Powerful features (1)

Size: px
Start display at page:

Download "Powerful features (1)"

Transcription

1 HFSS Overview

2 Powerful features (1) Tangential Vector Finite Elements Provides only correct physical solutions with no spurious modes Transfinite Element Method Adaptive Meshing r E = t E γ i i ( x, y, z) s 11 s 12 s 21 s 22 S Fast Freq. Sweep Fast Frequency Sweep Adapt Freq. Frequency

3 Powerful features (2) ACIS-Based Modeler, Undo, Macros Materials include lumped RLC elements and ferrites Perfectly-Matched Layer (PML) Periodic Boundaries or Linked Boundaries Optimetrics Module: Parametrics and Optimization 3D Eigenmode Solver

4 Limitations - Frequency domain, not time domain Exception: some post processing on S 11 after wide frequency sweep - Linear materials Exception: ferrite applications with M3DFS involved - Passive structures Exception: special application of master/slave boundaries

5 Geometry translation ACIS!! AutoCAD!! Seamless interface with ACIS-based modelers Translators in Maxwell control Panel DXF, STL

6 Printing Any screen or part of it Directly to printer or Print to file: postscript, GIF, bitmap, etc.

7 HFSS flow Driven or Eigenmode Draw Setup Materials Setup Boundaries / Sources Setup Executive Parameters Setup Solution Solve Post Process -Fields -Matrix Data -Matrix Plot

8 Driven or Eigenmode?

9 Eigenmode Solution Resonances in arbitrary closed 3D structures No external excitations in model Lossy possible: Unloaded Q

10 Draw or import the geometry

11 HFSS 3D Modeler

12 Solid-modeling considerations (1) Keep complexity low small number of segments in circles and cylinders omit details if possible Avoid aspect-ratio problems maximum aspect ratio is 1:2500 use 2D objects instead of thin structures Keep solution region small use symmetry whenever possible don t include too much air or transmission line Avoid overlapping objects

13 Solid-Modeling Considerations (2) Few segments around circles and cylinders Thin metal patch is 2D object (aspect ratio!) No overlapping objects (inner conductor is two objects because it goes through two dielectrics)

14 Solid-Modeling Considerations (3) Some transmission line between port and antenna (length line not much smaller than cross section port) Some air between antenna and radiation boundary (λ/4)

15 Assign material properties

16 Materials (1) 3D objects get material parameters, 2D objects get a boundary condition. Materials are valid in interior region of object. A waveguide is made of air. No fields need be computed inside very good conductors (metals)

17 HFSS Material Manager

18 Materials (2) Some possible materials: air, vacuum perfectly-conducting metal non-perfectly-conducting metal dielectrics, any permittivity, any conductivity magnetic materials, any permeability, any magnetic losses anisotropic materials thin-film resistors, bulk resistors ferrites

19 HFSS: Ferrites Ferrite modeling capability enables simulation of circulators, isolators, and other nonreciprocal devices. Ferrite permeability tensor properties are determined using either uniform magnetic bias field or (optional) 3D magnetostatic field solution.

20 Circulator with Ferrite Puck Ferrite material may be uniformly biased, or use the solution of magnetostatic analysis

21 Assign boundary conditions and excitations

22 HFSS Boundary Manager

23 Sources Power enters the model through (unlimited number of) ports voltage sources current sources incident waves One other kind of source: H bias for ferrites

24 Ports in HFSS Classical Ports: cross section of transmission line HFSS finds propagating and evanescent modes and determines characteristic impedances Lumped Gap Source Ports: use when Classical Ports don t work (will be explained shortly) You specify characteristic impedance of the line

25 Classical Port Surfaces Classical Ports Can Only be Defined on Surfaces Which Are Exposed to a Region Where The Field Does Not Exist Background Perfectly Conducting Objects Simple 2-Port Waveguide: Ports: waveguide cross sections Each port bounds the Background Select faces or appropriate 2D objects to define the ports

26 Example: coax port Port is coax cross section To define it, select a face or a 2D object Port and coax are inside a larger model cap behind port

27 Yagi Antenna With Interior Feed Port

28 Example: Microstrip Port PEC Ansoft recommends H = 5-10 h, W = 5 w; H w W h h and w are the substrate height and trace width, respectively. If this leads to a high and narrow port then increase W.

29 Example: CPW port ground trace ground Port

30 Example: stripline port trace port ground ground

31 Example: poor port This microstrip port may be too big waveguide mode possible Remedy: create 2D port object

32 Illegal ports The following two situations are illegal: 1. A port that contains metal only e.g. the port is just the cross section of a signal trace 2. A port that is split in disconnected parts e.g. port extends below ground plane HFSS will not be able to find a field that fits

33 Lumped Gap Source Ports (1) Classical ports or touching gap source ports obtain wrong solution Non-touching gap source ports obtain better solution

34 Lumped Gap Source Ports (2) Traces close together classical ports don t fit Gap source port has other boundary conditions on sides that don t touch metal much better solution Gap source port is internal port but does not get a metal cap Coupling between traces not part of port solution but included in rest of 3D model not perfect but often as accurate as measurements You specify port impedance Gap source port provides S parameters just like classical port

35 Lumped Gap Source Ports (3) A port with multiple conductors per port would take ALL coupling into account. However, modalto-nodal software is needed to make use of this.

36 Example of structure where gap source ports can be useful Lumped Gap Source Ports (4)

37 Example: voltage and current sources Warning: you will get fields but won t get S parameters! load microstrip Two-conductor transmission line Voltage source (<<λ) Current sources (<<λ) Can excite even and odd modes

38 Boundary conditions Perfect E Perfect H / Natural Finite Conductivity Impedance (sheet resistance and reactance) Radiation (= Absorbing Boundary Condition, ABC) Symmetry Master, slave Perfectly-Matched Layer (PML)

39 Perfect E for 2D Conductor Dual Mode Stepped-septum Polarizer Use Perfect E Surface for Thin Septum Infinitely Thin PEC Septum Side View TE 10 /TE 01 Square Waveguide Top View Perfect E Surface Interior to The Problem Space Behaves Like an Infinitely Thin 2D Perfect Electric Conductor (PEC)

40 Perfect H / Natural for 2D Aperture Monopole Over a Ground Plane Ground Plane is Perfect_E boundary How to cut the opening?

