoll and L. N. Sankar School of Aerospace Engineering Georgia Institute of

More information

OPTIMIZATIONS OF AIRFOIL AND WING USING GENETIC ALGORITHM

OPTIMIZATIONS OF AIRFOIL AND WING USING GENETIC ALGORITHM ICAS22 CONGRESS OPTIMIZATIONS OF AIRFOIL AND WING USING GENETIC ALGORITHM F. Zhang, S. Chen and M. Khalid Institute for Aerospace Research (IAR) National Research Council (NRC) Ottawa, K1A R6, Ontario,

More information

Theory, Computation and Experiment on Criticality and Stability of Vortices Separating from Edges

Theory, Computation and Experiment on Criticality and Stability of Vortices Separating from Edges Theory, Computation and Experiment on Criticality and Stability of Vortices Separating from Edges Ashok Gopalarathnam Department of Mechanical and Aerospace Engineering North Carolina State University

More information

A simple method for potential flow simulation of cascades

A simple method for potential flow simulation of cascades Sādhanā Vol. 35, Part 6, December 2010, pp. 649 657. Indian Academy of Sciences A simple method for potential flow simulation of cascades ARAVIND BHIMARASETTY and RAGHURAMAN N GOVARDHAN Department of Mechanical

More information

COMPUTATIONAL AND EXPERIMENTAL INTERFEROMETRIC ANALYSIS OF A CONE-CYLINDER-FLARE BODY. Abstract. I. Introduction

COMPUTATIONAL AND EXPERIMENTAL INTERFEROMETRIC ANALYSIS OF A CONE-CYLINDER-FLARE BODY. Abstract. I. Introduction COMPUTATIONAL AND EXPERIMENTAL INTERFEROMETRIC ANALYSIS OF A CONE-CYLINDER-FLARE BODY John R. Cipolla 709 West Homeway Loop, Citrus Springs FL 34434 Abstract A series of computational fluid dynamic (CFD)

More information

Optimisation of the Sekwa Blended-Wing-Body Research UAV

Optimisation of the Sekwa Blended-Wing-Body Research UAV Optimisation of the Sekwa Blended-Wing-Body Research UAV B.A. Broughton and R. Heise Council for Scientific and Industrial Research Pretoria, South Africa ABSTRACT A variable stability, blended-wing-body

More information

458 JAXA Special Publication JAXA-SP E alleviation 8, 10). Rodriguez et al. conducted aeroelastic analysis of a wing of Generic Transport Model

458 JAXA Special Publication JAXA-SP E alleviation 8, 10). Rodriguez et al. conducted aeroelastic analysis of a wing of Generic Transport Model First International Symposium on Flutter and its Application, 2016 457 NUMERICAL STUDY ON ADAPTIVE WING STRUCTURE USING LEADING AND TRAILING EDGE FLAPS FOR REDUCTION OF BENDING MOMENT Kanata FUJII +1,

More information

Designing flapping wings as oscillating structures

Designing flapping wings as oscillating structures th World Congress on Structural and Multidisciplinary Optimization May 9-4,, Orlando, Florida, USA Designing flapping wings as oscillating structures Zhiyuan Zhang, Ashok V. Kumar, Raphael T. Haftka University

More information

Modeling three-dimensional dynamic stall

Modeling three-dimensional dynamic stall Appl. Math. Mech. -Engl. Ed., 32(4), 393 400 (2011) DOI 10.1007/s10483-011-1424-6 c Shanghai University and Springer-Verlag Berlin Heidelberg 2011 Applied Mathematics and Mechanics (English Edition) Modeling

More information

Grid Dependence Study of Transonic/Supersonic Flow Past NACA Air-foil using CFD Hemanth Kotaru, B.Tech (Civil Engineering)

Grid Dependence Study of Transonic/Supersonic Flow Past NACA Air-foil using CFD Hemanth Kotaru, B.Tech (Civil Engineering) Grid Dependence Study of Transonic/Supersonic Flow Past NACA Air-foil using CFD Hemanth Kotaru, B.Tech (Civil Engineering) Abstract Computational fluid dynamics is a relatively young field in engineering.

