Central Manufacturing Technology Institute, Bangalore , India,

Size: px
Start display at page:

Download "Central Manufacturing Technology Institute, Bangalore , India,"

Transcription

1 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India Investigation on the influence of cutting parameters on Machine tool Vibration & Surface finish using MEMS Accelerometer in high N.Kusuma *, Megha Agrawal, P.V.Shashikumar Central Manufacturing Technology Institute, Bangalore , India, Abstract The purpose of this research is to investigate on the influences of cutting parameters on machine tool vibration & surface finish using MEMS Accelerometer in high. The cutting parameters considered are depth of cut, feed rate and spindle speed. In this work, efforts has been made to acquire vibration data on spindle housing using MEMS Accelerometer, measure surface finish and analyse the influence of cutting parameters on machine tool vibration and surface finish using ANOVA technique and also predict the surface roughness using ANN. Here the ANOVA results for full factorial and taguchi design of experiments techniques has been compared and found that taguchi design of experiment is better and reliable to obtain optimal number of experiments. Further the cutting parameters are optimised using genetic algorithm approach, which are required to be sent to CNC machine to improve the surface roughness and control vibration. Keywords: MEMS, Cutting Parameters, ANOVA, Artificial Neural Network (ANN). 1 Introduction: During cutting process in a milling machine, vibration is frequent problem which affects dimensional accuracy of the parts being machined, surface finish and tool life. Vibrations are induced due to machine faults, cutting parameters, cutting tool, work piece deformation, etc. These vibrations are generally collected using accelerometers by mounting on various machine tool elements. In the present technology, there is lot of demand for using micro or MEMS accelerometers in place of normal accelerometers especially in micro and nano machines. To adapt latest technology MEMS accelerometer is used in this present work, these MEMS Accelerometers are of micro size, low cost, low power consumption, easy to integrate into systems. Surface quality is one of the most important requirements in manufacturing industries which is indicated by surface roughness. Surface roughness is mainly affected by cutting conditions (depth of cut, spindle speed, feed rate, etc), process parameters such as tool geometry (tool nose radius, rake angle, edge geometry, etc) and also machine tool vibration. To improve the surface roughness, it is very essential to know the influences or significant effects of cutting parameters on surface roughness and machine tool vibration. The high quality performance and improved production cost in milling machine may be obtained by improving surface roughness. This is achieved by controlling the cutting parameters in the CNC machine. Controlling of cutting parameters in standard CNC machines is very challenging task as CNC control systems are in closed loop environment. The purpose of this research is to investigate on the influences of cutting parameters on machine tool vibration & surface finish. A survey has been made and many researchers have attempted to construct several mathematical models based on statistical regression and artificial neural network to find the relationship between cutting parameters, surface roughness and vibration and also attempt has been made to predict the surface roughness and optimise the cutting parameters. A brief review of the literature survey of the same is highlighted below. Tug rul O zel, Yig it Karpat (2005), used neural network modelling to predict surface roughness and tool flank wear for different variety of cutting conditions in hard turning machine and found that decrease in the feed rate and increase in cutting speed results in better surface roughness. Also increase in work piece hardness resulted in better surface roughness. Durmus Karayel (2009), used ANN method for Prediction and control of Surface roughness in CNC lathe. Control of Surface roughness is done by sending the surface roughness value as feed back to CNC system until the difference 375-1

2 Investigation on the influence of cutting parameters on Machine tool Vibration & Surface finish using MEMS Accelerometer in high between desired and measured value is acceptable for machining accuracy. K.A. Risbood, U.S. Dixit, A.D. Sahasrabudhe (2003), developed ANN models for predicting surface finish and dimensional deviation by measuring cutting forces and vibration and found that turning with carbide tool improves the surface finish with increase in feed. P.G. Benardos, G.C. Vosniakos (2002), developed a neural network modelling for the prediction of surface roughness in CNC face milling machine with Taguchi design of experiments and the most influential factors were found to be feed rate per tooth, Fx component of cutting force, depth of cut. P.Palanisamy, I.Rajendran, S.Shanmugasundaram (2007), have developed mathematical model based on both the material behaviour and the machine dynamics to determine surface roughness and cutting force for milling operations using genetic algorithm. They found that end mill tests done on mild steel gives maximum material removal rate and less amplitude of vibration with optimal cutting parameters. 2 Methodology: The methodology adopted in this work involves conducting experiment on milling machine based on design of experiment (DoE), machine tool vibration data acquisition using MEMS accelerometer, measurement of surface roughness, analysis using analysis of variance (ANOVA) and investigation on influence of cutting parameters on the vibration data and surface roughness values, prediction of surface roughness value, and optimisation of cutting parameters required for adaptive control of cutting parameters using artificial neural network and genetic algorithm approach. 2.1 Design of Experiment (DoE): There are various ways in which design of experiments may be designed and it always depends on the number of factors and number of levels in each factors. Two methods of DoE are full factorial DoE and Taguchi DoE. Full factorial DoE: A full factorial design of experiment consists of two or more factors, each with discrete possible values or "levels", and experiments are performed for all possible combinations of these levels across all such factors. This experiment allows us to study the effect of each factor on the response variable, as well as the effects of interactions between factors on the response variable. Full factorial DoE was designed initially in the presented work considering three cutting parameters or factors such as depth of cut (DoC), feed rate (FR) and spindle speed (SS) with three levels of operation for each factor and the response variables are vibration and surface roughness. The number of levels for each factors considered in this DoE is as shown in Table-1: Table-1: Full Factorial DOE factors and its levels Variables or parameter Level 1 Level 2 Level 3 Depth of Cut (mm) Feed Rate (mm/rev) Spindle Speed (mm/min) If Y = -of-factors, x = of levels of each factor Total number of expts = Y x = 3 3 Therefore total number of expts = 27 experiments Taguchi Design of Experiment: As the number of experiments were too many in full factorial design which involves more machining time and cost, DoE was applied using Taguchi design to get an optimal number of experiments thereby reducing the machining time and cost involved. Taguchi method uses a special set of array called orthogonal array. In general, according to orthogonal array, the number of degrees of freedom is equal to the number of factor multiplied by number of levels for that factor minus one. As we have considered three cutting parameters with 3 levels each. Total degree of freedom = 3 x (3-1) = 6 However according to orthogonal array properties best suitable / closest array chosen is L 9 array for three factors with 3 levels. Therefore total no of experiments using Taguchi L 9 = 3 x 3 = 9 experiments. Table-2 shows the 27 experiments to be conducted for full factorial DoE and possible 9 combinations of experiments chosen for Taguchi DoE (grayed). Table-2: Full Factorial & Taguchi (grayed) Design of Experiment. mm mm/min SS RPM. mm mm/min SS RPM