41 Perfect H / Natural for 2D Aperture Use Perfect H / Natural For Opening Small Hole Can be Cut in Infinitely Thin Ground Plane Where The Coax Opens Into The Radiation Space Using a Perfect H / Natural Boundary

42 Perfect H / Natural for 2D Aperture Bethe Hole Coupler Small hole can be cut in Infinitely Thin Septum between the Upper and Lower Guide using a Perfect H / Natural Surface at the Hole

43 Radiation boundary for open regions Second-order local absorbing boundary Place this boundary λ/4 away from radiating structures like currentcarrying conductors, radiating apertures Place it closer when not interested in radiation Apply λ/6 or λ/8 seeding on boundary Conformal boundary - reduces model size

44 Perfect E and Perfect H Symmetry TE 10 Mode in Rectangular Waveguide Geometric Symmetry Field Distribution Symmetry Perfect E Surface Perfect H Surface For Symmetry, The Perfect E or Perfect H Surface Must Interface With The Background

45 Periodic Boundaries Phased-array antenna Unit Cell Walls Periodic boundaries enforce phase difference between Unit Cells At large scan angles, Perfectly Matched Layer on top better than Radiation Boundary Master 2 Slave 2 Master 1 Slave 1 Waveguide Radiator Feed Port

46 Boundaries Boundary conditions are order dependent - a new one can (partially) overwrite an existing one HFSS puts Perfect_E on non-assigned outer boundary Always check boundaries before proceeding!

47 Executive Parameters Often skipped Emissions test Port fields after ports have been solved

48 Setup solution parameters

49 Setup solution (1) Specify initial, previous or current mesh Lambda refinement Number of adaptive passes (5) Frequency Sweep yes or no, discrete of fast?

50 Setup solution (2) Specify frequency number of adaptive passes (5 or more) tet refinement (accept default in most cases) convergence criterion (e.g. S<0.05) frequency sweep yes or no, discrete or fast starting mesh (manual mesh has a lot to offer) ports-only solution (check!) or all

51 Adaptive solution Create initial or manual mesh Calculate electric fields Calculate S parameters S acceptable? yes no Refine mesh Display parameters and fields, perform frequency sweep post-process data

52 Adaptive meshing Adaptive meshing concentrates points in regions of high field gradients thus focusing the computational effort into the regions that actually need them.

53 Seeding and manual meshing Optional feature User-defined seeding of objects or faces Refine on faces, in objects, in regions

54 Perform the simulation

55 Multi-Frontal Solver Takes optimum advantage of RAM Avoids swapping through Spill Logic Parallel processing is possible on PC

56 Fast frequency sweep Starts with (existing) field solution at center frequency Searches for poles and zeros of a linear transfer function Provides S parameters and fields over large bandwidth (e.g GHz) Identifies (sharp) resonances

57 Fast frequency sweep Band pass filter

58 Fast frequency sweep Frequency range is very project dependent. This example shows a very wide range. An accuracy check never hurts.

59 Post Process the data Post Process Fields Matrix Data Matrix Plot

60 Post Processor (Fields) Important features: Data - edit sources menu to switch sources on and off Fields in ports to check excitations Shaded plot on cut plane, phase animation 2D antenna pattern, 3D antenna pattern Calculator

61 E-Field on Cutplane

62 Antenna Example: Sinuous Antenna Geometry Radiation Pattern - Two Ports Excited Radiation Pattern - One Port Excited

63 Horn 3D Far-Field Pattern

64 Fields Calculator Enables many operations on fields: Dot and cross products with field vectors and geometric vectors Integration over lines, surfaces, volumes Etc, etc, etc. Ω Q u = 2 2 s 2 Γ n H H dγ 2 + dω tgδ Ω H dω

65 Post Processor - Matrix Data Deembed Renormalize Compute Y and/or Z matrices Export to circuit simulators

66 Post processor - Matrix Plot S, Z as function of frequency Linear or Smith Chart db and VSWR options Export plots to data file

HFSS - Antennas, Arrays and FSS's. David Perry Applications Engineer Ansoft Corporation

HFSS - Antennas, Arrays and FSS's. David Perry Applications Engineer Ansoft Corporation HFSS - Antennas, Arrays and FSS's David Perry Applications Engineer Ansoft Corporation Synopsis Some Excerpts from What s New Enhancements to HFSS Wave Guide Simulator (WGS) What is it? Why you would use

More information

Ansoft HFSS 3D Boundary Manager

Ansoft HFSS 3D Boundary Manager and Selecting Objects and s Menu Functional and Ansoft HFSS Choose Setup / to: Define the location of ports, conductive surfaces, resistive surfaces, and radiation (or open) boundaries. Define sources

More information

An Introduction to the Finite Difference Time Domain (FDTD) Method & EMPIRE XCcel

An Introduction to the Finite Difference Time Domain (FDTD) Method & EMPIRE XCcel An Introduction to the Finite Difference Time Domain (FDTD) Method & EMPIRE XCcel Simulation Model definition for FDTD DUT Port Simulation Box Graded Mesh six Boundary Conditions 1 FDTD Basics: Field components

More information

Ansoft HFSS Version 7 Training Section 5: Boundary Module

Ansoft HFSS Version 7 Training Section 5: Boundary Module Ansoft HFSS Version 7 Training Section 5: Boundary Module 5-1 General Overview Synopsis Boundary Types, Definitions, and Parameters Source Types, Definitions, and Parameters Interface Layout Assigning

More information

Lecture 2: Introduction

Lecture 2: Introduction Lecture 2: Introduction v2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. Multiple Advanced Techniques Allow HFSS to Excel at a Wide Variety of Applications Platform Integration and RCS

