Efficient Markov Chain Monte Carlo Algorithms For MIMO and ISI channels

Size: px
Start display at page:

Download "Efficient Markov Chain Monte Carlo Algorithms For MIMO and ISI channels"

Transcription

1 Efficient Markov Chain Monte Carlo Algorithms For MIMO and ISI channels Rong-Hui Peng Department of Electrical and Computer Engineering University of Utah /7/6

2 Summary of PhD work Efficient MCMC algorithms for communication Application to MIMO channel ([Chen-Peng-Ashikhmin-Farhang], To appear IEEE Trans. Comm.) Application to noncoherent channel ([Chen-Peng], to appear IEEE Trans. Comm. 9) Application to ISI channel and extend to underwater channel ([Peng- Chen-Farhang], To appear IEEE Trans. Signal Process.) Achieve near optimal performance with reduced complexity Solve the slow convergence problem MIMO-HARQ schemes and combining algorithm ([Peng-Chen], to be submitted to IEEE Trans. Comm.) Propose new retransmission scheme Propose new combining algorithm Increase the throughput significantly Applicable to Wimax and LTE /7/6

3 Summary of PhD work Nonbinary LDPC codes ([Peng-Chen], IEEE Trans. Wireless Comm. 8) Nonbinary LDPC coded MIMO system, achieve good performance with reduced complexity Code design based on EXIT chart Hardware-friendly construction Low encoding complexity Parallel architecture Low error floor Intern at MERL Low complexity MIMO detection algorithm for MIMO-OFDMA Wimax link-level simulation paper, patent 3 /7/6

4 Outline Background and motivation Introduction to MCMC technology MCMC MIMO detection Review of MIMO detection QRD-M and MCMC detector Hybrid MIMO detector Complexity analysis MCMC ISI equalization Bit-wise MCMC equalizer Group-wise MCMC equalizer Conclusion 4 /7/6

5 Background and motivation uk h b d k y b k k ˆk k ENC MOD CHANNEL DEM/DET DEC MAP detection: y Hd n bˆ k max( P b k,) y H P( b k,)( y H,)() p Y H d P d b k MAP detector has optimal performance but the complexity is exponential with the dimension of b k IDD uˆk Our objective: reduce the complexity but still obtain near optimal performance 5 /7/6

6 Markov Chain Monte Carlo MCMC is a class of algorithms for sampling from probability distributions based on constructing a Markov chain that has the desired distribution as its stationary distribution. The state of the chain after a large number of steps is then used as a sample from the desired distribution. MCMC is suitable for addressing problems involving highdimensional summations or integrals f(x) X 6 /7/6

7 Gibbs sampling One kind of the MCMC methods. The point of Gibbs sampling is that given a multivariate distribution it is simpler to sample from a conditional distribution rather than integrating over a joint distribution. Generate an initial sample as start state Using conditional distribution as state transition probability Each state jumping allows only one variable change Return best state seen across all iterations (may not be the last one) Stop after a fixed number of iterations Solution is sensitive to the starting state, so we typically run the algorithm several times from different starting points 7 /7/6

8 State transition in Gibbs sampling d y Hd n d d d 3 Sampling d according to p( d using conditional PMF p( d i y, H) y, H, d i ) State d 3 d d S S ` S S S S S S /7/6

9 Gibbs sampler Generate initial d for n= to I () randomly generate d from distribution p( d b d, d, L, d,) ()( n )( )( ) n n n N generate d from distribution p( d b d, d, L, d,) M ()()( n )( ) n n n N ()()()() n n n n generate d from distribution ( p d b d, d, L, d,) end for N N N y y y 9 /7/6

10 Why Gibbs sampling works Retains elements of the greedy approach weighing by conditional PDF makes likely to move towards locally better solutions Allows for locally bad moves with a small probability, to escape local maxima (with limitations) /7/6

11 ISI channel Multipath fading channel L y()()()(), m h m d m l n m l l for m,, L, N L d (m ) D D h ( ) h () m h () m () h m m L + n (m ) y (m ) /7/6

12 ISI channel In matrix form y Hd n where d C y C N H C n C : transmitting vector N L N L N N L : received vector : channel matrix : dditive noise vector N : Equalizer block length L : Channel memory H h L L h h L M O O M hl L h L M O O M L hl hl L h L O M L hl hl h L L L /7/6

13 Detection for ISI channel MAP detection is optimal Efficient implementation of MAP detection is Forward backward algorithm (BCJR) Still exponential complexity with channel memory Low complexity algorithm MMSE Decision-feedback 3 /7/6

14 Bit-wise MCMC detector Transition probability a P( b a b,)( y )() p y b P b a k k k a p( y )() d P b a N L j p( y )() d P b a a j jl: j k i N L il a a a { ( j )( d jl: )( j )() j d jl: j } j d jl: j k j jil ji il Cg p( y )() d P b a b d ji a ()() n n k a a j jl: j k { b, L, b, a, b k p y p y p y P b a ( n)( ) n k M N denote the symbol vector corresponding to bk is mapped to d i, L, b }, b b a 4 /7/6

15 Bit-wise MCMC detector Computing the a posteriori LLR Accurate posteriori LLR involve computations over the whole block (may be very cumbersome since N can be very large) Truncated window to approximate I k, i : i I i : i i: il i : i l k, i : i l i e b I i : i e, k ln i, k i : i b p( y )() b p( y )() b i: il i : i l li the set which truncate sequences in I with bits { b, i k i } k i P b P b 5 /7/6

16 Severe ISI channel For channels with severe ISI, bit-wise MCMC suffers from slow convergence problem We found slow convergence problem for ISI channel is mainly caused by high posterior correlation PSD, db h [ n].7 [ n].46 [ n ].688 [ n ].46 [ n 3].7 [ n 4] h [ n]( 4) [ i ](5 n 8) [ i ] n [ ] n -5 C C Normalized Frequency ( 3) i[ n3](8 6) [ 4] n 6 /7/6

17 Severe ISI channel Our solution Grouping (blocking) the highly correlation variables in Gibbs sampler st iteration: nd iteration: 3 rd iteration: 4 th iteration: Shift grouping different adjacent symbols over iterations to speed up the mixing rate of Gibbs sampler 7 /7/6

18 Transition probability Grouping multiple variables allow a large sample space M containing b G r values y h L L d n h h M L M M y i M O O M d i ni yi hl L h L di ni M M O O M M M yip L hl hl L h dig ni P y ip L O M d ig ni P M L hl hl M M y N L h L d L L N nn L P G L 8 /7/6