3 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India Table-2: Full Factorial & Taguchi (grayed) Design of Experiment, Continued. mm mm/min SS RPM. mm mm/min SS RPM Experimentation: As per full factorial and Taguchi DoE method, experiments were conducted on high (make: Schaublin) with Siemens 840D controller. A micro Piezo electric accelerometer with built-in signal conditioning was mounted on the spindle housing to acquire the vibration data. FFT analyser was used to convert time domain vibration data into frequency domain data and data recorder for recording purpose as shown in the Figure-1. Figure-1: Experimental Setup Material used is Aluminium and tool used is 16 teeth end mill of 10mm diameter. After each experiment, surface roughness was measured using surface finish & form measuring machine (make: Talysurf). The vibration data acquired comprised of machine related and cutting process related vibration. Prior to conducting the experiments, good conditioned milling machine was selected without any machine faults such as imbalance, misalignment, mechanical looseness, without bearing and gearbox faults, hence negligible machine related vibration data were noticed during data analysis and noise were eliminated upto 5Hz and highest peak value of remaining data were considered upto 10kHz as cutting process related vibration in this work. 2.3 Results and discussions: ANOVA Analysis: Vibration data and surface roughness values were analysed using Analysis of Variance (ANOVA) method to understand the influences of the cutting parameters on surface roughness R a and vibration. Cutting parameters such as depth of cut, feed rate, and spindle speed were considered as input, vibration and surface roughness R a were considered as output parameters during this ANOVA analysis. In the ANOVA results, F-test values were used at 95 confidence level to decide the significant factors affecting the process and percentage contribution. As per ANOVA analysis, for a particular cutting parameter the p value less than 0.05 (5) and larger F value indicates that the statistically significant effects on the performance of that parameter. The ANOVA results for full factorial design for vibration and surface roughness are as shown in Table-3: Table-3: ANOVA results for Full Factorial Vibration and Surface Roughness DoC DoC E FR FR SS E SS Error Error Results of full factorial DoE: From the above Tables-3, it is clear that cutting parameter feed rate has no significant effect on both vibration and surface roughness R a, spindle speed has more significant effect on vibration and depth of cut has more significant effect on surface roughness R a. The ANOVA results for Taguchi design for vibration and surface roughness are as shown in Table-4: 375-3

4 Investigation on the influence of cutting parameters on Machine tool Vibration & Surface finish using MEMS Accelerometer in high Table-4: ANOVA results for Taguchi DoE Vibration & Surface Roughnesss DoC FR SS Error DoC FR SS Error Results of Taguchi DoE: From the above Tables-4 it is clear that cutting parameter - feed rate has no significant effect on both vibration and surface roughness R a, spindle speed has more significant effect on vibration and depth of cut has more significant effect on surface roughness R a. Results of comparison of full factorial DoE and Taguchi DoE shows that both the cutting parameter influence results obtained for vibration and surface roughness are close to each other and there is more improvement in percentage of DoC-93 on Surface Roughness with minimum or optimal number of experiments conducted using Taguchi DoE method. Hence Taguchi DoE is best suited for conducting experiments. 2.4 Surface Roughness prediction: For improving productivity and quality, there is a need to develop a model that can precisely predict surface roughness based on cutting parameters as well as vibrations. Ideally this module should be capable of monitoring the surface finish in real time. A module was developed in Artificial Neural Network (ANN) using Matlab to predict the surface roughness. Artificial neural networks are made of arrangements of processing elements called neurons. In this work, neural network have been designed and trained to perform a particular function by adjusting the values of the connections (weights) between elements. The network is adjusted,, based on a comparison of the network output and the target, until the output matches with the target. Training of a network proceeds by making weight and bias changes based on an entire set of input vectors. Here input vectors are DoC, FR, SS and Vibration. Output vector is Surface roughness and a Multi Layer Perceptron (MLP) network is used. The artificial neuron model basically consists of a linear combiner followed by an activation function, such as purelin, logsig and tansig. Table-5: Predicted Surface roughness Figure-2: ANN model designed machine for milling In the present work, ANN model is designed as shown in Figure-2, here two hidden layers and logsig transfer function is used for both hidden layers and linear transfer function is used for output layers. The number of neurons in first and second hidden layer is 50 and 4 respectively. Initially the neural network developed is trained with few set of experimental data, i.e., by setting all the necessary parameters such as the number of input neurons, hidden layers, number of neurons in hidden layers and number of output neurons. Initial values of the weights and bias are set randomly and initial values of input vector and target output vector are loaded. The actual output vector and error terms are calculated. The above steps are repeated until the energy function is converged or specified training cycle is completely executed. Further remaining set of experimental data are used for testing purpose. ANN module is tested by setting all neural network parameters. The weight matrix and bias vectors which were set during training are read back and tested. The input vectors are loaded for testing and actual/predicted output (Surface roughness) is calculated. Table-5 gives the measured, predicted Surface roughness and its variation for the experimental setup done in milling operation. Expt Measured Predicted Expt Measured Predicted Variation Variation

5 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India Expt Measured Table-5: Predicted Surface roughness, Continued Predicted Variation Expt Measured Predicted Variation Figure-3: ANN model graph Results: It can be seen from the above graph in Figure-3, that in most cases, the neural network prediction is very close to the measured values i.e upto 75, to get better surface roughness prediction more number of readings need to be fed to the neural network designed during the training and testing of network. 2.5 Optimisation of cutting parameters: The selection of cutting parameters increases the product quality to a great extent by minimizing the surface roughness value. In the present experiment an effort has been made to determine the optimum values of cutting parameters to obtain the best possible surface quality within the specific range. An effective optimization method, Genetic Algorithm module is developed to get optimised cutting parameters. Genetic Algorithm (GA) is a search algorithm for optimisation, based on the mechanics of natural selection and genetics. It begins with set of bit strings called chromosomes that are randomly selected. The entire set of chromosomes creates a population. The chromosomes evolve during several iterations called generations. The new generations are generated utilizing the crossover and mutation technique. In this work Genetic Algorithm approach has been carried out in MATLAB using Optimization tool, to optimise the cutting parameters for milling operation. Following Regression equation were used as fitting function in the GA program Ra = X X X 3 Where X1= DoC, X2=FR and X3=SS Options set: Population size=20, Selection: Roulette method, Generation: 100. Range of cutting parameters were set as Upper Bound (UB) and Lower Bound (LB) in the constraint, here 3 constraints are depth of cut, feed rate and spindle speed Table-6 gives the optimized cutting parameters for the given range of cutting parameter values Table-6: Optimised Cutting parameters Exp. DoC FR Optimiz ed SS Ra

6 Investigation on the influence of cutting parameters on Machine tool Vibration & Surface finish using MEMS Accelerometer in high Table-6:Optimised Cutting parameters, Continued Exp. DoC FR SS Ra Figure-4: Fitness Curve after optimisation Results: Based on the Regression equation, the surface roughness values were fitted as shown in Figure-4, and optimised surface roughness value and cutting parameters were obtained. Upto 70 surface roughness values were closely fitted with respect to surface roughness value measured. In order to improve the surface roughness and reduce vibration which in turn improves quality of the product, the optimized cutting parameters need to be sent or communicated to the CNC control system. As the standard CNC control system works in close loop environment, the best method of sending/communicating the cutting parameters into the CNC machine is through the PLC of the CNC machine. number of experiments. Investigation on the influences of cutting parameters on machine tool vibration & surface finish in high precision CNC milling machine shows that spindle speed has more significant effect on vibration and depth of cut has more significant effect on surface roughness in milling machine. The important fact is that normal accelerometers can be replaced by MEMS accelerometers to mount on CNC machine tool their by miniaturizing it. Future focus of this work is to send/communicate optimised cutting parameters into the CNC machine to improve surface roughness and reduce vibration. 4 References: Tug rul O zel, Yig it Karpat (2005), Predictive modelling of surface roughness and tool wear in hard turning using regression and neural networks, International Journal of Machine Tools & Manufacture 45, pp Durmus Karayel (2009), Prediction and control of Surface roughness in CNC lathe using artificial neural network, Journal of Materials Processing Technology 209, pp K.A. Risbood, U.S. Dixit, A.D. Sahasrabudhe (2003), Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process, Journal of Materials Processing Technology 132, pp P.G. Benardos, G.C. Vosniakos (2002), Prediction of surface roughness in CNC face milling using neural networks and Taguchi s design of experiments, Robotics and Computer Integrated Manufacturing 18, pp P. Palanisamy. I. Rajendran. S. Shanmugasundaram (2007), Optimization of machining parameters using genetic algorithm and experimental validation for end-milling operations, International Journal of Advanced Manufacturing Technology 32, pp Conclusions: This work describes the method involved to acquire and analyse the vibration data, predict the surface roughness and optimise the cutting parameters on the CNC machine tool under cutting conditions such as depth of cut, feed rate and spindle speed in milling machine. Taguchi is the best Design of Experiment (DoE) method to achieve the optimum 375-6