More information

user s guide High Frequency Structure Simulator electronic design automation software High Frequency Structure Simulator

user s guide High Frequency Structure Simulator electronic design automation software High Frequency Structure Simulator High Frequency Structure Simulator 9.0 electronic design automation software user s guide High Frequency Structure Simulator ANSOFT CORPORATION Four Station Square Suite 200 Pittsburgh, PA 15219-1119 The

More information

Contents Contents Creating a Simulation Example: A Dipole Antenna AMDS User s Guide

Contents Contents Creating a Simulation Example: A Dipole Antenna AMDS User s Guide Contents Contents 1 Creating a Simulation 7 Introduction 8 Data Files for Examples 8 Software Organization 9 Constructing the Geometry 10 Creating the Mesh 11 Defining Run Parameters 13 Requesting Results

More information

Antenna-Simulation of a Half-wave Dielectric Resonator filter

Antenna-Simulation of a Half-wave Dielectric Resonator filter Antenna-Simulation of a Half-wave Dielectric Resonator filter 1. Description A symmetric model of a dielectric resonator filter is analyzed using the Scattering parameters module of HFWorks to determine

More information

CONTENTS Preface Introduction Finite Element Formulation Finite Element Mesh Truncation

CONTENTS Preface Introduction Finite Element Formulation Finite Element Mesh Truncation Preface xi 1 Introduction 1 1.1 Numerical Simulation of Antennas 1 1.2 Finite Element Analysis Versus Other Numerical Methods 2 1.3 Frequency- Versus Time-Domain Simulations 5 1.4 Brief Review of Past

More information

Outline. Darren Wang ADS Momentum P2

Outline. Darren Wang ADS Momentum P2 Outline Momentum Basics: Microstrip Meander Line Momentum RF Mode: RFIC Launch Designing with Momentum: Via Fed Patch Antenna Momentum Techniques: 3dB Splitter Look-alike Momentum Optimization: 3 GHz Band

More information

Agilent Electromagnetic Design System

Agilent Electromagnetic Design System Agilent 85270 Electromagnetic Design System Getting Started Agilent Technologies Notices Agilent Technologies, Inc. 2006 No part of this manual may be reproduced in any form or by any means (including

More information

Agilent W2100 Antenna Modeling Design System

Agilent W2100 Antenna Modeling Design System Agilent W2100 Antenna Modeling Design System User s Guide Agilent Technologies Notices Agilent Technologies, Inc. 2007 No part of this manual may be reproduced in any form or by any means (including electronic

More information

A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems

A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems Veysel Demir vdemir@olemiss.edu Mohamed Al Sharkawy malshark@olemiss.edu Atef Z. Elsherbeni atef@olemiss.edu Abstract

More information

Simulation Advances for RF, Microwave and Antenna Applications

Simulation Advances for RF, Microwave and Antenna Applications Simulation Advances for RF, Microwave and Antenna Applications Bill McGinn Application Engineer 1 Overview Advanced Integrated Solver Technologies Finite Arrays with Domain Decomposition Hybrid solving:

More information

HFSS Hybrid Finite Element and Integral Equation Solver for Large Scale Electromagnetic Design and Simulation

HFSS Hybrid Finite Element and Integral Equation Solver for Large Scale Electromagnetic Design and Simulation HFSS Hybrid Finite Element and Integral Equation Solver for Large Scale Electromagnetic Design and Simulation Laila Salman, PhD Technical Services Specialist laila.salman@ansys.com 1 Agenda Overview of

More information

Genesys 2012 Tutorial - Using Momentum Analysis for Microwave Planar Circuits

Genesys 2012 Tutorial - Using Momentum Analysis for Microwave Planar Circuits Genesys 2012 Tutorial - Using Momentum Analysis for Microwave Planar Circuits Create the following schematics in Figure 1 with Genesys s schematic editor, which depicts two sections of a cascaded microstrip

More information

Workshop 3-1: Coax-Microstrip Transition

Workshop 3-1: Coax-Microstrip Transition Workshop 3-1: Coax-Microstrip Transition 2015.0 Release Introduction to ANSYS HFSS 1 2015 ANSYS, Inc. Example Coax to Microstrip Transition Analysis of a Microstrip Transmission Line with SMA Edge Connector

More information

CECOS University Department of Electrical Engineering. Wave Propagation and Antennas LAB # 1

CECOS University Department of Electrical Engineering. Wave Propagation and Antennas LAB # 1 CECOS University Department of Electrical Engineering Wave Propagation and Antennas LAB # 1 Introduction to HFSS 3D Modeling, Properties, Commands & Attributes Lab Instructor: Amjad Iqbal 1. What is HFSS?

More information

Overview. Ansoft High Frequency Structure Simulator v 9.0 Training Seminar 1

Overview. Ansoft High Frequency Structure Simulator v 9.0 Training Seminar 1 Ansoft High Frequency Structure Simulator v 9.0 Training Seminar 1 The Process Design Solution Type 1.1. Boundaries 1. Parametric Model Geometry/Materials 2. Analysis Solution Setup Frequency Sweep 1.2.