19 Transition probability y% y H d H d il: i ig: ip i: ip i: ip i: ip il: i i: ip ig: ip i: ip H d n ig: ip i: ip i: ig i: ip n Can be thought as received signals of a MIMO channel with G transmit antenna and P+ receive antenna Can apply QRD-M to find r = r samples with large APPs Gibbs sampler randomly chooses one sample from samples r 9 /7/6

20 Simulation results Performance of the channel with strong ISI /7/6

21 Summary of results MCMC equalizer for ISI channel is studied Near optimal performance can be obtained Slow convergence is mainly caused by high posterior correlation QRD-M algorithm is applied to reduce the complexity of group-wise MCMC equalizer Parallel implementation is proposed /7/6

22 Conclusions Efficient MCMC algorithms for MIMO and ISI channel are studied For MIMO, MCMC works well at low SNR region For ISI, MCMC works well for moderate ISI Solutions for slow convergence are proposed For MIMO, use QRD-M as good start point For ISI, Future work Use group-wise Gibbs sampler to group high correlated variables Use QRD-M to reduce the complexity of group-wise Gibbs sampler Study the sensitivity of proposed MIMO detector with more practical channel model Study the time-varing ISI channel and adaptive grouping scheme for group-wise MCMC Hardware implementation of MCMC /7/6

23 Motivation Optimal binary code has been designed to approach channel capacity. Long codes Irregular Nonbinary LDPC code design has been studied for AWGN and shows better performance than binary codes. Shorter codes More regular 3 /7/6

24 Contribution Apply nonbinary LDPC codes to fading channels and MIMO channels and provide comparison with optimal binary LDPC coded systems Propose modified nonbinary LDPC decoding algorithm. Extend EXIT chart to nonbinary code design Propose parallel sparse encodable nonbinary code with low encoding and decoding complexity 4 /7/6

25 /7/6 5 Introduction of binary LDPC codes A subclass of linear block codes Specified by a parity check matrix (n-k) n n: code length k: length of information sequence Variable Nodes check Nodes x x x 3 x 4 x 5 x 6 x 7 c c c Hx H T c c c x x x : : : x x x x c x x x x c x x x x c

26 /7/6 6 Definition of nonbinary LDPC codes For nonbinary codes, the ones in parity check matrix are replaced by nonzero elements in GF(q) H

27 Application to fading channels Channel model X M ρ HS V Assume each entry of channel matrix is independent, follows Rayleigh fading, and is known by receiver 7 /7/6

28 System block diagram Separate detection and decoding: the detection is performed only once. 8 /7/6

29 Performance comparison Performance: GF56>GF6> binary>8.6e GF56 SDD Complexity: GF6<GF56 8.6e<binary GF6 JDD Binary JDD 8.6e Performance comparison of GF(56) SDD, GF(6) JDD and binary JDD system 9 /7/6

30 Construction of Parallel sparse encodable codes Motivation Low encoding complexity Allow parallel implementation Parallel sparse encodable (PSE) codes = Qausi cyclic (QC) cycle codes + tree codes QC codes: parallel implementation Cycle code: Low encoding complexity 3 /7/6

31 Quasi-cyclic construction Quasi-cyclic structure A, A, A, n A, A, A, n H A i,j is a circulant: each row is a right cycle-shift of the row above it and the first Am, Am, Am, n row is the right cycle-shift of the last row The advantage of QC structure Allow linear-time encoding using shift register Allow partially parallel decoding Save memory 3 /7/6

32 /7/6 3 A new QC structure for GF(q),,,,, ' q j i j i j i j i j i A A i,j is a nonbinary multiplied circulant permutation matrix ) GF( of primitive element is a },,, randomly choosen from { is ') GF( of primitive element is a ); GF( ') GF( ) ' /( (, q q q q q q j i

33 Cycle codes With degree variable nodes only Can be represented by normal graph, every vertex imposes one linear constraint Columns => edges; rows => vertices b c c b b b 5 H m c c 3 b 4 b 5 b 3 b Parity check matrix 33 c 3 b c /7/6 Normal graph representation

34 H based encoding of cycle codes b c c b 4 b 5 b 3 b c 3 b c Find the spanning tree: b, b 3, b 4 Information bits => Edges outside SP b =, b =, b 5 = 3 Compute coded bits b 3 =b +b 5 = b 4 =b +b = b =b +b 5 = For binary code: check c is always satisfied. b +b 3 +b 4 = Not work for nonbinary cycle codes! Why? 34 /7/6

35 PSE codes b 9 c 5 b 6 c 3 b 3 b c c b 4 b b c b 5 c 3 b 3 b c c b 7 b 4 b b c b 5 c 3 b 8 b 3 b c c b 4 b b c b 5 PSE codes = QC cycle codes + tree codes 35 /7/6

36 Encoding of PSE codes Parity check matrix based encoding Parallel encoding for QC cycle subcode Much lower encoding complexity than normal LDPC codes using generator matrix based encoding because the generator matrix is usually dense 36 /7/6

37 Simulation results Performance comparison of PSE codes over GF(56) 37 with QPP (QC) codes and PEG (non-qc) codes /7/6

38 Thank you! 38 /7/6

LOW-DENSITY PARITY-CHECK (LDPC) codes [1] can

LOW-DENSITY PARITY-CHECK (LDPC) codes [1] can 208 IEEE TRANSACTIONS ON MAGNETICS, VOL 42, NO 2, FEBRUARY 2006 Structured LDPC Codes for High-Density Recording: Large Girth and Low Error Floor J Lu and J M F Moura Department of Electrical and Computer

More information

Non-recursive complexity reduction encoding scheme for performance enhancement of polar codes

Non-recursive complexity reduction encoding scheme for performance enhancement of polar codes Non-recursive complexity reduction encoding scheme for performance enhancement of polar codes 1 Prakash K M, 2 Dr. G S Sunitha 1 Assistant Professor, Dept. of E&C, Bapuji Institute of Engineering and Technology,

More information

Cost efficient FPGA implementations of Min- Sum and Self-Corrected-Min-Sum decoders

Cost efficient FPGA implementations of Min- Sum and Self-Corrected-Min-Sum decoders Cost efficient FPGA implementations of Min- Sum and Self-Corrected-Min-Sum decoders Oana Boncalo (1), Alexandru Amaricai (1), Valentin Savin (2) (1) University Politehnica Timisoara, Romania (2) CEA-LETI,