Study & Optimization of Parameters for Optimum Cutting condition during Turning Process using Response Surface Methodology

Study & Optimization of Parameters for Optimum Cutting condition during Turning Process using Response Surface Methodology 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India Study & Optimization of Parameters for

More information

CORRELATION AMONG THE CUTTING PARAMETERS, SURFACE ROUGHNESS AND CUTTING FORCES IN TURNING PROCESS BY EXPERIMENTAL STUDIES

CORRELATION AMONG THE CUTTING PARAMETERS, SURFACE ROUGHNESS AND CUTTING FORCES IN TURNING PROCESS BY EXPERIMENTAL STUDIES 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India CORRELATION AMONG THE CUTTING PARAMETERS,

More information

Volume 4, Issue 1 (2016) ISSN International Journal of Advance Research and Innovation

Volume 4, Issue 1 (2016) ISSN International Journal of Advance Research and Innovation Volume 4, Issue 1 (216) 314-32 ISSN 2347-328 Surface Texture Analysis in Milling of Mild Steel Using HSS Face and Milling Cutter Rajesh Kumar, Vipin Department of Production and Industrial Engineering,

More information

Multi-Objective Optimization of Milling Parameters for Machining Cast Iron on Machining Centre

Multi-Objective Optimization of Milling Parameters for Machining Cast Iron on Machining Centre Research Journal of Engineering Sciences ISSN 2278 9472 Multi-Objective Optimization of Milling Parameters for Machining Cast Iron on Machining Centre Abstract D.V.V. Krishna Prasad and K. Bharathi R.V.R

More information

Volume 1, Issue 3 (2013) ISSN International Journal of Advance Research and Innovation

Volume 1, Issue 3 (2013) ISSN International Journal of Advance Research and Innovation Application of ANN for Prediction of Surface Roughness in Turning Process: A Review Ranganath M S *, Vipin, R S Mishra Department of Mechanical Engineering, Dehli Technical University, New Delhi, India

More information

Development of an Artificial Neural Network Surface Roughness Prediction Model in Turning of AISI 4140 Steel Using Coated Carbide Tool

Development of an Artificial Neural Network Surface Roughness Prediction Model in Turning of AISI 4140 Steel Using Coated Carbide Tool ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization, Volume 2, Special Issue

More information

Experimental Study of the Effects of Machining Parameters on the Surface Roughness in the Turning Process

Experimental Study of the Effects of Machining Parameters on the Surface Roughness in the Turning Process International Journal of Computer Engineering in Research Trends Multidisciplinary, Open Access, Peer-Reviewed and fully refereed Research Paper Volume-5, Issue-5,2018 Regular Edition E-ISSN: 2349-7084

More information

Predetermination of Surface Roughness by the Cutting Parameters Using Turning Center

Predetermination of Surface Roughness by the Cutting Parameters Using Turning Center Predetermination of Surface Roughness by the Cutting Parameters Using Turning Center 1 N.MANOJ, 2 A.DANIEL, 3 A.M.KRUBAKARA ADITHHYA, 4 P.BABU, 5 M.PRADEEP Assistant Professor, Dept. of Mechanical Engineering,

More information

Volume 3, Issue 3 (2015) ISSN International Journal of Advance Research and Innovation

Volume 3, Issue 3 (2015) ISSN International Journal of Advance Research and Innovation Experimental Study of Surface Roughness in CNC Turning Using Taguchi and ANOVA Ranganath M.S. *, Vipin, Kuldeep, Rayyan, Manab, Gaurav Department of Mechanical Engineering, Delhi Technological University,

More information

CHAPTER 5 SINGLE OBJECTIVE OPTIMIZATION OF SURFACE ROUGHNESS IN TURNING OPERATION OF AISI 1045 STEEL THROUGH TAGUCHI S METHOD

CHAPTER 5 SINGLE OBJECTIVE OPTIMIZATION OF SURFACE ROUGHNESS IN TURNING OPERATION OF AISI 1045 STEEL THROUGH TAGUCHI S METHOD CHAPTER 5 SINGLE OBJECTIVE OPTIMIZATION OF SURFACE ROUGHNESS IN TURNING OPERATION OF AISI 1045 STEEL THROUGH TAGUCHI S METHOD In the present machine edge, surface roughness on the job is one of the primary

More information

An Experimental Analysis of Surface Roughness

An Experimental Analysis of Surface Roughness An Experimental Analysis of Surface Roughness P.Pravinkumar, M.Manikandan, C.Ravindiran Department of Mechanical Engineering, Sasurie college of engineering, Tirupur, Tamilnadu ABSTRACT The increase of

More information

Optimisation of Quality and Prediction of Machining Parameter for Surface Roughness in CNC Turning on EN8

Optimisation of Quality and Prediction of Machining Parameter for Surface Roughness in CNC Turning on EN8 Indian Journal of Science and Technology, Vol 9(48), DOI: 10.17485/ijst/2016/v9i48/108431, December 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Optimisation of Quality and Prediction of Machining

More information

Volume 3, Special Issue 3, March 2014

Volume 3, Special Issue 3, March 2014 ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference

More information

Optimization of Surface Roughness in End Milling of Medium Carbon Steel by Coupled Statistical Approach with Genetic Algorithm

Optimization of Surface Roughness in End Milling of Medium Carbon Steel by Coupled Statistical Approach with Genetic Algorithm Optimization of Surface Roughness in End Milling of Medium Carbon Steel by Coupled Statistical Approach with Genetic Algorithm Md. Anayet Ullah Patwari Islamic University of Technology (IUT) Department

More information

MATHEMATICAL MODEL FOR SURFACE ROUGHNESS OF 2.5D MILLING USING FUZZY LOGIC MODEL.

MATHEMATICAL MODEL FOR SURFACE ROUGHNESS OF 2.5D MILLING USING FUZZY LOGIC MODEL. INTERNATIONAL JOURNAL OF R&D IN ENGINEERING, SCIENCE AND MANAGEMENT Vol.1, Issue I, AUG.2014 ISSN 2393-865X Research Paper MATHEMATICAL MODEL FOR SURFACE ROUGHNESS OF 2.5D MILLING USING FUZZY LOGIC MODEL.

More information

Optimization of Turning Process during Machining of Al-SiCp Using Genetic Algorithm

Optimization of Turning Process during Machining of Al-SiCp Using Genetic Algorithm Optimization of Turning Process during Machining of Al-SiCp Using Genetic Algorithm P. G. Karad 1 and D. S. Khedekar 2 1 Post Graduate Student, Mechanical Engineering, JNEC, Aurangabad, Maharashtra, India

More information

Keywords: Turning operation, Surface Roughness, Machining Parameter, Software Qualitek 4, Taguchi Technique, Mild Steel.