More information

Lab 1: Microstrip Line

Lab 1: Microstrip Line Lab 1: Microstrip Line In this lab, you will build a simple microstrip line to quickly familiarize yourself with the EMPro User Interface and how to setup FEM and FDTD simulations. If you are doing only

More information

HFSS: Optimal Phased Array Modeling Using Domain Decomposition

HFSS: Optimal Phased Array Modeling Using Domain Decomposition HFSS: Optimal Phased Array Modeling Using Domain Decomposition 15. 0 Release Authors: Dane Thompson Nick Hirth Irina Gordion Sara Louie Presenter: Dane Thompson Motivation Electronically scannable antenna

More information

Plane wave in free space Exercise no. 1

Plane wave in free space Exercise no. 1 Plane wave in free space Exercise no. 1 The exercise is focused on numerical modeling of plane wave propagation in ANSYS HFSS. Following aims should be met: 1. A numerical model of a plane wave propagating

More information

For functionality and CAD/EDA import filter, see technical specifications of the CST STUDIO SUITE

For functionality and CAD/EDA import filter, see technical specifications of the CST STUDIO SUITE CST MICROWAVE STUDIO Technical Specification 1 May 2015 Frontend Module For functionality and CAD/EDA import filter, see technical specifications of the CST STUDIO SUITE Transient Solver Module Fast and

More information

LAB # 3 Wave Port Excitation Radiation Setup & Analysis

LAB # 3 Wave Port Excitation Radiation Setup & Analysis COMSATS Institute of Information Technology Electrical Engineering Department (Islamabad Campus) LAB # 3 Wave Port Excitation Radiation Setup & Analysis Designed by Syed Muzahir Abbas 1 WAVE PORT 1. New

More information

SIMULATION OF AN IMPLANTED PIFA FOR A CARDIAC PACEMAKER WITH EFIELD FDTD AND HYBRID FDTD-FEM

SIMULATION OF AN IMPLANTED PIFA FOR A CARDIAC PACEMAKER WITH EFIELD FDTD AND HYBRID FDTD-FEM 1 SIMULATION OF AN IMPLANTED PIFA FOR A CARDIAC PACEMAKER WITH EFIELD FDTD AND HYBRID FDTD- Introduction Medical Implanted Communication Service (MICS) has received a lot of attention recently. The MICS

More information

Simulation Advances. Antenna Applications

Simulation Advances. Antenna Applications Simulation Advances for RF, Microwave and Antenna Applications Presented by Martin Vogel, PhD Application Engineer 1 Overview Advanced Integrated Solver Technologies Finite Arrays with Domain Decomposition

More information

Laboratory Assignment: EM Numerical Modeling of a Stripline

Laboratory Assignment: EM Numerical Modeling of a Stripline Laboratory Assignment: EM Numerical Modeling of a Stripline Names: Objective This laboratory experiment provides a hands-on tutorial for drafting up an electromagnetic structure (a stripline transmission

More information

Electromagnetics. R14 Update. Greg Pitner ANSYS, Inc. February 24, 2012

Electromagnetics. R14 Update. Greg Pitner ANSYS, Inc. February 24, 2012 Electromagnetics R14 Update Greg Pitner 1 HFSS Version 14 2 HFSS Overview Advanced Integrated Solver Technologies Finite Arrays with Domain Decomposition Hybrid solving: FEBI, IE Regions Physical Optics

More information

HFSS 14 Update for SI and RF Applications Markus Kopp Product Manager, Electronics ANSYS, Inc.

HFSS 14 Update for SI and RF Applications Markus Kopp Product Manager, Electronics ANSYS, Inc. HFSS 14 Update for SI and RF Applications Markus Kopp Product Manager, Electronics ANSYS, Inc. 1 ANSYS, Inc. September 21, Advanced Solvers: Finite Arrays with DDM 2 ANSYS, Inc. September 21, Finite Arrays

More information

Optimization of metallic biperiodic photonic crystals. Application to compact directive antennas

Optimization of metallic biperiodic photonic crystals. Application to compact directive antennas Optimization of metallic biperiodic photonic crystals Application to compact directive antennas Nicolas Guérin Computational Optic Groups (COG) IFH, ETHZ, http://alphard.ethz.ch Keywords: 3D modeling,

More information

FEM Simulation. EMPro 2012 May 2012 FEM Simulation

FEM Simulation. EMPro 2012 May 2012 FEM Simulation EMPro 2012 May 2012 FEM Simulation 1 Agilent Technologies, Inc 2000-2011 5301 Stevens Creek Blvd, Santa Clara, CA 95052 USA No part of this documentation may be reproduced in any form or by any means (including

More information

Workshop 10-1: HPC for Finite Arrays

Workshop 10-1: HPC for Finite Arrays Workshop 10-1: HPC for Finite Arrays 2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. Getting Started Launching ANSYS Electronics Desktop 2015 Select Programs > ANSYS Electromagnetics >

More information

IMPLEMENTATION OF ANALYTICAL (MATLAB) AND NUMERICAL (HFSS) SOLUTIONS ADVANCED ELECTROMAGNETIC THEORY SOHAIB SAADAT AFRIDI HAMMAD BUTT ZUNNURAIN AHMAD

IMPLEMENTATION OF ANALYTICAL (MATLAB) AND NUMERICAL (HFSS) SOLUTIONS ADVANCED ELECTROMAGNETIC THEORY SOHAIB SAADAT AFRIDI HAMMAD BUTT ZUNNURAIN AHMAD STUDY OF SCATTERING & RESULTANT RADIATION PATTERN: INFINITE LINE CURRENT SOURCE POSITIONED HORIZONTALLY OVER A PERFECTLY CONDUCTING INFINITE GROUND PLANE IMPLEMENTATION OF ANALYTICAL (MATLAB) AND NUMERICAL

More information

HFSS Ansys ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary

HFSS Ansys ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary HFSS 12.0 Ansys 2009 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Comparison of HFSS 11 and HFSS 12 for JSF Antenna Model UHF blade antenna on Joint Strike Fighter Inherent improvements in

More information

CST MICROWAVE STUDIO. Workflow & Solver Overview

CST MICROWAVE STUDIO. Workflow & Solver Overview CST MICROWAVE STUDIO Workflow & Solver Overview CST STUDIO SUITE 2010 Copyright CST 1998-2010 CST Computer Simulation Technology AG All rights reserved. Information in this document is subject to change

More information

A Proposed Set of Specific Standard EMC Problems To Help Engineers Evaluate EMC Modeling Tools

A Proposed Set of Specific Standard EMC Problems To Help Engineers Evaluate EMC Modeling Tools A Proposed Set of Specific Standard EMC Problems To Help Engineers Evaluate EMC Modeling Tools Bruce Archambeault, Ph. D Satish Pratapneni, Ph.D. David C. Wittwer, Ph. D Lauren Zhang, Ph.D. Juan Chen,