More information

Error Control Coding for MLC Flash Memories

Error Control Coding for MLC Flash Memories Error Control Coding for MLC Flash Memories Ying Y. Tai, Ph.D. Cadence Design Systems, Inc. ytai@cadence.com August 19, 2010 Santa Clara, CA 1 Outline The Challenges on Error Control Coding (ECC) for MLC

More information

Polar Codes for Noncoherent MIMO Signalling

Polar Codes for Noncoherent MIMO Signalling ICC Polar Codes for Noncoherent MIMO Signalling Philip R. Balogun, Ian Marsland, Ramy Gohary, and Halim Yanikomeroglu Department of Systems and Computer Engineering, Carleton University, Canada WCS IS6

More information

Cycles in Random Graphs

Cycles in Random Graphs Cycles in Random Graphs Valery Van Kerrebroeck Enzo Marinari, Guilhem Semerjian [Phys. Rev. E 75, 066708 (2007)] [J. Phys. Conf. Series 95, 012014 (2008)] Outline Introduction Statistical Mechanics Approach

More information

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 5, NO. 8, DECEMBER

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 5, NO. 8, DECEMBER IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL 5, NO 8, DECEMBER 2011 1497 Low-Complexity Detection in Large-Dimension MIMO-ISI Channels Using Graphical Models Pritam Som, Tanumay Datta, Student

More information

Overlapped Scheduling for Folded LDPC Decoding Based on Matrix Permutation

Overlapped Scheduling for Folded LDPC Decoding Based on Matrix Permutation Overlapped Scheduling for Folded LDPC Decoding Based on Matrix Permutation In-Cheol Park and Se-Hyeon Kang Department of Electrical Engineering and Computer Science, KAIST {icpark, shkang}@ics.kaist.ac.kr

More information

LOW-density parity-check (LDPC) codes have attracted

LOW-density parity-check (LDPC) codes have attracted 2966 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 12, DECEMBER 2004 LDPC Block and Convolutional Codes Based on Circulant Matrices R. Michael Tanner, Fellow, IEEE, Deepak Sridhara, Arvind Sridharan,

More information

CS281 Section 9: Graph Models and Practical MCMC

CS281 Section 9: Graph Models and Practical MCMC CS281 Section 9: Graph Models and Practical MCMC Scott Linderman November 11, 213 Now that we have a few MCMC inference algorithms in our toolbox, let s try them out on some random graph models. Graphs

More information

A Generic Architecture of CCSDS Low Density Parity Check Decoder for Near-Earth Applications

A Generic Architecture of CCSDS Low Density Parity Check Decoder for Near-Earth Applications A Generic Architecture of CCSDS Low Density Parity Check Decoder for Near-Earth Applications Fabien Demangel, Nicolas Fau, Nicolas Drabik, François Charot, Christophe Wolinski To cite this version: Fabien

More information

FPGA Implementation of Binary Quasi Cyclic LDPC Code with Rate 2/5

FPGA Implementation of Binary Quasi Cyclic LDPC Code with Rate 2/5 FPGA Implementation of Binary Quasi Cyclic LDPC Code with Rate 2/5 Arulmozhi M. 1, Nandini G. Iyer 2, Anitha M. 3 Assistant Professor, Department of EEE, Rajalakshmi Engineering College, Chennai, India

More information

Lowering the Error Floors of Irregular High-Rate LDPC Codes by Graph Conditioning

Lowering the Error Floors of Irregular High-Rate LDPC Codes by Graph Conditioning Lowering the Error Floors of Irregular High- LDPC Codes by Graph Conditioning Wen-Yen Weng, Aditya Ramamoorthy and Richard D. Wesel Electrical Engineering Department, UCLA, Los Angeles, CA, 90095-594.

More information

Discussion on Bayesian Model Selection and Parameter Estimation in Extragalactic Astronomy by Martin Weinberg

Discussion on Bayesian Model Selection and Parameter Estimation in Extragalactic Astronomy by Martin Weinberg Discussion on Bayesian Model Selection and Parameter Estimation in Extragalactic Astronomy by Martin Weinberg Phil Gregory Physics and Astronomy Univ. of British Columbia Introduction Martin Weinberg reported

More information

Capacity-Approaching Low-Density Parity- Check Codes: Recent Developments and Applications

Capacity-Approaching Low-Density Parity- Check Codes: Recent Developments and Applications Capacity-Approaching Low-Density Parity- Check Codes: Recent Developments and Applications Shu Lin Department of Electrical and Computer Engineering University of California, Davis Davis, CA 95616, U.S.A.

More information

A New Non-Iterative Decoding Algorithm for the Erasure Channel : Comparisons with Enhanced Iterative Methods

A New Non-Iterative Decoding Algorithm for the Erasure Channel : Comparisons with Enhanced Iterative Methods SUBMITTED TO ISIT 2005 ON 31 JANUARY 2005 1 arxiv:cs/0503006v1 [cs.it] 2 Mar 2005 A New Non-Iterative Decoding Algorithm for the Erasure Channel : Comparisons with Enhanced Iterative Methods J. Cai, C.

More information

On the Performance Evaluation of Quasi-Cyclic LDPC Codes with Arbitrary Puncturing

On the Performance Evaluation of Quasi-Cyclic LDPC Codes with Arbitrary Puncturing On the Performance Evaluation of Quasi-Cyclic LDPC Codes with Arbitrary Puncturing Ying Xu, and Yueun Wei Department of Wireless Research Huawei Technologies Co., Ltd, Shanghai, 6, China Email: {eaglexu,

More information

Quantized Iterative Message Passing Decoders with Low Error Floor for LDPC Codes

Quantized Iterative Message Passing Decoders with Low Error Floor for LDPC Codes Quantized Iterative Message Passing Decoders with Low Error Floor for LDPC Codes Xiaojie Zhang and Paul H. Siegel University of California, San Diego 1. Introduction Low-density parity-check (LDPC) codes

More information

Quantitative Biology II!

Quantitative Biology II! Quantitative Biology II! Lecture 3: Markov Chain Monte Carlo! March 9, 2015! 2! Plan for Today!! Introduction to Sampling!! Introduction to MCMC!! Metropolis Algorithm!! Metropolis-Hastings Algorithm!!

