Introduction to cryptology (GBIN8U16)

Size: px
Start display at page:

Download "Introduction to cryptology (GBIN8U16)"

Transcription

1 Introduction to cryptology (GBIN8U16) Finite fields, block ciphers Pierre Karpman Finite fields, block ciphers /31

2 Bits as field elements Digital processing of information dealing with bits Error-correcting codes, crypto need analysis maths bits (no structure) field elements (math object) Natural match: {0, 1} F2 Z/2Z (natural) integers modulo 2 F2 : two elements (0, 1), two operations (+, ) Finite fields, block ciphers /31

3 What s F 2 like? Addition exclusive or (XOR ( )) Multiplication logical and ( ) Boolean arithmetic Fact: any Boolean function f {0, 1} n {0, 1} can be computed using only and Fact 2: ditto, g {0, 1} n {0, 1} m Fact 3: ditto, using NAND ( ) Finite fields, block ciphers /31

4 One bit is nice, but... We rather need bit strings {0, 1} n than single bits Now two natural matches: F n 2 (vectors over F 2 ) Can add two vectors Cannot multiply internally (but there s a dot/scalar product) Z/2 n Z (natural integers modulo 2 n ) Can add, multiply Not all elements are invertible (e.g. 2) only a ring Finite fields, block ciphers /31

5 A third way Also possible: F2 n: an extension field Addition like in F n 2 Plus an internal multiplication All elements (except zero) are invertible Not for today! Finite fields, block ciphers /31

6 Why are these useful? Allows to perform operations on inputs E.g. adding two messages together Vector spaces linear algebra (matrices) Powerful tools to solve easy problems (Intuition: crypto shouldn t be linear) Fields polynomials With one or more variable Can compute differentials Can mix F n 2, Z/2 n Z to make things hard Popular ARX strategy in symmetric cryptography (FEAL/MD5/HA-1/Chacha/peck/...) Finite fields, block ciphers /31

7 Block ciphers: simple binary mappings Block ciphers A block cipher is a mapping E K M M s.t. k K, E(k, ) is invertible In practice, most of the time: Note Keys K = {0, 1} κ, with κ {64, 80, 96, 112, 128, 192, 256} (but e.g. 64 s too short) Plaintexts/ciphertexts M = M = {0, 1} n, with n {64, 128, 256} Block cipher inputs are bits, not vectors; field, ring elements Finite fields, block ciphers /31

8 Block ciphers: for what? Ultimate goal: symmetric encryption plaintext + key ciphertext ciphertext + key plaintext ciphertext??? With arbitrary plaintexts {0, 1} Block ciphers: do that for plaintexts {0, 1} n (Very) small example: 32 randomly shuffled cards = 5-bit block cipher Typical block sizes n = what s easy to implement Finite fields, block ciphers /31

9 Block ciphers: only a building block A vanilla block cipher is useless Only works on fixed-size inputs Is not randomized (remember?) Fix k, x E(k, x) always the same leaks information about repeated messages (Does not authenticate coms) Use block ciphers with a mode of operation Finite fields, block ciphers /31

10 Encryption modes Randomized encryption scheme An encryption scheme is a mapping E K R M M s.t. k K, r R, E(k, r, ) is invertible With e.g. plaintexts/ciphertexts M = M = l 2 40{0, 1} 128l keys K public randomness R Encryption scheme block cipher + mode of operation Finite fields, block ciphers /31

11 Criteria for a mode Not all modes are equivalent How much can you encrypt? (In function of {0, 1} n ) With what security? With what performance? (Do you get auth?) Classical examples: ECB (not a mode), CBC, CTR Finite fields, block ciphers /31

12 ECB (not a mode, for reference) Electronic Code Book mode m 0 m 1... E(k, m 0 ) E(k, m 1 )... Vanilla use of the block cipher Efficient No security Finite fields, block ciphers /31

13 CBC (classical, not so great) Cipher Block Chaining mode r m 0 m 1... c 0 = E(k, m 0 r) c1 = E(k, m 1 c 0 )... Chain blocks together (duh) Output block i (ciphtertext) added (XORed) w/ input block i + 1 (plaintext) For first (m 0 ) block: use random IV r equential not so efficient Need E 1 to decrypt ecurity in the square root of the block size = birthday bound (no details for now) E.g., 128-bit blocks change key before encrypting 2 64 blocks Finite fields, block ciphers /31