More information

Lecture 7: Introduction to HFSS-IE

Lecture 7: Introduction to HFSS-IE Lecture 7: Introduction to HFSS-IE 2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. HFSS-IE: Integral Equation Solver Introduction HFSS-IE: Technology An Integral Equation solver technology

More information

Getting Started with HFSS v9 for Antenna Design October, 2003

Getting Started with HFSS v9 for Antenna Design October, 2003 Getting Started with HFSS v9 for Antenna Design October, 2003 This Getting Started training material is intended for new users of HFSS. The objective is to provide a very thorough introduction to HFSS

More information

EMPro Workshop. Version 4.0 Updated Feb, 2015

EMPro Workshop. Version 4.0 Updated Feb, 2015 EMPro Workshop Version 4.0 Updated Feb, 2015 Agenda Page 2 Introduction Getting started with the standalone EMPro EM simulation work flow with examples Getting started with EMPro 3D component work flow

More information

New Technologies in CST STUDIO SUITE CST COMPUTER SIMULATION TECHNOLOGY

New Technologies in CST STUDIO SUITE CST COMPUTER SIMULATION TECHNOLOGY New Technologies in CST STUDIO SUITE 2016 Outline Design Tools & Modeling Antenna Magus Filter Designer 2D/3D Modeling 3D EM Solver Technology Cable / Circuit / PCB Systems Multiphysics CST Design Tools

More information

Understanding Strip (Finite) and Slot (Infinite) Ground based EM simulations in ADS

Understanding Strip (Finite) and Slot (Infinite) Ground based EM simulations in ADS Understanding Strip (Finite) and Slot (Infinite) Ground based EM simulations in ADS ADS offer three ways in which designers can model the return path (ground) for their structures to perform EM simulations.

More information

HFSS PO Hybrid Region

HFSS PO Hybrid Region HFSS PO Hybrid Region Introduction The design of electrically large systems poses many challenges. Electromagnetic simulations can relatively quickly assess options and trade-offs before any physical testing.

More information

Band Stop optimization of Frequency Selective Surfaces Using the Transmission Line Modeling Method

Band Stop optimization of Frequency Selective Surfaces Using the Transmission Line Modeling Method Band Stop optimization of Frequency Selective Surfaces Using Transmission Line Modeling Method Dominic S Nyitamen 1, Steve Greedy 2, Christopher Smartt 2 and David W P Thomas 2 1. Electrical Electronic

More information

EXAMINING THE IMPACT OF SPLIT PLANES ON SIGNAL AND POWER INTEGRITY

EXAMINING THE IMPACT OF SPLIT PLANES ON SIGNAL AND POWER INTEGRITY EXAMINING THE IMPACT OF SPLIT PLANES ON SIGNAL AND POWER INTEGRITY Jason R. Miller, Gustavo J. Blando, Roger Dame, K. Barry A. Williams and Istvan Novak Sun Microsystems, Burlington, MA 1 AGENDA Introduction

More information

Efficient Meshing in Sonnet

Efficient Meshing in Sonnet Efficient Meshing in Sonnet Purpose of this document: In this document, we will discuss efficient meshing in Sonnet, based on a wide variety of application examples. It will be shown how manual changes

More information

Using Sonnet Interface in Eagleware-Elanix GENESYS. Sonnet Application Note: SAN-205A JULY 2005

Using Sonnet Interface in Eagleware-Elanix GENESYS. Sonnet Application Note: SAN-205A JULY 2005 Using Sonnet Interface in Eagleware-Elanix GENESYS Sonnet Application Note: SAN-205A JULY 2005 Description of Sonnet Suites Professional Sonnet Suites Professional is an industry leading full-wave 3D Planar

More information

Using Sonnet in a Cadence Virtuoso Design Flow

Using Sonnet in a Cadence Virtuoso Design Flow Using Sonnet in a Cadence Virtuoso Design Flow Purpose of this document: This document describes the Sonnet plug-in integration for the Cadence Virtuoso design flow, for silicon accurate EM modelling of

More information

ECE ILLINOIS. ECE 451: Ansys HFSS Tutorial. Simulate and Analyze an Example of Microstrip Line. Drew Handler, Jerry Yang October 20, 2014

ECE ILLINOIS. ECE 451: Ansys HFSS Tutorial. Simulate and Analyze an Example of Microstrip Line. Drew Handler, Jerry Yang October 20, 2014 ECE ILLINOIS ECE 451: Ansys HFSS Tutorial Simulate and Analyze an Example of Microstrip Line Drew Handler, Jerry Yang October 20, 2014 Introduction ANSYS HFSS is an industry standard tool for simulating

More information

Advanced Surface Based MoM Techniques for Packaging and Interconnect Analysis

Advanced Surface Based MoM Techniques for Packaging and Interconnect Analysis Electrical Interconnect and Packaging Advanced Surface Based MoM Techniques for Packaging and Interconnect Analysis Jason Morsey Barry Rubin, Lijun Jiang, Lon Eisenberg, Alina Deutsch Introduction Fast

More information

Package on Board Simulation with 3-D Electromagnetic Simulation

Package on Board Simulation with 3-D Electromagnetic Simulation White Paper Package on Board Simulation with 3-D Electromagnetic Simulation For many years, designers have taken into account the effect of package parasitics in simulation, from using simple first-order

More information

Insights into EMC Chamber Design:

Insights into EMC Chamber Design: Insights into EMC Chamber Design: How to achieve an optimized chamber for accurate EMC Measurements Zubiao Xiong, PhD zubiao.xiong@ets-lindgren.com November 16, 2017 EMC Compliance Testing Emission (Disturbance)

More information

A Crash Course on Using Agilent Advanced Design System (ADS)

A Crash Course on Using Agilent Advanced Design System (ADS) A Crash Course on Using Agilent Advanced Design System (ADS) By Chris Sanabria, sanabria@ece.ucsb.edu 2/9/02 If you are an engineer and have anything to do with circuit simulation, in particular high frequency