More information

EDUCATION PROFESSIONAL EXPERIENCE HONORS AND AWARDS RESEARCH FUNDING

EDUCATION PROFESSIONAL EXPERIENCE HONORS AND AWARDS RESEARCH FUNDING Rong-Rong Chen University of Utah Office: 801-585-7367 50 S. Central Campus Dr. Fax: 801-581-5281 Salt Lake City, UT 84112 http://www.ece.utah.edu/ rchen Email: rchen@ece.utah.edu EDUCATION University

More information

Clustering Relational Data using the Infinite Relational Model

Clustering Relational Data using the Infinite Relational Model Clustering Relational Data using the Infinite Relational Model Ana Daglis Supervised by: Matthew Ludkin September 4, 2015 Ana Daglis Clustering Data using the Infinite Relational Model September 4, 2015

More information

Mesh segmentation. Florent Lafarge Inria Sophia Antipolis - Mediterranee

Mesh segmentation. Florent Lafarge Inria Sophia Antipolis - Mediterranee Mesh segmentation Florent Lafarge Inria Sophia Antipolis - Mediterranee Outline What is mesh segmentation? M = {V,E,F} is a mesh S is either V, E or F (usually F) A Segmentation is a set of sub-meshes

More information

Overview. Monte Carlo Methods. Statistics & Bayesian Inference Lecture 3. Situation At End Of Last Week

Overview. Monte Carlo Methods. Statistics & Bayesian Inference Lecture 3. Situation At End Of Last Week Statistics & Bayesian Inference Lecture 3 Joe Zuntz Overview Overview & Motivation Metropolis Hastings Monte Carlo Methods Importance sampling Direct sampling Gibbs sampling Monte-Carlo Markov Chains Emcee

More information

Reduced Complexity of Decoding Algorithm for Irregular LDPC Codes Using a Split Row Method

Reduced Complexity of Decoding Algorithm for Irregular LDPC Codes Using a Split Row Method Journal of Wireless Networking and Communications 2012, 2(4): 29-34 DOI: 10.5923/j.jwnc.20120204.01 Reduced Complexity of Decoding Algorithm for Irregular Rachid El Alami *, Mostafa Mrabti, Cheikh Bamba

More information

Design of Cages with a Randomized Progressive Edge-Growth Algorithm

Design of Cages with a Randomized Progressive Edge-Growth Algorithm 1 Design of Cages with a Randomized Progressive Edge-Growth Algorithm Auguste Venkiah, David Declercq and Charly Poulliat ETIS - CNRS UMR 8051 - ENSEA - University of Cergy-Pontoise Abstract The progressive

More information

Quasi-Cyclic Non-Binary LDPC Codes for MLC NAND Flash Memory

Quasi-Cyclic Non-Binary LDPC Codes for MLC NAND Flash Memory for MLC NAND Flash Memory Ahmed Hareedy http://www.loris.ee.ucla.edu/ LORIS Lab, UCLA http://www.uclacodess.org/ CoDESS, UCLA Joint work with: Clayton Schoeny (UCLA), Behzad Amiri (UCLA), and Lara Dolecek

More information

Distributed Decoding in Cooperative Communications

Distributed Decoding in Cooperative Communications Distributed Decoding in Cooperative Communications Marjan Karkooti and Joseph R. Cavallaro Rice University, Department of Electrical and Computer Engineering, Houston, TX, 77005 {marjan,cavallar} @rice.edu

More information

Markov Random Fields and Gibbs Sampling for Image Denoising

Markov Random Fields and Gibbs Sampling for Image Denoising Markov Random Fields and Gibbs Sampling for Image Denoising Chang Yue Electrical Engineering Stanford University changyue@stanfoed.edu Abstract This project applies Gibbs Sampling based on different Markov

More information

Dynamic Window Decoding for LDPC Convolutional Codes in Low-Latency Optical Communications

Dynamic Window Decoding for LDPC Convolutional Codes in Low-Latency Optical Communications MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Dynamic Window Decoding for LDPC Convolutional Codes in Low-Latency Optical Communications Xia, T.; Koike-Akino, T.; Millar, D.S.; Kojima,

More information

Modern Communications Chapter 5. Low-Density Parity-Check Codes

Modern Communications Chapter 5. Low-Density Parity-Check Codes 1/14 Modern Communications Chapter 5. Low-Density Parity-Check Codes Husheng Li Min Kao Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville Spring, 2017 2/14 History

More information

Research Article Cooperative Signaling with Soft Information Combining

Research Article Cooperative Signaling with Soft Information Combining Electrical and Computer Engineering Volume 2010, Article ID 530190, 5 pages doi:10.1155/2010/530190 Research Article Cooperative Signaling with Soft Information Combining Rui Lin, Philippa A. Martin, and

More information

BER Evaluation of LDPC Decoder with BPSK Scheme in AWGN Fading Channel

BER Evaluation of LDPC Decoder with BPSK Scheme in AWGN Fading Channel I J C T A, 9(40), 2016, pp. 397-404 International Science Press ISSN: 0974-5572 BER Evaluation of LDPC Decoder with BPSK Scheme in AWGN Fading Channel Neha Mahankal*, Sandeep Kakde* and Atish Khobragade**

More information

A New MIMO Detector Architecture Based on A Forward-Backward Trellis Algorithm

A New MIMO Detector Architecture Based on A Forward-Backward Trellis Algorithm A New MIMO etector Architecture Based on A Forward-Backward Trellis Algorithm Yang Sun and Joseph R Cavallaro epartment of Electrical and Computer Engineering Rice University, Houston, TX 775 Email: {ysun,

More information

New Message-Passing Decoding Algorithm of LDPC Codes by Partitioning Check Nodes 1

New Message-Passing Decoding Algorithm of LDPC Codes by Partitioning Check Nodes 1 New Message-Passing Decoding Algorithm of LDPC Codes by Partitioning Check Nodes 1 Sunghwan Kim* O, Min-Ho Jang*, Jong-Seon No*, Song-Nam Hong, and Dong-Joon Shin *School of Electrical Engineering and

More information

PERFORMANCE ANALYSIS OF HIGH EFFICIENCY LOW DENSITY PARITY-CHECK CODE DECODER FOR LOW POWER APPLICATIONS

PERFORMANCE ANALYSIS OF HIGH EFFICIENCY LOW DENSITY PARITY-CHECK CODE DECODER FOR LOW POWER APPLICATIONS American Journal of Applied Sciences 11 (4): 558-563, 2014 ISSN: 1546-9239 2014 Science Publication doi:10.3844/ajassp.2014.558.563 Published Online 11 (4) 2014 (http://www.thescipub.com/ajas.toc) PERFORMANCE