More information

The Application of Computational Fluid Dynamic (CFD) on the Design of High Subsonic Wing

The Application of Computational Fluid Dynamic (CFD) on the Design of High Subsonic Wing The Application of Computational Fluid Dynamic (CFD) on the Design of High Subsonic Wing PRASETYO EDI, NUKMAN YUSOFF and AZNIJAR AHMAD YAZID Department of Engineering Design & Manufacture, Faculty of Engineering,

More information

AIR LOAD CALCULATION FOR ISTANBUL TECHNICAL UNIVERSITY (ITU), LIGHT COMMERCIAL HELICOPTER (LCH) DESIGN ABSTRACT

AIR LOAD CALCULATION FOR ISTANBUL TECHNICAL UNIVERSITY (ITU), LIGHT COMMERCIAL HELICOPTER (LCH) DESIGN ABSTRACT AIR LOAD CALCULATION FOR ISTANBUL TECHNICAL UNIVERSITY (ITU), LIGHT COMMERCIAL HELICOPTER (LCH) DESIGN Adeel Khalid *, Daniel P. Schrage + School of Aerospace Engineering, Georgia Institute of Technology

More information

AN INVERSE DESIGN METHOD FOR ENGINE NACELLES AND WINGS

AN INVERSE DESIGN METHOD FOR ENGINE NACELLES AND WINGS 24th INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES AN INVERSE DESIGN METHOD FOR ENGINE NACELLES AND WINGS Roland Wilhelm German Aerospace Center DLR, Lilienthalplatz 7, D-388 Braunschweig, Germany

More information

A-7 Strut Braced Wing Concept Transonic Wing Design

A-7 Strut Braced Wing Concept Transonic Wing Design A-7 Strut Braced Wing Concept Transonic Wing Design by Andy Ko, William H. Mason, B. Grossman and J.A. Schetz VPI-AOE-275 July 12, 2002 Prepared for: National Aeronautics and Space Administration Langley

More information

Determination of Angle of Attack (AOA) for Rotating Blades

Determination of Angle of Attack (AOA) for Rotating Blades Downloaded from orbit.dtu.dk on: Sep 1, 218 Determination of Angle of Attack (AOA) for Rotating Blades Shen, Wen Zhong; Hansen, Martin Otto Laver; Sørensen, Jens Nørkær Published in: Wind Energy Publication

More information

Computational Fluid Dynamics Analysis of an Idealized Modern Wingsuit

Computational Fluid Dynamics Analysis of an Idealized Modern Wingsuit Washington University in St. Louis Washington University Open Scholarship Mechanical Engineering and Materials Science Independent Study Mechanical Engineering & Materials Science 12-21-2016 Computational

More information

Computational shock and Mach waves visualization aiding the development of aerodynamic design techniques

Computational shock and Mach waves visualization aiding the development of aerodynamic design techniques Computational shock and Mach waves visualization aiding the development of aerodynamic design techniques H. Sobieczky, M. Hannemann Inst. of Fluid Mechanics, DLR German Aerospace Research Establishment,

More information

Shock Wave Reduction via Wing-Strut Geometry Design

Shock Wave Reduction via Wing-Strut Geometry Design Shock Wave Reduction via Wing-Strut Geometry Design Runze LI, Wei NIU, Haixin CHEN School of Aerospace Engineering Beijing 84, China PADRI, Barcelona (Spain) 27..29 SHORT VERSION Shock Wave Reduction via

More information

Aerodynamics of 3D Lifting Surfaces through Vortex Lattice Methods. Introduction to Applications of VLM

Aerodynamics of 3D Lifting Surfaces through Vortex Lattice Methods. Introduction to Applications of VLM Aerodynamics of 3D Lifting Surfaces through Vortex Lattice Methods Introduction to Applications of VLM Basic Concepts Boundary conditions on the mean surface Vortex Theorems, Biot-Savart Law The Horseshoe

More information

Modeling & Simulation of Supersonic Flow Using McCormack s Technique

Modeling & Simulation of Supersonic Flow Using McCormack s Technique Modeling & Simulation of Supersonic Flow Using McCormack s Technique M. Saif Ullah Khalid*, Afzaal M. Malik** Abstract In this work, two-dimensional inviscid supersonic flow around a wedge has been investigated