More information

The Probe Feed Patch Antenna

The Probe Feed Patch Antenna Finite Element Tutorial in Electromagnetics #1 DRAFT Sponsored by NSF Grant #05-559: Finite Element Method Exercises for use in Undergraduate Engineering Programs The Probe Feed Patch Antenna Prepared

More information

Ansoft HFSS Convergence

Ansoft HFSS Convergence Data Max Delta Matrix Parameters Ansoft HFSS Choose from the Executive Commands window to view information about the solution. If you have solved for a driven solution, the following window appears: Maxwell

More information

Designing Horn Antenna utilizing FEM Symmetry Boundary Conditions

Designing Horn Antenna utilizing FEM Symmetry Boundary Conditions Designing Horn Antenna utilizing FEM Symmetry Boundary Conditions If a structure has any symmetry (E or M i.e. Electric or Magnetic), the structure s physical size can be reduced symmetric plane boundary

More information

EM Analysis of High Frequency Printed Circuit Boards. Dr.-Ing. Volker Mühlhaus

EM Analysis of High Frequency Printed Circuit Boards. Dr.-Ing. Volker Mühlhaus EM Analysis of High Frequency Printed Circuit Boards Dr.-Ing. Volker Mühlhaus volker@muehlhaus.com Agenda EM tools overview When to use EM analysis Application examples: Filters The importance of meshing

More information

newfasant Periodical Structures User Guide

newfasant Periodical Structures User Guide newfasant Periodical Structures User Guide Software Version: 6.2.10 Date: February 23, 2018 Index 1. FILE MENU 2. EDIT MENU 3. VIEW MENU 4. GEOMETRY MENU 5. MATERIALS MENU 6. CELL MENU 6.1. DEFINE CELL

More information

ECE 5318/6352 Antenna Engineering. Dr. Stuart Long. Chapter 15. Reflector Antennas

ECE 5318/6352 Antenna Engineering. Dr. Stuart Long. Chapter 15. Reflector Antennas ECE 5318/6352 Antenna Engineering Dr. Stuart Long Chapter 15 Reflector Antennas 1 GEOMETRICAL CONFIGURATIONS large flat sheet small flat sheet (wide freq. range) corner reflector (narrow freq. range) parabolic

More information

Create coupled designs between Maxwell and ephysics

Create coupled designs between Maxwell and ephysics Create coupled designs between Maxwell and ephysics Creating datalink coupling with Maxwell is easy. In general this is a two step process when the link involves one Maxwell solver and one ephysics solver.

More information

A Useful Tool for Analysis and Visualization of Grid Search Simulation Results

A Useful Tool for Analysis and Visualization of Grid Search Simulation Results A Useful Tool for Analysis and Visualization of Grid Search Simulation Results Przemysław Korpas and Mateusz Krysicki Institute of Radioelectronics, Warsaw University of Technology, Warsaw, Poland The

More information

FEKO Tutorial II. Mohammad S. Sharawi, Ph.D. Electrical Engineering Department

FEKO Tutorial II. Mohammad S. Sharawi, Ph.D. Electrical Engineering Department Mohammad S. Sharawi, Ph.D. Electrical Engineering Department This tutorial will get you started with FEKO. FEKO is a full-wave electromagnetic field simulator that is based on the Method of Moments (MoM).

More information

Mie scattering off plasmonic nanoparticle

Mie scattering off plasmonic nanoparticle Mie scattering off plasmonic nanoparticle Model documentation COMSOL 2009 Version: COMSOL 3.5a1 (build 3.5.0.608) Contents I. Model Overview II. Model Navigator III. Options and settings IV. Geometry modeling

More information

Chapter 4 Determining Cell Size

Chapter 4 Determining Cell Size Chapter 4 Determining Cell Size Chapter 4 Determining Cell Size The third tutorial is designed to give you a demonstration in using the Cell Size Calculator to obtain the optimal cell size for your circuit

More information

FEKO Tutorial I. Mohammad S. Sharawi, Ph.D. Electrical Engineering Department

FEKO Tutorial I. Mohammad S. Sharawi, Ph.D. Electrical Engineering Department Mohammad S. Sharawi, Ph.D. Electrical Engineering Department This tutorial will get you started with FEKO. FEKO is a full-wave electromagnetic field simulator that is based on the Method of Moments (MoM).

More information

Design of Electromagnetic Test Sites

Design of Electromagnetic Test Sites Sensor and Simulation Notes Note 533 3 August 2008 Design of Electromagnetic Test Sites Carl E. Baum University of New Mexico Department of Electrical and Computer Engineering Albuquerque New Mexico 87131

More information

Miniature Ceramic Thin Film Filters

Miniature Ceramic Thin Film Filters Miniature Ceramic Thin Film Filters Gavin A. Ripley Principal RF Engineer (BSC Filters ltd.) Abstract This presentation describes the design and manufacture of surface mount miniaturised filters offering

More information

Maxwell v Example (2D/3D Transient) Core Loss. Transformer Core Loss Calculation in Maxwell 2D and 3D

Maxwell v Example (2D/3D Transient) Core Loss. Transformer Core Loss Calculation in Maxwell 2D and 3D Transformer Core Loss Calculation in Maxwell 2D and 3D This example analyzes cores losses for a 3ph power transformer having a laminated steel core using Maxwell 2D and 3D. The transformer is rated 115-13.8kV,

More information

CST EM STUDIO 3D EM FOR STATICS AND LOW FREQUENCIES TUTORIALS

CST EM STUDIO 3D EM FOR STATICS AND LOW FREQUENCIES TUTORIALS CST EM STUDIO 3D EM FOR STATICS AND LOW FREQUENCIES TUTORIALS CST STUDIO SUITE 2006 Copyright 2002-2005 CST GmbH Computer Simulation Technology All rights reserved. Information in this document is subject