More information

LDPC Codes a brief Tutorial

LDPC Codes a brief Tutorial LDPC Codes a brief Tutorial Bernhard M.J. Leiner, Stud.ID.: 53418L bleiner@gmail.com April 8, 2005 1 Introduction Low-density parity-check (LDPC) codes are a class of linear block LDPC codes. The name

More information

Low Complexity Markov Chain Monte Carlo Detector for Channels with Intersymbol Interference

Low Complexity Markov Chain Monte Carlo Detector for Channels with Intersymbol Interference This full tet paper was peer reviewed at the direction of IEEE Communications Societ subject matter eperts for publication in the IEEE ICC 2009 proceedings Low Compleit Marov Chain Monte Carlo Detector

More information

Code Design in the Short Block Length Regime

Code Design in the Short Block Length Regime October 8, 2014 Code Design in the Short Block Length Regime Gianluigi Liva, gianluigi.liva@dlr.de Institute for Communications and Navigation German Aerospace Center, DLR Outline 1 Introduction 2 Overview:

More information

OVer past decades, iteratively decodable codes, such as

OVer past decades, iteratively decodable codes, such as 1 Trellis-based Extended Min-Sum Algorithm for Non-binary LDPC Codes and its Hardware Structure Erbao Li, David Declercq Senior Member, IEEE, and iran Gunnam Senior Member, IEEE Abstract In this paper,

More information

Check-hybrid GLDPC Codes Without Small Trapping Sets

Check-hybrid GLDPC Codes Without Small Trapping Sets Check-hybrid GLDPC Codes Without Small Trapping Sets Vida Ravanmehr Department of Electrical and Computer Engineering University of Arizona Tucson, AZ, 8572 Email: vravanmehr@ece.arizona.edu David Declercq

More information

LDPC Simulation With CUDA GPU

LDPC Simulation With CUDA GPU LDPC Simulation With CUDA GPU EE179 Final Project Kangping Hu June 3 rd 2014 1 1. Introduction This project is about simulating the performance of binary Low-Density-Parity-Check-Matrix (LDPC) Code with

More information

Optimized Graph-Based Codes For Modern Flash Memories

Optimized Graph-Based Codes For Modern Flash Memories Optimized Graph-Based Codes For Modern Flash Memories Homa Esfahanizadeh Joint work with Ahmed Hareedy and Lara Dolecek LORIS Lab Electrical Engineering Department, UCLA 10/08/2016 Presentation Outline

More information

Optimized ARM-Based Implementation of Low Density Parity Check Code (LDPC) Decoder in China Digital Radio (CDR)

Optimized ARM-Based Implementation of Low Density Parity Check Code (LDPC) Decoder in China Digital Radio (CDR) Optimized ARM-Based Implementation of Low Density Parity Check Code (LDPC) Decoder in China Digital Radio (CDR) P. Vincy Priscilla 1, R. Padmavathi 2, S. Tamilselvan 3, Dr.S. Kanthamani 4 1,4 Department

More information

Partly Parallel Overlapped Sum-Product Decoder Architectures for Quasi-Cyclic LDPC Codes

Partly Parallel Overlapped Sum-Product Decoder Architectures for Quasi-Cyclic LDPC Codes Partly Parallel Overlapped Sum-Product Decoder Architectures for Quasi-Cyclic LDPC Codes Ning Chen, Yongmei Dai, and Zhiyuan Yan Department of Electrical and Computer Engineering, Lehigh University, PA

More information

Performance comparison of Decoding Algorithm for LDPC codes in DVBS2

Performance comparison of Decoding Algorithm for LDPC codes in DVBS2 Performance comparison of Decoding Algorithm for LDPC codes in DVBS2 Ronakben P Patel 1, Prof. Pooja Thakar 2 1M.TEC student, Dept. of EC, SALTIER, Ahmedabad-380060, Gujarat, India 2 Assistant Professor,

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction A Monte Carlo method is a compuational method that uses random numbers to compute (estimate) some quantity of interest. Very often the quantity we want to compute is the mean of

More information

Hardware Implementation

Hardware Implementation Low Density Parity Check decoder Hardware Implementation Ruchi Rani (2008EEE2225) Under guidance of Prof. Jayadeva Dr.Shankar Prakriya 1 Indian Institute of Technology LDPC code Linear block code which

More information

Optimal Overlapped Message Passing Decoding of Quasi-Cyclic LDPC Codes

Optimal Overlapped Message Passing Decoding of Quasi-Cyclic LDPC Codes Optimal Overlapped Message Passing Decoding of Quasi-Cyclic LDPC Codes Yongmei Dai and Zhiyuan Yan Department of Electrical and Computer Engineering Lehigh University, PA 18015, USA E-mails: {yod304, yan}@lehigh.edu

More information

Design of Cages with a Randomized Progressive Edge-Growth Algorithm

Design of Cages with a Randomized Progressive Edge-Growth Algorithm 1 Design of Cages with a Randomized Progressive Edge-Growth Algorithm Auguste Venkiah, David Declercq and Charly Poulliat ETIS - CNRS UMR 8051 - ENSEA - University of Cergy-Pontoise Abstract The Progressive

More information

Image analysis. Computer Vision and Classification Image Segmentation. 7 Image analysis

Image analysis. Computer Vision and Classification Image Segmentation. 7 Image analysis 7 Computer Vision and Classification 413 / 458 Computer Vision and Classification The k-nearest-neighbor method The k-nearest-neighbor (knn) procedure has been used in data analysis and machine learning

More information

Submission Title: Preliminary Performance of FEC Schemes in TG3d Channels

Submission Title: Preliminary Performance of FEC Schemes in TG3d Channels doc.: IEEE 802. 15-16-0746-05-003d 15-16-0746-01-003d Performance_of_FEC_in_TG3d_Channels Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Preliminary Performance

More information

C LDPC Coding Proposal for LBC. This contribution provides an LDPC coding proposal for LBC

C LDPC Coding Proposal for LBC. This contribution provides an LDPC coding proposal for LBC C3-27315-3 Title: Abstract: Source: Contact: LDPC Coding Proposal for LBC This contribution provides an LDPC coding proposal for LBC Alcatel-Lucent, Huawei, LG Electronics, QUALCOMM Incorporated, RITT,