More information

Effect of Step Depth and Angle on the Aerodynamics of a Sliding Morphing Skin

Effect of Step Depth and Angle on the Aerodynamics of a Sliding Morphing Skin American Journal of Aerospace Engineering 2016; 3(3): 24-30 http://www.sciencepublishinggroup.com/j/ajae doi: 10.11648/j.ajae.20160303.11 ISSN: 2376-4813 (Print); ISSN: 2376-4821 (Online) Effect of Step

More information

University of Texas VSP Structural Analysis Module Update - Demonstration

University of Texas VSP Structural Analysis Module Update - Demonstration University of Texas VSP Structural Analysis Module Update - Demonstration http://vspsam.ae.utexas.edu/ VSP Workshop, San Luis Obispo, CA Hersh Amin Armand J. Chaput Department of Aerospace Engineering

More information

Aerodynamic Optimization of Integrated Wing-Engine Geometry Using an Unstructured Vorticity Solver. Logan King

Aerodynamic Optimization of Integrated Wing-Engine Geometry Using an Unstructured Vorticity Solver. Logan King Aerodynamic Optimization of Integrated Wing-Engine Geometry Using an Unstructured Vorticity Solver by Logan King A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of

More information

Analysis of an airfoil

Analysis of an airfoil UNDERGRADUATE RESEARCH FALL 2010 Analysis of an airfoil using Computational Fluid Dynamics Tanveer Chandok 12/17/2010 Independent research thesis at the Georgia Institute of Technology under the supervision

More information

A Surface Parameterization Method for Airfoil Optimization and High Lift 2D Geometries Utilizing the CST Methodology

A Surface Parameterization Method for Airfoil Optimization and High Lift 2D Geometries Utilizing the CST Methodology 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition AIAA 2009-1461 5-8 January 2009, Orlando, Florida A Surface Parameterization Method for Airfoil Optimization

More information

Challenges in Boundary- Layer Stability Analysis Based On Unstructured Grid Solutions

Challenges in Boundary- Layer Stability Analysis Based On Unstructured Grid Solutions Challenges in Boundary- Layer Stability Analysis Based On Unstructured Grid Solutions Wei Liao National Institute of Aerospace, Hampton, Virginia Collaborators: Mujeeb R. Malik, Elizabeth M. Lee- Rausch,

More information

A DRAG PREDICTION VALIDATION STUDY FOR AIRCRAFT AERODYNAMIC ANALYSIS

A DRAG PREDICTION VALIDATION STUDY FOR AIRCRAFT AERODYNAMIC ANALYSIS A DRAG PREDICTION VALIDATION STUDY FOR AIRCRAFT AERODYNAMIC ANALYSIS Akio OCHI, Eiji SHIMA Kawasaki Heavy Industries, ltd Keywords: CFD, Drag prediction, Validation Abstract A CFD drag prediction validation

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

Conceptual Design and CFD

Conceptual Design and CFD Conceptual Design and CFD W.H. Mason Department of and the Multidisciplinary Analysis and Design (MAD) Center for Advanced Vehicles Virginia Tech Blacksburg, VA Update from AIAA 98-2513 1 Things to think

More information

ANALYSIS OF AIRCRAFT WING WITH DIFFERENT MATERIALS USING ANSYS SOFTWARE

ANALYSIS OF AIRCRAFT WING WITH DIFFERENT MATERIALS USING ANSYS SOFTWARE ANALYSIS OF AIRCRAFT WING WITH DIFFERENT MATERIALS USING ANSYS SOFTWARE K.Ravindra 1, P.V Divakar Raju 2 1 PG Scholar,Mechanical Engineering,Chadalawada Ramanamma Engineering College,Tirupati,Andhra Pradesh,India.

More information

Introduction to Aerodynamic Shape Optimization

Introduction to Aerodynamic Shape Optimization Introduction to Aerodynamic Shape Optimization 1. Aircraft Process 2. Aircraft Methods a. Inverse Surface Methods b. Inverse Field Methods c. Numerical Optimization Methods Aircraft Process Conceptual

More information

NUMERICAL AND EXPERIMENTAL INVESTIGATIONS OF TEST MODELS AERODYNAMICS

NUMERICAL AND EXPERIMENTAL INVESTIGATIONS OF TEST MODELS AERODYNAMICS NUMERICAL AND EXPERIMENTAL INVESTIGATIONS OF TEST MODELS AERODYNAMICS A.V. Vaganov, S.M. Drozdov, S.M. Zadonsky, V.I. Plyashechnic, M.A. Starodubtsev, S.V. Chernov, V.L. Yumashev TsAGI, 140180 Zhukovsky,