Keywords: Turning operation, Surface Roughness, Machining Parameter, Software Qualitek 4, Taguchi Technique, Mild Steel. Optimizing the process parameters of machinability through the Taguchi Technique Mukesh Kumar 1, Sandeep Malik 2 1 Research Scholar, UIET, Maharshi Dayanand University, Rohtak, Haryana, India 2 Assistant

More information

CHAPTER 4. OPTIMIZATION OF PROCESS PARAMETER OF TURNING Al-SiC p (10P) MMC USING TAGUCHI METHOD (SINGLE OBJECTIVE)

CHAPTER 4. OPTIMIZATION OF PROCESS PARAMETER OF TURNING Al-SiC p (10P) MMC USING TAGUCHI METHOD (SINGLE OBJECTIVE) 55 CHAPTER 4 OPTIMIZATION OF PROCESS PARAMETER OF TURNING Al-SiC p (0P) MMC USING TAGUCHI METHOD (SINGLE OBJECTIVE) 4. INTRODUCTION This chapter presents the Taguchi approach to optimize the process parameters

More information

A.M.Badadhe 1, S. Y. Bhave 2, L. G. Navale 3 1 (Department of Mechanical Engineering, Rajarshi Shahu College of Engineering, Pune, India)

A.M.Badadhe 1, S. Y. Bhave 2, L. G. Navale 3 1 (Department of Mechanical Engineering, Rajarshi Shahu College of Engineering, Pune, India) IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) ISSN (e): 2278-1684, ISSN (p): 2320 334X, PP: 10-15 www.iosrjournals.org Optimization of Cutting Parameters in Boring Operation A.M.Badadhe

More information

ANN Based Surface Roughness Prediction In Turning Of AA 6351

ANN Based Surface Roughness Prediction In Turning Of AA 6351 ANN Based Surface Roughness Prediction In Turning Of AA 6351 Konani M. Naidu 1, Sadineni Rama Rao 2 1, 2 (Department of Mechanical Engineering, SVCET, RVS Nagar, Chittoor-517127, A.P, India) ABSTRACT Surface

More information

APPLICATION OF GREY BASED TAGUCHI METHOD IN MULTI-RESPONSE OPTIMIZATION OF TURNING PROCESS

APPLICATION OF GREY BASED TAGUCHI METHOD IN MULTI-RESPONSE OPTIMIZATION OF TURNING PROCESS Advances in Production Engineering & Management 5 (2010) 3, 171-180 ISSN 1854-6250 Scientific paper APPLICATION OF GREY BASED TAGUCHI METHOD IN MULTI-RESPONSE OPTIMIZATION OF TURNING PROCESS Ahilan, C

More information

REST Journal on Emerging trends in Modelling and Manufacturing Vol:3(3),2017 REST Publisher ISSN:

REST Journal on Emerging trends in Modelling and Manufacturing Vol:3(3),2017 REST Publisher ISSN: REST Journal on Emerging trends in Modelling and Manufacturing Vol:3(3),2017 REST Publisher ISSN: 2455-4537 Website: www.restpublisher.com/journals/jemm Modeling for investigation of effect of cutting

More information

Optimization of turning parameters for machinability using Taguchi method An experimental investigation

Optimization of turning parameters for machinability using Taguchi method An experimental investigation Optimization of turning parameters for machinability using Taguchi method An experimental investigation N B DoddaPatter* 1, H M Somashekar 1, Dr. N. Lakshmana swamy 2, Dr. Y.Vijayakumar 3 1 Research Scholar,

More information

Optimization of Process Parameters of CNC Milling

Optimization of Process Parameters of CNC Milling Optimization of Process Parameters of CNC Milling Malay, Kishan Gupta, JaideepGangwar, Hasrat Nawaz Khan, Nitya Prakash Sharma, Adhirath Mandal, Sudhir Kumar, RohitGarg Department of Mechanical Engineering,

More information

An Experimental Study of Influence of Frictional Force, Temperature and Optimization of Process Parameters During Machining of Mild Steel Material

An Experimental Study of Influence of Frictional Force, Temperature and Optimization of Process Parameters During Machining of Mild Steel Material An Experimental Study of Influence of Frictional Force, Temperature and Optimization of Process Parameters During Machining of Mild Steel Material Ankit U 1, D Ramesh Rao 2, Lokesha 3 1, 2, 3, 4 Department

More information

OPTIMIZATION OF MACHINING PARAMETERS FOR FACE MILLING OPERATION IN A VERTICAL CNC MILLING MACHINE USING GENETIC ALGORITHM

OPTIMIZATION OF MACHINING PARAMETERS FOR FACE MILLING OPERATION IN A VERTICAL CNC MILLING MACHINE USING GENETIC ALGORITHM OPTIMIZATION OF MACHINING PARAMETERS FOR FACE MILLING OPERATION IN A VERTICAL CNC MILLING MACHINE USING GENETIC ALGORITHM Milon D. Selvam Research Scholar, Department of Mechanical Engineering, Dr.A.K.Shaik

More information

Optimization of Machining Parameters for Turned Parts through Taguchi s Method Vijay Kumar 1 Charan Singh 2 Sunil 3

Optimization of Machining Parameters for Turned Parts through Taguchi s Method Vijay Kumar 1 Charan Singh 2 Sunil 3 IJSRD - International Journal for Scientific Research & Development Vol., Issue, IN (online): -6 Optimization of Machining Parameters for Turned Parts through Taguchi s Method Vijay Kumar Charan Singh

More information

Use of Artificial Neural Networks to Investigate the Surface Roughness in CNC Milling Machine

Use of Artificial Neural Networks to Investigate the Surface Roughness in CNC Milling Machine Use of Artificial Neural Networks to Investigate the Surface Roughness in CNC Milling Machine M. Vijay Kumar Reddy 1 1 Department of Mechanical Engineering, Annamacharya Institute of Technology and Sciences,

More information

Available online at ScienceDirect. Procedia Engineering 97 (2014 )

Available online at   ScienceDirect. Procedia Engineering 97 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 97 (2014 ) 365 371 12th GLOBAL CONGRESS ON MANUFACTURING AND MANAGEMENT, GCMM 2014 Optimization and Prediction of Parameters

More information

[Mahajan*, 4.(7): July, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Mahajan*, 4.(7): July, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 [Mahajan*, 4.(7): July, 05] ISSN: 77-9655 (IOR), Publication Impact Factor:.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY OPTIMIZATION OF SURFACE GRINDING PROCESS PARAMETERS

More information

Experimental Investigation of Material Removal Rate in CNC TC Using Taguchi Approach

Experimental Investigation of Material Removal Rate in CNC TC Using Taguchi Approach February 05, Volume, Issue JETIR (ISSN-49-56) Experimental Investigation of Material Removal Rate in CNC TC Using Taguchi Approach Mihir Thakorbhai Patel Lecturer, Mechanical Engineering Department, B.