More information

A NOVEL HARDWARE-FRIENDLY SELF-ADJUSTABLE OFFSET MIN-SUM ALGORITHM FOR ISDB-S2 LDPC DECODER

A NOVEL HARDWARE-FRIENDLY SELF-ADJUSTABLE OFFSET MIN-SUM ALGORITHM FOR ISDB-S2 LDPC DECODER 18th European Signal Processing Conference (EUSIPCO-010) Aalborg, Denmark, August -7, 010 A NOVEL HARDWARE-FRIENDLY SELF-ADJUSTABLE OFFSET MIN-SUM ALGORITHM FOR ISDB-S LDPC DECODER Wen Ji, Makoto Hamaminato,

More information

Search for Improvements in Low Density Parity Check Codes for WiMAX (802.16e) Applications

Search for Improvements in Low Density Parity Check Codes for WiMAX (802.16e) Applications POLITECNICO DI TORINO III Facoltà di Ingegneria Ingegneria delle Telecomunicazioni Search for Improvements in Low Density Parity Check Codes for WiMAX (802.6e) Applications Author: Carlos Dirube García

More information

Randomized Progressive Edge-Growth (RandPEG)

Randomized Progressive Edge-Growth (RandPEG) Randomized Progressive Edge-Growth (Rand) Auguste Venkiah, David Declercq, Charly Poulliat ETIS, CNRS, ENSEA, Univ Cergy-Pontoise F-95000 Cergy-Pontoise email:{venkiah,declercq,poulliat}@ensea.fr Abstract

More information

Computer vision: models, learning and inference. Chapter 10 Graphical Models

Computer vision: models, learning and inference. Chapter 10 Graphical Models Computer vision: models, learning and inference Chapter 10 Graphical Models Independence Two variables x 1 and x 2 are independent if their joint probability distribution factorizes as Pr(x 1, x 2 )=Pr(x

More information

Page rank computation HPC course project a.y Compute efficient and scalable Pagerank

Page rank computation HPC course project a.y Compute efficient and scalable Pagerank Page rank computation HPC course project a.y. 2012-13 Compute efficient and scalable Pagerank 1 PageRank PageRank is a link analysis algorithm, named after Brin & Page [1], and used by the Google Internet

More information

CRC Error Correction for Energy-Constrained Transmission

CRC Error Correction for Energy-Constrained Transmission CRC Error Correction for Energy-Constrained Transmission Evgeny Tsimbalo, Xenofon Fafoutis, Robert J Piechocki Communication Systems & Networks, University of Bristol, UK Email: {e.tsimbalo, xenofon.fafoutis,

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) doc.: IEEE 802. 15-16-0746-07-003d 15-16-0746-01-003d Performance_of_FEC_in_TG3d_Channels Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Preliminary Performance

More information

Interlaced Column-Row Message-Passing Schedule for Decoding LDPC Codes

Interlaced Column-Row Message-Passing Schedule for Decoding LDPC Codes Interlaced Column-Row Message-Passing Schedule for Decoding LDPC Codes Saleh Usman, Mohammad M. Mansour, Ali Chehab Department of Electrical and Computer Engineering American University of Beirut Beirut

More information

THE DESIGN OF STRUCTURED REGULAR LDPC CODES WITH LARGE GIRTH. Haotian Zhang and José M. F. Moura

THE DESIGN OF STRUCTURED REGULAR LDPC CODES WITH LARGE GIRTH. Haotian Zhang and José M. F. Moura THE DESIGN OF STRUCTURED REGULAR LDPC CODES WITH LARGE GIRTH Haotian Zhang and José M. F. Moura Department of Electrical and Computer Engineering Carnegie Mellon University, Pittsburgh, PA 523 {haotian,

More information

Optimized Min-Sum Decoding Algorithm for Low Density PC Codes

Optimized Min-Sum Decoding Algorithm for Low Density PC Codes Optimized Min-Sum Decoding Algorithm for Low Density PC Codes Dewan Siam Shafiullah, Mohammad Rakibul Islam, Mohammad Mostafa Amir Faisal, Imran Rahman, Dept. of Electrical and Electronic Engineering,

More information

Sequential Algorithms for Generating Random Graphs. Amin Saberi Stanford University

Sequential Algorithms for Generating Random Graphs. Amin Saberi Stanford University Sequential Algorithms for Generating Random Graphs Amin Saberi Stanford University Outline Generating random graphs with given degrees (joint work with M Bayati and JH Kim) Generating random graphs with

More information

Fitting Social Network Models Using the Varying Truncation S. Truncation Stochastic Approximation MCMC Algorithm

Fitting Social Network Models Using the Varying Truncation S. Truncation Stochastic Approximation MCMC Algorithm Fitting Social Network Models Using the Varying Truncation Stochastic Approximation MCMC Algorithm May. 17, 2012 1 This talk is based on a joint work with Dr. Ick Hoon Jin Abstract The exponential random

More information

A Fast Learning Algorithm for Deep Belief Nets

A Fast Learning Algorithm for Deep Belief Nets A Fast Learning Algorithm for Deep Belief Nets Geoffrey E. Hinton, Simon Osindero Department of Computer Science University of Toronto, Toronto, Canada Yee-Whye Teh Department of Computer Science National

More information

The Lekha 3GPP LTE Turbo Decoder IP Core meets 3GPP LTE specification 3GPP TS V Release 10[1].