More information

NEAR-IR BROADBAND POLARIZER DESIGN BASED ON PHOTONIC CRYSTALS

NEAR-IR BROADBAND POLARIZER DESIGN BASED ON PHOTONIC CRYSTALS U.P.B. Sci. Bull., Series A, Vol. 77, Iss. 3, 2015 ISSN 1223-7027 NEAR-IR BROADBAND POLARIZER DESIGN BASED ON PHOTONIC CRYSTALS Bogdan Stefaniţă CALIN 1, Liliana PREDA 2 We have successfully designed a

More information

Maxwell 2D Student Version. A 2D Electrostatic Problem

Maxwell 2D Student Version. A 2D Electrostatic Problem Maxwell 2D Student Version A 2D Electrostatic Problem November 2002 Notice The information contained in this document is subject to change without notice. Ansoft makes no warranty of any kind with regard

More information

Recent Via Modeling Methods for Multi-Vias in a Shared Anti-pad

Recent Via Modeling Methods for Multi-Vias in a Shared Anti-pad Recent Via Modeling Methods for Multi-Vias in a Shared Anti-pad Yao-Jiang Zhang, Jun Fan and James L. Drewniak Electromagnetic Compatibility (EMC) Laboratory, Missouri University of Science &Technology

More information

An Effective Modeling Method for Multi-scale and Multilayered Power/Ground Plane Structures

An Effective Modeling Method for Multi-scale and Multilayered Power/Ground Plane Structures An Effective Modeling Method for Multi-scale and Multilayered Power/Ground Plane Structures Jae Young Choi and Madhavan Swaminathan School of Electrical and Computer Engineering Georgia Institute of Technology

More information

Introduction to the FEKO Suite

Introduction to the FEKO Suite Introduction to the FEKO Suite FEKO is a suite of tools that is used for electromagnetic field analysis of 3D structures. It offers several state-of-the-art numerical methods for the solution of Maxwell

More information

HFSS 14 Update for SI and RF Applications. Presenter: Senior Application Engineer Jeff Tharp, Ph.D.

HFSS 14 Update for SI and RF Applications. Presenter: Senior Application Engineer Jeff Tharp, Ph.D. HFSS 14 Update for SI and RF Applications Presenter: Senior Application Engineer Jeff Tharp, Ph.D. 1 Overview Advanced Integrated Solver Technologies Finite Arrays with Domain Decomposition Hybrid solving

More information

Circular High-Impedance Surfaces Characterization

Circular High-Impedance Surfaces Characterization Circular High-Impedance Surfaces Characterization Julien Sarrazin, Anne-Claire Lepage, Xavier Begaud To cite this version: Julien Sarrazin, Anne-Claire Lepage, Xavier Begaud. Circular High-Impedance Surfaces

More information

Mm-wave integrated waveguide components in silicon technology

Mm-wave integrated waveguide components in silicon technology Mm-wave integrated waveguide components in silicon technology G. Gentile, M. Spirito, L.C.N. de Vreede, et al. Electronics Research Laboratory (ELCA), Dimes, Delft University of Technology, The Netherlands

More information

Phased Array Antennas with Optimized Element Patterns

Phased Array Antennas with Optimized Element Patterns Phased Array Antennas with Optimized Element Patterns Sergei P. Skobelev ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Preface Introduction xi xiii CHAPTER 1 General Concepts and Relations 1 1.1

More information

LAB # 2 3D Modeling, Properties Commands & Attributes

LAB # 2 3D Modeling, Properties Commands & Attributes COMSATS Institute of Information Technology Electrical Engineering Department (Islamabad Campus) LAB # 2 3D Modeling, Properties Commands & Attributes Designed by Syed Muzahir Abbas 1 1. Overview of the

More information

Simulation of Transition Radiation from a flat target using CST particle studio.

Simulation of Transition Radiation from a flat target using CST particle studio. Simulation of Transition Radiation from a flat target using CST particle studio. K. Lekomtsev 1, A. Aryshev 1, P. Karataev 2, M. Shevelev 1, A. Tishchenko 3 and J. Urakawa 1 1. High Energy Accelerator

More information

Workshop 3: Basic Electrostatic Analysis. ANSYS Maxwell 2D V ANSYS, Inc. May 21, Release 14.5

Workshop 3: Basic Electrostatic Analysis. ANSYS Maxwell 2D V ANSYS, Inc. May 21, Release 14.5 Workshop 3: Basic Electrostatic Analysis ANSYS Maxwell 2D V16 2013 ANSYS, Inc. May 21, 2013 1 Release 14.5 About Workshop Introduction on the Electrostatic Solver This workshop introduces the Electro Static

More information

Comparison of TLM and FDTD Methods in RCS Estimation

Comparison of TLM and FDTD Methods in RCS Estimation International Journal of Electrical Engineering. ISSN 0974-2158 Volume 4, Number 3 (2011), pp. 283-287 International Research Publication House http://www.irphouse.com Comparison of TLM and FDTD Methods

More information

CHAPTER 2 NEAR-END CROSSTALK AND FAR-END CROSSTALK

CHAPTER 2 NEAR-END CROSSTALK AND FAR-END CROSSTALK 24 CHAPTER 2 NEAR-END CROSSTALK AND FAR-END CROSSTALK 2.1 INTRODUCTION The high speed digital signal propagates along the transmission lines in the form of transverse electromagnetic (TEM) waves at very

More information

Keysight EEsof EDA Planar Electromagnetic (EM) Simulation in ADS. Demo Guide

Keysight EEsof EDA Planar Electromagnetic (EM) Simulation in ADS. Demo Guide Keysight EEsof EDA Planar Electromagnetic (EM) Simulation in ADS Demo Guide 02 Keysight Planar Electromagnetic (EM) Simulation in ADS - Demo Guide Keysight ADS provides two key electromagnetic simulators

More information

Enabling SI Productivity Part 2. Venkatesh Seetharam Aaron Edwards

Enabling SI Productivity Part 2. Venkatesh Seetharam Aaron Edwards Enabling SI Productivity Part 2 Venkatesh Seetharam Aaron Edwards 1 Problem Statement SI engineers use simulation software to squeeze the most performance out of their design. They will tend to focus on