More information

Impact of Computational Aerodynamics on Aircraft Design

Impact of Computational Aerodynamics on Aircraft Design Impact of Computational Aerodynamics on Aircraft Design Outline Aircraft Design Process Aerodynamic Design Process Wind Tunnels &Computational Aero. Impact on Aircraft Design Process Revealing details

More information

NUMERICAL SIMULATION OF 3D FLAPPING WING BASED ON CHIMERA METHOD

NUMERICAL SIMULATION OF 3D FLAPPING WING BASED ON CHIMERA METHOD 26 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES NUMERICAL SIMULATION OF 3D FLAPPING WING Wenqing Yang, Bifeng Song, Wenping Song School of Aeronautics, Northwestern Polytechnical University,

More information

MATH 573 Advanced Scientific Computing

MATH 573 Advanced Scientific Computing MATH 573 Advanced Scientific Computing Analysis of an Airfoil using Cubic Splines Ashley Wood Brian Song Ravindra Asitha What is Airfoil? - The cross-section of the wing, blade, or sail. 1. Thrust 2. Weight

More information

Multidisciplinary design optimization (MDO) of a typical low aspect ratio wing using Isight

Multidisciplinary design optimization (MDO) of a typical low aspect ratio wing using Isight Multidisciplinary design optimization (MDO) of a typical low aspect ratio wing using Isight Mahadesh Kumar A 1 and Ravishankar Mariayyah 2 1 Aeronautical Development Agency and 2 Dassault Systemes India

More information

Computational Investigation of Inviscid Flow over a Wing With Multiple Winglets

Computational Investigation of Inviscid Flow over a Wing With Multiple Winglets Computational Investigation of Inviscid Flow over a Wing With Multiple Winglets P. Sethunathan Assistant Professor,Department of Aeronautical Engineering, Paavaai Group of Institutions, Namakkal, India.

More information

Available online at ScienceDirect. Procedia Engineering 99 (2015 )

Available online at   ScienceDirect. Procedia Engineering 99 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 99 (2015 ) 575 580 APISAT2014, 2014 Asia-Pacific International Symposium on Aerospace Technology, APISAT2014 A 3D Anisotropic

More information

Aerodynamic Analyses of Aircraft-Blended Winglet Performance

Aerodynamic Analyses of Aircraft-Blended Winglet Performance IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 3 Ver. IV (May- Jun. 2016), PP 65-72 www.iosrjournals.org Aerodynamic Analyses of Aircraft-Blended

More information

High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder

High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder Aerospace Application Areas Aerodynamics Subsonic through Hypersonic Aeroacoustics Store release & weapons bay analysis High lift devices

More information

Incompressible Potential Flow. Panel Methods (3)

Incompressible Potential Flow. Panel Methods (3) Incompressible Potential Flow Panel Methods (3) Outline Some Potential Theory Derivation of the Integral Equation for the Potential Classic Panel Method Program PANEL Subsonic Airfoil Aerodynamics Issues

More information

Optimisation Studies Validation Document

Optimisation Studies Validation Document Vortex Lattice Method ode for Optimisation Studies Validation Document K. Sudhakar ASDE Report : TR 2002 01 01 entre for Aerospace Systems Design & Engineering Department of Aerospace Engineering Indian

More information

Conceptual design, Structural and Flow analysis of an UAV wing

Conceptual design, Structural and Flow analysis of an UAV wing IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 3 Ver. IV (May- Jun. 2016), PP 78-87 www.iosrjournals.org Conceptual design, Structural

More information

PROTECTION AGAINST MODELING AND SIMULATION UNCERTAINTIES IN DESIGN OPTIMIZATION NSF GRANT DMI

PROTECTION AGAINST MODELING AND SIMULATION UNCERTAINTIES IN DESIGN OPTIMIZATION NSF GRANT DMI PROTECTION AGAINST MODELING AND SIMULATION UNCERTAINTIES IN DESIGN OPTIMIZATION NSF GRANT DMI-9979711 Bernard Grossman, William H. Mason, Layne T. Watson, Serhat Hosder, and Hongman Kim Virginia Polytechnic

More information