More information

Analyzing the Effect of Overhang Length on Vibration Amplitude and Surface Roughness in Turning AISI 304. Farhana Dilwar, Rifat Ahasan Siddique

Analyzing the Effect of Overhang Length on Vibration Amplitude and Surface Roughness in Turning AISI 304. Farhana Dilwar, Rifat Ahasan Siddique 173 Analyzing the Effect of Overhang Length on Vibration Amplitude and Surface Roughness in Turning AISI 304 Farhana Dilwar, Rifat Ahasan Siddique Abstract In this paper, the experimental investigation

More information

Application of Taguchi Method in the Optimization of Cutting Parameters for Surface Roughness in Turning on EN-362 Steel

Application of Taguchi Method in the Optimization of Cutting Parameters for Surface Roughness in Turning on EN-362 Steel IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 02 July 2015 ISSN (online): 2349-6010 Application of Taguchi Method in the Optimization of Cutting Parameters

More information

OPTIMIZATION FOR SURFACE ROUGHNESS, MRR, POWER CONSUMPTION IN TURNING OF EN24 ALLOY STEEL USING GENETIC ALGORITHM

OPTIMIZATION FOR SURFACE ROUGHNESS, MRR, POWER CONSUMPTION IN TURNING OF EN24 ALLOY STEEL USING GENETIC ALGORITHM Int. J. Mech. Eng. & Rob. Res. 2014 M Adinarayana et al., 2014 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 3, No. 1, January 2014 2014 IJMERR. All Rights Reserved OPTIMIZATION FOR SURFACE ROUGHNESS,

More information

Optimization of Cutting Parameters for Milling Operation using Genetic Algorithm technique through MATLAB

Optimization of Cutting Parameters for Milling Operation using Genetic Algorithm technique through MATLAB International Journal for Ignited Minds (IJIMIINDS) Optimization of Cutting Parameters for Milling Operation using Genetic Algorithm technique through MATLAB A M Harsha a & Ramesh C G c a PG Scholar, Department

More information

Surface Roughness Prediction of Al2014t4 by Responsive Surface Methodology

Surface Roughness Prediction of Al2014t4 by Responsive Surface Methodology IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 02 July 2015 ISSN (online): 2349-6010 Surface Roughness Prediction of Al2014t4 by Responsive Surface Methodology

More information

EFFECT OF CUTTING SPEED, FEED RATE AND DEPTH OF CUT ON SURFACE ROUGHNESS OF MILD STEEL IN TURNING OPERATION

EFFECT OF CUTTING SPEED, FEED RATE AND DEPTH OF CUT ON SURFACE ROUGHNESS OF MILD STEEL IN TURNING OPERATION EFFECT OF CUTTING SPEED, FEED RATE AND DEPTH OF CUT ON SURFACE ROUGHNESS OF MILD STEEL IN TURNING OPERATION Mr. M. G. Rathi1, Ms. Sharda R. Nayse2 1 mgrathi_kumar@yahoo.co.in, 2 nsharda@rediffmail.com

More information

Analysis and Optimization of Parameters Affecting Surface Roughness in Boring Process

Analysis and Optimization of Parameters Affecting Surface Roughness in Boring Process International Journal of Advanced Mechanical Engineering. ISSN 2250-3234 Volume 4, Number 6 (2014), pp. 647-655 Research India Publications http://www.ripublication.com Analysis and Optimization of Parameters

More information

EVALUATION OF OPTIMAL MACHINING PARAMETERS OF NICROFER C263 ALLOY USING RESPONSE SURFACE METHODOLOGY WHILE TURNING ON CNC LATHE MACHINE

EVALUATION OF OPTIMAL MACHINING PARAMETERS OF NICROFER C263 ALLOY USING RESPONSE SURFACE METHODOLOGY WHILE TURNING ON CNC LATHE MACHINE EVALUATION OF OPTIMAL MACHINING PARAMETERS OF NICROFER C263 ALLOY USING RESPONSE SURFACE METHODOLOGY WHILE TURNING ON CNC LATHE MACHINE MOHAMMED WASIF.G 1 & MIR SAFIULLA 2 1,2 Dept of Mechanical Engg.

More information

OPTIMIZATION OF TURNING PARAMETERS FOR SURFACE ROUGHNESS USING RSM AND GA

OPTIMIZATION OF TURNING PARAMETERS FOR SURFACE ROUGHNESS USING RSM AND GA Advances in Production Engineering & Management 6 (2011) 3, 197-208 ISSN 1854-6250 Scientific paper OPTIMIZATION OF TURNING PARAMETERS FOR SURFACE ROUGHNESS USING RSM AND GA Sahoo, P. Department of Mechanical

More information

Optimizing Turning Process by Taguchi Method Under Various Machining Parameters

Optimizing Turning Process by Taguchi Method Under Various Machining Parameters Optimizing Turning Process by Taguchi Method Under Various Machining Parameters Narendra Kumar Verma 1, Ajeet Singh Sikarwar 2 1 M.Tech. Scholar, Department of Mechanical Engg., MITS College, Gwalior,M.P.,INDIA

More information

Optimization of Milling Parameters for Minimum Surface Roughness Using Taguchi Method

Optimization of Milling Parameters for Minimum Surface Roughness Using Taguchi Method Optimization of Milling Parameters for Minimum Surface Roughness Using Taguchi Method Mahendra M S 1, B Sibin 2 1 PG Scholar, Department of Mechanical Enginerring, Sree Narayana Gurukulam College of Engineering

More information

Key Words: DOE, ANOVA, RSM, MINITAB 14.

Key Words: DOE, ANOVA, RSM, MINITAB 14. ISO 9:28 Certified Volume 4, Issue 4, October 24 Experimental Analysis of the Effect of Process Parameters on Surface Finish in Radial Drilling Process Dayal Saran P BalaRaju J Associate Professor, Department

More information

International Journal of Industrial Engineering Computations

International Journal of Industrial Engineering Computations International Journal of Industrial Engineering Computations 4 (2013) 325 336 Contents lists available at GrowingScience International Journal of Industrial Engineering Computations homepage: www.growingscience.com/ijiec

More information

International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 INTERNATIONAL JOURNAL OF MECHANICAL

International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 INTERNATIONAL JOURNAL OF MECHANICAL INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) ISSN 0976 6340 (Print) ISSN 0976 6359 (Online) Volume 3, Issue 2, May-August (2012), pp. 162-170 IAEME: www.iaeme.com/ijmet.html Journal

More information

Experimental Investigation and Development of Multi Response ANN Modeling in Turning Al-SiCp MMC using Polycrystalline Diamond Tool

Experimental Investigation and Development of Multi Response ANN Modeling in Turning Al-SiCp MMC using Polycrystalline Diamond Tool Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Experimental

More information

Optimization of Roughness Value by using Tool Inserts of Nose Radius 0.4mm in Finish Hard-Turning of AISI 4340 Steel

Optimization of Roughness Value by using Tool Inserts of Nose Radius 0.4mm in Finish Hard-Turning of AISI 4340 Steel http:// Optimization of Roughness Value by using Tool Inserts of Nose Radius 0.4mm in Finish Hard-Turning of AISI 4340 Steel Mr. Pratik P. Mohite M.E. Student, Mr. Vivekanand S. Swami M.E. Student, Prof.