More information

ELECTRICAL SPECIFICATIONS**

ELECTRICAL SPECIFICATIONS** ico Xinger 1dB Directional Coupler Description The 161 ico Xinger is a low profile, miniature 1dB directional coupler in an easy to use surface mount package designed for MMDS and WLAN applications. The

More information

SIMCENTER 12 ACOUSTICS Beta

SIMCENTER 12 ACOUSTICS Beta SIMCENTER 12 ACOUSTICS Beta 1/80 Contents FEM Fluid Tutorial Compressor Sound Radiation... 4 1. Import Structural Mesh... 5 2. Create an Acoustic Mesh... 7 3. Load Recipe... 20 4. Vibro-Acoustic Response

More information

Workshop 3-1: Antenna Post-Processing

Workshop 3-1: Antenna Post-Processing Workshop 3-1: Antenna Post-Processing 2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. Example Antenna Post-Processing Analysis of a Dual Polarized Probe Fed Patch Antenna This example is

More information

High-Speed Layout Guidelines for Reducing EMI for LVDS SerDes Designs. I.K. Anyiam

High-Speed Layout Guidelines for Reducing EMI for LVDS SerDes Designs. I.K. Anyiam High-Speed Layout Guidelines for Reducing EMI for LVDS SerDes Designs I.K. Anyiam 1 Introduction LVDS SerDes helps to reduce radiated emissions, but does not completely eliminate them EMI prevention must

More information

Sonnet User s Guide Release 10

Sonnet User s Guide Release 10 Sonnet User s Guide Release 10 Cover: James Clerk Maxwell (1831-1879). A professor at Cambridge University, England, Maxwell established the interdependence of electricity and magnetism. In his classic

More information

CHAPTER 6 MICROSTRIP RECTANGULAR PATCH ARRAY WITH FINITE GROUND PLANE EFFECTS

CHAPTER 6 MICROSTRIP RECTANGULAR PATCH ARRAY WITH FINITE GROUND PLANE EFFECTS 107 CHAPTER 6 MICROSTRIP RECTANGULAR PATCH ARRAY WITH FINITE GROUND PLANE EFFECTS 6.1 INTRODUCTION The finite ground plane effects of microstrip antennas are one of the issues for the wireless mobile communication

More information

10.1 Overview. Section 10.1: Overview. Section 10.2: Procedure for Generating Prisms. Section 10.3: Prism Meshing Options

10.1 Overview. Section 10.1: Overview. Section 10.2: Procedure for Generating Prisms. Section 10.3: Prism Meshing Options Chapter 10. Generating Prisms This chapter describes the automatic and manual procedure for creating prisms in TGrid. It also discusses the solution to some common problems that you may face while creating

More information

Aspects of RF Simulation and Analysis Software Methods. David Carpenter. Remcom. B = t. D t. Remcom (Europe)

Aspects of RF Simulation and Analysis Software Methods. David Carpenter. Remcom. B = t. D t. Remcom (Europe) Remcom (Europe) Central Boulevard Blythe Valley Park Solihull West Midlands England, B90 8AG www.remcom.com +44 870 351 7640 +44 870 351 7641 (fax) Aspects of RF Simulation and Analysis Software Methods

More information

E x Direction of Propagation. y B y

E x Direction of Propagation. y B y x E x Direction of Propagation k z z y B y An electromagnetic wave is a travelling wave which has time varying electric and magnetic fields which are perpendicular to each other and the direction of propagation,

More information

newfasant US User Guide

newfasant US User Guide newfasant US User Guide Software Version: 6.2.10 Date: April 15, 2018 Index 1. FILE MENU 2. EDIT MENU 3. VIEW MENU 4. GEOMETRY MENU 5. MATERIALS MENU 6. SIMULATION MENU 6.1. PARAMETERS 6.2. DOPPLER 7.

More information

Optimization of Via Connections between Transmission Lines in Multilayer LTCC- Modules

Optimization of Via Connections between Transmission Lines in Multilayer LTCC- Modules Optimization of Via onnections between Transmission Lines in Multilayer LT-Modules Optimization of Via onnections between Transmission Lines in Multilayer LT- Modules Torsten Thelemann, Heiko Thust, and

More information

THE concept of using a lossy material to absorb an

THE concept of using a lossy material to absorb an 40 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 45, NO. 1, JANUARY 1997 A Comparison of Anisotropic PML to Berenger s PML and Its Application to the Finite-Element Method for EM Scattering Jo-Yu

More information

7.0. Getting Started

7.0. Getting Started 7.0 Getting Started Getting Started Guide Suite 7.0 Copyright 1998 2014: EM Software & Systems-S.A. (Pty) Ltd 32 Techno Avenue, Technopark, Stellenbosch, 7600, South Africa Tel: +27-21-831-1500, Fax: +27-21-880-1936

More information

Exercise 16: Magnetostatics

Exercise 16: Magnetostatics Exercise 16: Magnetostatics Magnetostatics is part of the huge field of electrodynamics, founding on the well-known Maxwell-equations. Time-dependent terms are completely neglected in the computation of

More information

Maxwell v Study of a Permanent Magnet Motor with MAXWELL 3D: Example of the 2004 Prius IPM Motor. Motor Application Note 11.

Maxwell v Study of a Permanent Magnet Motor with MAXWELL 3D: Example of the 2004 Prius IPM Motor. Motor Application Note 11. Study of a Permanent Magnet Motor with MAXWELL 3D: Example of the 2004 Prius IPM Motor Study of a Motor The Electro Mechanical software package provided by Ansoft enables extensive motor simulation. This

More information

SONNET USER S GUIDE RELEASE 11

SONNET USER S GUIDE RELEASE 11 SONNET USER S GUIDE RELEASE 11 Cover: James Clerk Maxwell (1831-1879). A professor at Cambridge University, England, Maxwell established the interdependence of electricity and magnetism. In his classic

More information