The Lekha 3GPP LTE Turbo Decoder IP Core meets 3GPP LTE specification 3GPP TS V Release 10[1]. Lekha IP Core: LW RI 1002 3GPP LTE Turbo Decoder IP Core V1.0 The Lekha 3GPP LTE Turbo Decoder IP Core meets 3GPP LTE specification 3GPP TS 36.212 V 10.5.0 Release 10[1]. Introduction The Lekha IP 3GPP

More information

TURBO codes, [1], [2], have attracted much interest due

TURBO codes, [1], [2], have attracted much interest due 800 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001 Zigzag Codes and Concatenated Zigzag Codes Li Ping, Member, IEEE, Xiaoling Huang, and Nam Phamdo, Senior Member, IEEE Abstract

More information

Rate Allocation for K-user MAC with Equalization. Author(s)Grossmann, Marcus; Matsumoto, Tad

Rate Allocation for K-user MAC with Equalization. Author(s)Grossmann, Marcus; Matsumoto, Tad JAIST Reposi https://dspace.j Title Rate Allocation for K-user MAC with Equalization Author(sGrossmann, Marcus; Matsumoto, Tad Citation Proceedings 009 International ITG W Smart Antennas (WSA 009: 8-88

More information

ECE521: Week 11, Lecture March 2017: HMM learning/inference. With thanks to Russ Salakhutdinov

ECE521: Week 11, Lecture March 2017: HMM learning/inference. With thanks to Russ Salakhutdinov ECE521: Week 11, Lecture 20 27 March 2017: HMM learning/inference With thanks to Russ Salakhutdinov Examples of other perspectives Murphy 17.4 End of Russell & Norvig 15.2 (Artificial Intelligence: A Modern

More information

A new two-stage decoding scheme with unreliable path search to lower the error-floor for low-density parity-check codes

A new two-stage decoding scheme with unreliable path search to lower the error-floor for low-density parity-check codes IET Communications Research Article A new two-stage decoding scheme with unreliable path search to lower the error-floor for low-density parity-check codes Pilwoong Yang 1, Bohwan Jun 1, Jong-Seon No 1,

More information

Performance Analysis of Gray Code based Structured Regular Column-Weight Two LDPC Codes

Performance Analysis of Gray Code based Structured Regular Column-Weight Two LDPC Codes IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 11, Issue 4, Ver. III (Jul.-Aug.2016), PP 06-10 www.iosrjournals.org Performance Analysis

More information

Turbo Receiver Design for MIMO Relay ARQ Transmissions

Turbo Receiver Design for MIMO Relay ARQ Transmissions Turbo Receiver Design for MIMO Relay ARQ Transmissions Halim Yanikomeroglu Carleton University, Canada A joint work with Zakaria El-Moutaouakkil (Telecom Bretagne, France) Tarik Ait-Idir (ExceliaCom Solutions,

More information

SNAP Haskell. Abraham Starosta March 18, 2016 Code: Abstract

SNAP Haskell. Abraham Starosta March 18, 2016 Code:   Abstract SNAP Haskell Abraham Starosta March 18, 2016 Code: https://github.com/astarostap/cs240h_final_project Abstract The goal of SNAP Haskell is to become a general purpose, high performance system for analysis

More information

Channel Decoding in Wireless Communication Systems using Deep Learning

Channel Decoding in Wireless Communication Systems using Deep Learning Channel Decoding in Wireless Communication Systems using Deep Learning Gaurang Naik 12/11/2017 Deep Learning Course Project Acknowledgements: Navneet Agrawal, TU Berlin Error Control Coding Wireless Communication

More information

Link Analysis and Web Search

Link Analysis and Web Search Link Analysis and Web Search Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ based on material by prof. Bing Liu http://www.cs.uic.edu/~liub/webminingbook.html

More information

A Massively Parallel Implementation of QC-LDPC Decoder on GPU

A Massively Parallel Implementation of QC-LDPC Decoder on GPU A Massively Parallel Implementation of QC-LDPC Decoder on GPU Guohui Wang, Michael Wu, Yang Sun, and Joseph R Cavallaro Department of Electrical and Computer Engineering, Rice University, Houston, Texas

More information

MCMC Methods for data modeling

MCMC Methods for data modeling MCMC Methods for data modeling Kenneth Scerri Department of Automatic Control and Systems Engineering Introduction 1. Symposium on Data Modelling 2. Outline: a. Definition and uses of MCMC b. MCMC algorithms

More information

Non-Binary Turbo Codes Interleavers

Non-Binary Turbo Codes Interleavers Non-Binary Turbo Codes Interleavers Maria KOVACI, Horia BALTA University Polytechnic of Timişoara, Faculty of Electronics and Telecommunications, Postal Address, 30223 Timişoara, ROMANIA, E-Mail: mariakovaci@etcuttro,

More information

An MSE Based Transfer Chart to Analyze Iterative Decoding Schemes

An MSE Based Transfer Chart to Analyze Iterative Decoding Schemes An MSE Based Transfer Chart to Analyze Iterative Decoding Schemes Kapil Bhattad, Student Member, IEEE and Krishna R. Narayanan, Member, IEEE Department of Electrical Engineering, Texas A&M University,

More information

MULTI-RATE HIGH-THROUGHPUT LDPC DECODER: TRADEOFF ANALYSIS BETWEEN DECODING THROUGHPUT AND AREA

MULTI-RATE HIGH-THROUGHPUT LDPC DECODER: TRADEOFF ANALYSIS BETWEEN DECODING THROUGHPUT AND AREA MULTI-RATE HIGH-THROUGHPUT LDPC DECODER: TRADEOFF ANALYSIS BETWEEN DECODING THROUGHPUT AND AREA Predrag Radosavljevic, Alexandre de Baynast, Marjan Karkooti, and Joseph R. Cavallaro Department of Electrical

More information

RJaCGH, a package for analysis of

RJaCGH, a package for analysis of RJaCGH, a package for analysis of CGH arrays with Reversible Jump MCMC 1. CGH Arrays: Biological problem: Changes in number of DNA copies are associated to cancer activity. Microarray technology: Oscar

More information

Gradient Descent Bit Flipping Algorithms for Decoding LDPC Codes

Gradient Descent Bit Flipping Algorithms for Decoding LDPC Codes 1 Gradient Descent Bit Flipping Algorithms for Decoding LDPC Codes Tadashi Wadayama, Keisue Naamura, Masayui Yagita, Yuui Funahashi, Shogo Usami, Ichi Taumi arxiv:0711.0261v2 [cs.it] 8 Apr 2008 Abstract

More information

Energy Efficiency Maximization for Wireless Sensor Networks

Energy Efficiency Maximization for Wireless Sensor Networks Energy Efficiency Maximization for Wireless Sensor Networks Inwhee Joe College of Information and Communications Hanyang University Seoul, Korea iwjoe@hanyang.ac.kr Abstract. Because of the remote nature

More information

A Class of Group-Structured LDPC Codes

A Class of Group-Structured LDPC Codes A Class of Group-Structured LDPC Codes R. Michael Tanner Deepak Sridhara and Tom Fuja 1 Computer Science Department Dept. of Electrical Engineering University of California, Santa Cruz, CA 95064 Univ.