More information

Empirical Modeling of Cutting Forces in Ball End Milling using Experimental Design

Empirical Modeling of Cutting Forces in Ball End Milling using Experimental Design 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India Empirical Modeling of Cutting Forces in

More information

Australian Journal of Basic and Applied Sciences. Surface Roughness Optimization of Brass Reinforced Epoxy Composite Using CNC Milling Process

Australian Journal of Basic and Applied Sciences. Surface Roughness Optimization of Brass Reinforced Epoxy Composite Using CNC Milling Process AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Surface Roughness Optimization of Brass Reinforced Epoxy Composite Using CNC Milling Process

More information

Experimental Analysis and Optimization of Cutting Parameters for the Surface Roughness in the Facing Operation of PMMA Material

Experimental Analysis and Optimization of Cutting Parameters for the Surface Roughness in the Facing Operation of PMMA Material IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X PP. 52-60 www.iosrjournals.org Experimental Analysis and Optimization of Cutting Parameters for the Surface

More information

Influence of insert geometry and cutting parameters on surface roughness of 080M40 Steel in turning process

Influence of insert geometry and cutting parameters on surface roughness of 080M40 Steel in turning process Influence of insert geometry and cutting parameters on surface roughness of 080M40 Steel in turning process K.G.Nikam 1, S.S.Kadam 2 1 Assistant Professor, Mechanical Engineering Department, Gharda Institute

More information

Umesh C K Department of Mechanical Engineering University Visvesvaraya College of Engineering Bangalore

Umesh C K Department of Mechanical Engineering University Visvesvaraya College of Engineering Bangalore Analysis And Prediction Of Feed Force, Tangential Force, Surface Roughness And Flank Wear In Turning With Uncoated Carbide Cutting Tool Using Both Taguchi And Grey Based Taguchi Method Manjunatha R Department

More information

ANN Based Prediction of Surface Roughness in Turning

ANN Based Prediction of Surface Roughness in Turning ANN Based Prediction of Surface Roughness in Turning Diwakar Reddy.V, Krishnaiah.G, A. Hemanth Kumar and Sushil Kumar Priya Abstract Surface roughness, an indicator of surface quality is one of the most

More information

Multi-Objective Optimization of End-Milling Process Parameters Using Grey-Taguchi Approach

Multi-Objective Optimization of End-Milling Process Parameters Using Grey-Taguchi Approach Page26 Multi-Objective Optimization of End-Milling Process Parameters Using Grey-Taguchi Approach Chitrasen Samantra*, Debasish Santosh Roy**, Amit Kumar Saraf***, & Bikash Kumar Dehury****, *Assistant

More information

International Journal of Engineering Trends and Technology (IJETT) Volume 48 Number 1 June 2017

International Journal of Engineering Trends and Technology (IJETT) Volume 48 Number 1 June 2017 International Journal of Engineering Trends and Technology (IJETT) Volume 48 Number June 07 Optimization of Process Parameters for Milling Operation using Taguchi Method K.Prasadraju #, M. Satish raja

More information

EFFECTS OF PROCESS PARAMETERS ON THE QUALITY OF PARTS PROCESSED BY SINGLE POINT INCREMENTAL FORMING

EFFECTS OF PROCESS PARAMETERS ON THE QUALITY OF PARTS PROCESSED BY SINGLE POINT INCREMENTAL FORMING International Journal of Modern Manufacturing Technologies ISSN 2067 3604, Vol. III, No. 2 / 2011 91 EFFECTS OF PROCESS PARAMETERS ON THE QUALITY OF PARTS PROCESSED BY SINGLE POINT INCREMENTAL FORMING

More information

A Generic Framework to Optimize the Total Cost of Machining By Numerical Approach

A Generic Framework to Optimize the Total Cost of Machining By Numerical Approach IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 4 Ver. V (Jul- Aug. 2014), PP 17-22 A Generic Framework to Optimize the Total Cost of

More information

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 02 Issue: 05 Aug p-issn:

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 02 Issue: 05 Aug p-issn: Investigation of the Effect of Machining Parameters on Surface Roughness and Power Consumption during the Machining of AISI 304 Stainless Steel by DOE Approach Sourabh Waychal 1, Anand V. Kulkarni 2 1

More information

Analysis of Surface Roughness in Turning with Coated Carbide Cutting Tools: Prediction Model and Cutting Conditions Optimization

Analysis of Surface Roughness in Turning with Coated Carbide Cutting Tools: Prediction Model and Cutting Conditions Optimization 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India Analysis of Surface Roughness in Turning

More information

Optimization of Process Parameters in Turning Operation Using Taguchi Method and Anova: A Review

Optimization of Process Parameters in Turning Operation Using Taguchi Method and Anova: A Review Optimization of Process Parameters in Turning Operation Using Taguchi Method and Anova: A Review Ranganath M S, Vipin Department of Mechanical Engineering, Delhi Technological University, New Delhi, India

More information

Optimization of End Milling Process Parameters for Minimization of Surface Roughness of AISI D2 Steel

Optimization of End Milling Process Parameters for Minimization of Surface Roughness of AISI D2 Steel Optimization of End Milling Process Parameters for Minimization of Surface Roughness of AISI D2 Steel Pankaj Chandna, Dinesh Kumar Abstract The present work analyses different parameters of end milling

More information

MODELING OF MACHINING PROCESS USING ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) TO PREDICT PROCESS OUTPUT VARIABLES: A REVIEW

MODELING OF MACHINING PROCESS USING ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) TO PREDICT PROCESS OUTPUT VARIABLES: A REVIEW International Journal of Mechanical and Materials Engineering (IJMME), Vol.6 (2011), No.2, 178-182 MODELING OF MACHINING PROCESS USING ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) TO PREDICT PROCESS OUTPUT

More information

Prediction of Drill Flank Wear Using Radial Basis Function Neural Network

Prediction of Drill Flank Wear Using Radial Basis Function Neural Network Prediction of Drill Flank Wear Using Radial Basis Function Neural Network S. S. Panda 1, # D. Chakraborty 1, S. K. Pal 2 1 Department of Mechanical Engineering, Indian Institute of Technology, Guwahati,

More information

Optimization of process parameters in CNC milling for machining P20 steel using NSGA-II

Optimization of process parameters in CNC milling for machining P20 steel using NSGA-II IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 14, Issue 3 Ver. V. (May - June 2017), PP 57-63 www.iosrjournals.org Optimization of process parameters

More information

OPTIMIZATION OF CNC END MILLING OF BRASS USING HYBRID TAGUCHI METHOD USING PCA AND GREY RELATIONAL ANALYSIS

OPTIMIZATION OF CNC END MILLING OF BRASS USING HYBRID TAGUCHI METHOD USING PCA AND GREY RELATIONAL ANALYSIS International Journal of Mechanical and Production Engineering Research and Development (IJMPERD) ISSN 2249-6890 Vol. 3, Issue 1, Mar 2013, 227-240 TJPRC Pvt. Ltd. OPTIMIZATION OF CNC END MILLING OF BRASS

More information

Study of microedm parameters of Stainless Steel 316L: Material Removal Rate Optimization using Genetic Algorithm

Study of microedm parameters of Stainless Steel 316L: Material Removal Rate Optimization using Genetic Algorithm Study of microedm parameters of Stainless Steel 316L: Material Removal Rate Optimization using Genetic Algorithm Suresh P #1, Venkatesan R #, Sekar T *3, Sathiyamoorthy V **4 # Professor, Department of

More information

Experimental Study and Parameter Optimization of Turning Operation of Aluminium Alloy-2014

Experimental Study and Parameter Optimization of Turning Operation of Aluminium Alloy-2014 Experimental Study and Parameter Optimization of Turning Operation of Aluminium Alloy-2014 Arjun Pridhvijit 1, Dr. Binu C Yeldose 2 1PG Scholar, Department of Mechanical Engineering, MA college of Engineering