More information

Hybrid Iteration Control on LDPC Decoders

Hybrid Iteration Control on LDPC Decoders Hybrid Iteration Control on LDPC Decoders Erick Amador and Raymond Knopp EURECOM 694 Sophia Antipolis, France name.surname@eurecom.fr Vincent Rezard Infineon Technologies France 656 Sophia Antipolis, France

More information

Low complexity FEC Systems for Satellite Communication

Low complexity FEC Systems for Satellite Communication Low complexity FEC Systems for Satellite Communication Ashwani Singh Navtel Systems 2 Rue Muette, 27000,Houville La Branche, France Tel: +33 237 25 71 86 E-mail: ashwani.singh@navtelsystems.com Henry Chandran

More information

1 Methods for Posterior Simulation

1 Methods for Posterior Simulation 1 Methods for Posterior Simulation Let p(θ y) be the posterior. simulation. Koop presents four methods for (posterior) 1. Monte Carlo integration: draw from p(θ y). 2. Gibbs sampler: sequentially drawing

More information

CHAPTER 5. QoS RPOVISIONING THROUGH EFFECTIVE RESOURCE ALLOCATION

CHAPTER 5. QoS RPOVISIONING THROUGH EFFECTIVE RESOURCE ALLOCATION CHAPTER 5 QoS RPOVISIONING THROUGH EFFECTIVE RESOURCE ALLOCATION 5.1 PRINCIPLE OF RRM The success of mobile communication systems and the need for better QoS, has led to the development of 3G mobile systems

More information

Markov chain Monte Carlo methods

Markov chain Monte Carlo methods Markov chain Monte Carlo methods (supplementary material) see also the applet http://www.lbreyer.com/classic.html February 9 6 Independent Hastings Metropolis Sampler Outline Independent Hastings Metropolis

More information

EE 6900: FAULT-TOLERANT COMPUTING SYSTEMS

EE 6900: FAULT-TOLERANT COMPUTING SYSTEMS EE 6900: FAULT-TOLERANT COMPUTING SYSTEMS LECTURE 6: CODING THEORY - 2 Fall 2014 Avinash Kodi kodi@ohio.edu Acknowledgement: Daniel Sorin, Behrooz Parhami, Srinivasan Ramasubramanian Agenda Hamming Codes

More information

A GRAPHICAL MODEL AND SEARCH ALGORITHM BASED QUASI-CYCLIC LOW-DENSITY PARITY-CHECK CODES SCHEME. Received December 2011; revised July 2012

A GRAPHICAL MODEL AND SEARCH ALGORITHM BASED QUASI-CYCLIC LOW-DENSITY PARITY-CHECK CODES SCHEME. Received December 2011; revised July 2012 International Journal of Innovative Computing, Information and Control ICIC International c 2013 ISSN 1349-4198 Volume 9, Number 4, April 2013 pp. 1617 1625 A GRAPHICAL MODEL AND SEARCH ALGORITHM BASED

More information

Kevin Buckley

Kevin Buckley Kevin Buckley - 69 ECE877 Information Theory & Coding for Digital Communications Villanova University ECE Department Prof. Kevin M. Buckley Lecture Set 3 Convolutional Codes x c (a) (b) (,) (,) (,) (,)

More information

On the construction of Tanner graphs

On the construction of Tanner graphs On the construction of Tanner graphs Jesús Martínez Mateo Universidad Politécnica de Madrid Outline Introduction Low-density parity-check (LDPC) codes LDPC decoding Belief propagation based algorithms

More information

Hybrid Coding Gain and Hybrid ARQ Based on Conception of Majority Voting

Hybrid Coding Gain and Hybrid ARQ Based on Conception of Majority Voting Hybrid Coding Gain and Hybrid ARQ Based on Conception of Majority Voting Hsin-Kun Lai and Erl-Huei Lu Chin Min Institute of Technology, Chang Gung University No. 110, Syuefu Rd., Toufen Township, Miaoli

More information

Outline. Basic ARQ schemes. S Capacity enhancement methods for radio interface ARQ Schemes. Classification of error control strategies

Outline. Basic ARQ schemes. S Capacity enhancement methods for radio interface ARQ Schemes. Classification of error control strategies ARQ Schemes, March 26 24 ARQ Schemes, March 26 24 2 Outline Classification of error control strategies S-7263 Capacity enhancement methods for radio interface ARQ Schemes Markku Liinaharja March 25, 24

More information

Outline. Wireless Channel Characteristics. Multi-path Fading. Opportunistic Communication - with a focus on WLAN environments -

Outline. Wireless Channel Characteristics. Multi-path Fading. Opportunistic Communication - with a focus on WLAN environments - Outline Opportunistic Communication - with a focus on WLAN environments - Jong-won Lee 2006. 02.20. Background? Wireless Channels? Opportunistic communication? Examples? Basics of WLAN Previous Works?

More information

A REVIEW OF CONSTRUCTION METHODS FOR REGULAR LDPC CODES

A REVIEW OF CONSTRUCTION METHODS FOR REGULAR LDPC CODES A REVIEW OF CONSTRUCTION METHODS FOR REGULAR LDPC CODES Rutuja Shedsale Department of Electrical Engineering, Veermata Jijabai Technological Institute (V.J.T.I.)Mumbai, India. E-mail: rutuja_shedsale@yahoo.co.in

More information

Analyzing the Peeling Decoder

Analyzing the Peeling Decoder Analyzing the Peeling Decoder Supplemental Material for Advanced Channel Coding Henry D. Pfister January 5th, 01 1 Introduction The simplest example of iterative decoding is the peeling decoder introduced

More information

ASIP LDPC DESIGN FOR AD AND AC

ASIP LDPC DESIGN FOR AD AND AC ASIP LDPC DESIGN FOR 802.11AD AND 802.11AC MENG LI CSI DEPARTMENT 3/NOV/2014 GDR-ISIS @ TELECOM BRETAGNE BREST FRANCE OUTLINES 1. Introduction of IMEC and CSI department 2. ASIP design flow 3. Template

More information

DESIGN AND IMPLEMENTATION OF VARIABLE RADIUS SPHERE DECODING ALGORITHM

DESIGN AND IMPLEMENTATION OF VARIABLE RADIUS SPHERE DECODING ALGORITHM DESIGN AND IMPLEMENTATION OF VARIABLE RADIUS SPHERE DECODING ALGORITHM Wu Di, Li Dezhi and Wang Zhenyong School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China

More information