More information

RESEARCH ABOUT ROUGHNESS FOR MATING MEMBERS OF A CYLINDRICAL FINE FIT AFTER TURNING WITH SMALL CUTTING FEEDS

RESEARCH ABOUT ROUGHNESS FOR MATING MEMBERS OF A CYLINDRICAL FINE FIT AFTER TURNING WITH SMALL CUTTING FEEDS International Conference on Economic Engineering and Manufacturing Systems Braşov, 26 27 November 2009 RESEARCH ABOUT ROUGHNESS FOR MATING MEMBERS OF A CYLINDRICAL FINE FIT AFTER TURNING WITH SMALL CUTTING

More information

Optimization of balance weight of unbalanced turning operation with optimized cutting parameter

Optimization of balance weight of unbalanced turning operation with optimized cutting parameter Optimization of balance weight of unbalanced turning operation with optimized cutting parameter Prof. Hemant K. Shete DACOE Karad, Maharashtra, India Prof. Vishal N. Gandhe DACOE Karad, Maharashtra, India

More information

Analysis and Effect of Process Parameters on Surface Roughness and Tool Flank Wear in Facing Operation

Analysis and Effect of Process Parameters on Surface Roughness and Tool Flank Wear in Facing Operation Analysis and Effect of Process Parameters on Surface Roughness and Tool Flank Wear in Facing Operation BADRU DOJA and DR.D.K.SINGH Department of Mechanical Engineering Madan Mohan Malaviya Engineering

More information

Pradeep Kumar J, Giriprasad C R

Pradeep Kumar J, Giriprasad C R ISSN: 78 7798 Investigation on Application of Fuzzy logic Concept for Evaluation of Electric Discharge Machining Characteristics While Machining Aluminium Silicon Carbide Composite Pradeep Kumar J, Giriprasad

More information

A Review on Mild Steel Drilling Process Parameters for Quality Enhancement

A Review on Mild Steel Drilling Process Parameters for Quality Enhancement BUSINESS AND TECHNOLOGY (IJSSBT), Vol. 4, No. 1, Nov. 015 ISSN (Print) 77 761 A Review on Mild Steel Drilling Process Parameters for Quality Enhancement 1 Tilottama A. Chaudhari 1 P.G. Student, Department

More information

International Journal on Emerging Technologies 1(2): (2010) ISSN :

International Journal on Emerging Technologies 1(2): (2010) ISSN : e t International Journal on Emerging Technologies 1(2): 100-105(2010) ISSN : 0975-8364 A robust parameter design study in turning bright mild steel based on taguchi method Mohan Singh, Dharmpal Deepak,

More information

CNC Milling Machines Advanced Cutting Strategies for Forging Die Manufacturing

CNC Milling Machines Advanced Cutting Strategies for Forging Die Manufacturing CNC Milling Machines Advanced Cutting Strategies for Forging Die Manufacturing Bansuwada Prashanth Reddy (AMS ) Department of Mechanical Engineering, Malla Reddy Engineering College-Autonomous, Maisammaguda,

More information

FRACTAL DIMENSION MODELING IN CNC MILLING USING TAGUCHI METHOD

FRACTAL DIMENSION MODELING IN CNC MILLING USING TAGUCHI METHOD Proceedings of the International Conference on Mechanical Engineering 2009 (ICME2009) 26-28 December 2009, Dhaka, Bangladesh ICME09- FRACTAL DIMENSION MODELING IN CNC MILLING USING TAGUCHI METHOD T. K.

More information

A Neuro-Genetic Approach for Multi-Objective Optimization of Process Variables in Drilling

A Neuro-Genetic Approach for Multi-Objective Optimization of Process Variables in Drilling gopalax -International Journal of Technology And Engineering System(IJTES): Jan March 2011- Vol2.No1. A Neuro-Genetic Approach for Multi-Objective Optimization of Process Variables in Drilling Jyotiprakash

More information

Evaluation of Optimal Cutting Parameters in CNC Milling Of NIMONIC 75 Using RSM

Evaluation of Optimal Cutting Parameters in CNC Milling Of NIMONIC 75 Using RSM ISSN(Online) : 2319-8753 ISSN (Print) : 2347-6710 Evaluation of Optimal Cutting Parameters in CNC Milling Of NIMONIC 75 Using RSM S.Vajeeha 1, K.Mohammad Farhood 2, Dr.T.Vishnu Vardhan 3, Dr.G.Harinath

More information

A Real Coded Genetic Algorithm for Optimization of Cutting Parameters in Turning

A Real Coded Genetic Algorithm for Optimization of Cutting Parameters in Turning IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008 189 A Real Coded Genetic Algorithm for Optimization of Cutting Parameters in Turning T. Srikanth and Dr V. kamala

More information

Analysis of Surface Roughness for Turning of Aluminium (6061) Using Regression Analysis

Analysis of Surface Roughness for Turning of Aluminium (6061) Using Regression Analysis Analysis of Surface Roughness for Turning of Aluminium (6061) Using Regression Analysis Zainul abdin shekh, Tasmeem Ahmad Khan Department of Mechanical Engineering, Al- Falah School of Engineering & Technology,

More information

An Investigation of Effect of Dressing Parameters for Minimum Surface Roughness using CNC Cylindrical Grinding Machine. Dadaso D.

An Investigation of Effect of Dressing Parameters for Minimum Surface Roughness using CNC Cylindrical Grinding Machine. Dadaso D. An Investigation of Effect of Dressing Parameters for Minimum Surface Roughness using CNC Cylindrical Grinding Machine Dadaso D. Mohite 1, PG Scholar, Pune University, NBN Sinhgad School of Engineering,

More information

Parametric Optimization of Machining Parameters using Graph Theory and Matrix Approach

Parametric Optimization of Machining Parameters using Graph Theory and Matrix Approach 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India Parametric Optimization of Machining Parameters

More information

Optimization of turning parameters for surface roughness

Optimization of turning parameters for surface roughness Optimization of turning parameters for surface roughness DAHBI Samya, EL MOUSSAMI Haj Research Team: Mechanics and Integrated Engineering ENSAM-Meknes, Moulay Ismail University Meknes, Morocco samya.ensam@gmail.com,

More information

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET)

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 ISSN 0976 6340 (Print) ISSN 0976 6359 (Online) Volume

More information

Research Article Optimization of Process Parameters in Injection Moulding of FR Lever Using GRA and DFA and Validated by Ann

Research Article Optimization of Process Parameters in Injection Moulding of FR Lever Using GRA and DFA and Validated by Ann Research Journal of Applied Sciences, Engineering and Technology 11(8): 817-826, 2015 DOI: 10.19026/rjaset.11.2090 ISSN: 2040-7459; e-issn: 2040-7467 2015 Maxwell Scientific Publication Corp. Submitted:

More information

OPTIMIZATION OF MACHINING PARAMETER FOR TURNING OF EN 16 STEEL USING GREY BASED TAGUCHI METHOD

OPTIMIZATION OF MACHINING PARAMETER FOR TURNING OF EN 16 STEEL USING GREY BASED TAGUCHI METHOD OPTIMIZATION OF MACHINING PARAMETER FOR TURNING OF EN 6 STEEL USING GREY BASED TAGUCHI METHOD P. Madhava Reddy, P. Vijaya Bhaskara Reddy, Y. Ashok Kumar Reddy and N. Naresh Department of Mechanical Engineering,

More information

Optimization and Analysis of Dry Turning of EN-8 Steel for Surface Roughness

Optimization and Analysis of Dry Turning of EN-8 Steel for Surface Roughness Optimization and Analysis of Dry Turning of EN-8 Steel for Surface Roughness Sudhir B Desai a, Sunil J Raykar b *,Dayanand N Deomore c a Yashwantrao Chavan School of Rural Development, Shivaji University,Kolhapur,416004,India.

More information

DATA MINING APPLICATION USING DECISION TREE AND ANN FOR PREDICTING SURFACE ROUGHNESS OF END MILLING MANUFACTURING PROCESS

DATA MINING APPLICATION USING DECISION TREE AND ANN FOR PREDICTING SURFACE ROUGHNESS OF END MILLING MANUFACTURING PROCESS International Journal of Computer Science Engineering and Information Technology Research (IJCSEITR) Vol.1, Issue 2 Dec 2011 61-68 TJPRC Pvt. Ltd., DATA MINING APPLICATION USING DECISION TREE AND ANN FOR

More information

Optimization of Process Parameter for Surface Roughness in Drilling of Spheroidal Graphite (SG 500/7) Material

Optimization of Process Parameter for Surface Roughness in Drilling of Spheroidal Graphite (SG 500/7) Material Optimization of Process Parameter for Surface Roughness in ing of Spheroidal Graphite (SG 500/7) Prashant Chavan 1, Sagar Jadhav 2 Department of Mechanical Engineering, Adarsh Institute of Technology and

More information

OPTIMISATION OF PIN FIN HEAT SINK USING TAGUCHI METHOD

OPTIMISATION OF PIN FIN HEAT SINK USING TAGUCHI METHOD CHAPTER - 5 OPTIMISATION OF PIN FIN HEAT SINK USING TAGUCHI METHOD The ever-increasing demand to lower the production costs due to increased competition has prompted engineers to look for rigorous methods

More information

Parametric Investigation of Single Point Incremental Forming For Al 8011A H-14

Parametric Investigation of Single Point Incremental Forming For Al 8011A H-14 Parametric Investigation of Single Point Incremental Forming For Al 8011A H-14 Bhavesh Sonagra 1, Jayendra B. Kanani 2 1 Student M.E. CAD/CAM, A.I.T.S, Rajkot, Gujarat, India 2 Assistant Professor, A.I.T.S,

More information

Simulation Approach And Optimization Of Machining Parameters In Cnc Milling Machine Using Genetic Algorithm.

Simulation Approach And Optimization Of Machining Parameters In Cnc Milling Machine Using Genetic Algorithm. Simulation Approach And Optimization Of Machining Parameters In Cnc Milling Machine Using Genetic Algorithm. Shivasheshadri M 1, Arunadevi M 2, C. P. S. Prakash 3 1 M.Tech (CIM) Student, Department of

More information

A COUPLED ARTIFICIAL NEURAL NETWORK AND RESPONSE SURFACE METHODOLOGY MODEL FOR THE PREDICTION OF AVERAGE SURFACE ROUGHNESS IN END MILLING OF PREHEATED

A COUPLED ARTIFICIAL NEURAL NETWORK AND RESPONSE SURFACE METHODOLOGY MODEL FOR THE PREDICTION OF AVERAGE SURFACE ROUGHNESS IN END MILLING OF PREHEATED A COUPLED ARTIFICIAL NEURAL NETWORK AND RESPONSE SURFACE METHODOLOGY MODEL FOR THE PREDICTION OF AVERAGE SURFACE ROUGHNESS IN END MILLING OF PREHEATED Ti6Al4V ALLOY Md. Anayet U. PATWARI,, A.K.M. Nurul

More information

Optimization of Machining Parameters in CNC Turning Using Firefly Algorithm

Optimization of Machining Parameters in CNC Turning Using Firefly Algorithm IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 01, 2014 ISSN (online): 2321-0613 Optimization of Parameters in CNC Turning Using Firefly Algorithm Dr. S. Bharathi Raja

More information

PREDICTION AND OPTIMIZATION OF SURFACE ROUGHNESS BY COUPLED STATISTICAL AND DESIRABILITY ANALYSIS IN DRILLING OF MILD STEEL

PREDICTION AND OPTIMIZATION OF SURFACE ROUGHNESS BY COUPLED STATISTICAL AND DESIRABILITY ANALYSIS IN DRILLING OF MILD STEEL 1. Md. Anayet U. PATWARI, 2. S.M. Tawfiq ULLAH, 3. Ragib Ishraq KHAN, 4. Md. Mahfujur RAHMAN PREDICTION AND OPTIMIZATION OF SURFACE ROUGHNESS BY COUPLED STATISTICAL AND DESIRABILITY ANALYSIS IN DRILLING

More information

Analysis and Optimization of Machining Process Parameters Using Design of Experiments

Analysis and Optimization of Machining Process Parameters Using Design of Experiments Analysis and Optimization of Machining Process Parameters Using Design of Experiments Dr. M. Naga Phani Sastry, K. Devaki Devi, Dr, K. Madhava Reddy Department of Mechanical Engineering, G Pulla Reddy

More information

Analysis of Variance for Surface Roughness Produced During Single Point Incremental Forming Process

Analysis of Variance for Surface Roughness Produced During Single Point Incremental Forming Process Analysis of Variance for Surface Roughness Produced During Single Point Incremental Forming Process Jigar R. Patel, Kaustubh S. Samvatsar, Haresh P. Prajapati, Umang M. Sharma Production Engineering Department,

More information

OPTIMIZATION OF MACHINING PARAMETERS FROM MINIMUM SURFACE ROUGHNESS IN TURNING OF AISI STEEL

OPTIMIZATION OF MACHINING PARAMETERS FROM MINIMUM SURFACE ROUGHNESS IN TURNING OF AISI STEEL OPTIMIZATION OF MACHINING PARAMETERS FROM MINIMUM SURFACE ROUGHNESS IN TURNING OF AISI 200 STEEL MOHAMMED IRFAAN, 2 BHUVNESH BHARDWAJ Lecturer, Department of Mechanical Engineering, Adigrat University,

More information

[Rao* et al., 5(9): September, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

[Rao* et al., 5(9): September, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY MULTI-OBJECTIVE OPTIMIZATION OF MRR, Ra AND Rz USING TOPSIS Ch. Maheswara Rao*, K. Jagadeeswara Rao, K. Laxmana Rao Department

More information

OPTIMIZATION OF TURNING PROCESS USING A NEURO-FUZZY CONTROLLER

OPTIMIZATION OF TURNING PROCESS USING A NEURO-FUZZY CONTROLLER Sixteenth National Convention of Mechanical Engineers and All India Seminar on Future Trends in Mechanical Engineering, Research and Development, Deptt. Of Mech. & Ind. Engg., U.O.R., Roorkee, Sept. 29-30,

More information

Analysis of Surface Roughness for Cylindrical Stainless Steel Pipe (Ss 3163) In CNC Lathe Turning Process Using ANN Method

Analysis of Surface Roughness for Cylindrical Stainless Steel Pipe (Ss 3163) In CNC Lathe Turning Process Using ANN Method Analysis of Surface Roughness for Cylindrical Stainless Steel Pipe (Ss 3163) In CNC Lathe Turning Process Using ANN Method Arvind Singh Tomar 1, Rohit Pandey 2 1,2 Assistant Professor, Mechanical & Automation

More information