14 CBC: need random IVs CBC is not IND-CPA if the IVs are not random Attacker asks E CBC(m), gets r, c = E(k, m r) Knows that next IV = x ends two challenges m0 = m r x, m 1 $ M Gets cb = E CBC(m b ), b $ {0, 1} If cb = c, guess b = 0, else b = 1 Finite fields, block ciphers /31

15 CTR mode (classical, better) Counter mode r m 0 m 1... E(k, r) m 0 E(k, r + 1) m 1... Like a stream cipher Encrypt a public counter pseudo-random keystream Add (XOR) the keystream and the message Parallel efficient (multi-core, pipelining & all) Inverse-free : don t need E 1 to decrypt ecurity up to the birthday bound (like CBC) This time, r can be known in advance (but cannot repeat!) Finite fields, block ciphers /31

16 Other nice modes CENC (CTR-like, beyond birthday ) OCB (Authenticated-Encryption (AE) mode) GCM (ditto) TAE (OCB-like w/ tweakable block ciphers) OTR (OCB-like, inverse-free) Maybe for another day... Finite fields, block ciphers /31

17 Back to BCs: how do you build one? Many design strategies Different choices possible at high level (main structure) low level (tiny building blocks) Two brief examples today: Feistel, PN In both cases: define a round function, iterate it many times Finite fields, block ciphers /31

18 Feistel ladder/networks A framework to extend the domain of a function (not necessarily invertible) Very versatile, can be used to build Block ciphers (obvs.) / Hash functions Modes of operation (e.g. OTR) Padding schemes (e.g. OAEP) -boxes (part of block ciphers) Etc. Finite fields, block ciphers /31

19 Feistels: main idea Basic equations (two-branch Feistel): (L, R) (L = R, R = L F (R)) (forward) (L, R ) (L = R F (L ), R = L ) (backward) Don t need F 1 to invert (does not need to be defined!) Can iterate to many rounds, with possibly different F s Then, can extend (in many ways) to more than two branches! Finite fields, block ciphers /31

20 A Feistel, in picture L 0 R 0 F 1 F 2 F 3 L 3 R 3 Figure: 3-Round Feistel ( Finite fields, block ciphers /31

21 We re not done, tho Q.1 How to build F? Q.2 How to add a key? No single answer, but for instance A.1.1 Use random-looking small tables (-boxes) A.1.2 Mix operations in F n 2, Z/2 n Z, Boolean functions (ARX) A.2.1 Add a key before/after F A.2.2 Use key-dependent F Etc. Finite fields, block ciphers /31

22 The TWINE round function x i 0 x i 1 x i 2 x i 3 x i 4 x i 5 x i 6 x i 7 x i 8 x i 9 x i 10 x i 11 x i 12 x i 13 x i 14 x RK i i 15 0 RK1 i RK2 i RK3 i RK4 i RK5 i RK6 i RK7 i F i 0 F i 2 F i 4 F i 6 F i 8 F i 10 F i 12 F i 14 x i+1 0 x i+1 1 x i+1 2 x i+1 3 x i+1 4 x i+1 5 x i+1 6 x i+1 7 x i+1 8 x i+1 9 x i+1 10 x i+1 11 x i+1 12 x i+1 13 x i+1 14 x i+1 15 Figure: One round of TWINE ( Finite fields, block ciphers /31

23 One HA-1 step A i B i C i D i E i φ i W i K i 20 A i+1 B i+1 C i+1 D i+1 E i+1 Figure: One HA-1 step (compression function, block cipher) Finite fields, block ciphers /31

24 Another way: ubstitution Permutation Networks One round: compose and P where: P is an invertible matrix over F2 (i.e. P GL n (F 2 )) Often is not F2 -linear (Plus add a key at some point) P is a permutation matrix Or a sparse matrix (e.g. composition of block diagonal and permutation) is made of small invertible -boxes Finite fields, block ciphers /31

25 mall drawing: better than long description x / n = 7 b / b / b / b / b / b / b / b / b / b / b / b / b / b / b / n P y Figure: PN, still quite abstract Finite fields, block ciphers /31

26 Finite fields, block ciphers /31 Example: PREENT k i k i+1 Figure: Two rounds of PREENT (

27 Example: AE blackboard Finite fields, block ciphers /31

28 Why not a single block cipher? It s all about context objectives? Fast? mall? ecure? (LOL) Versatile? Dedicated? oftware/hardware? Etc. We ve barely scratched the surface Finite fields, block ciphers /31

29 Anyways, what s a secure one? Let Perm(M) be the set of the (#M)! permutations of M $ Ideally, k, E(k, ) Perm(M) In practice, good enough if E is a good pseudo-random permutation (PRP): An adversary has access to an oracle O $ In one world, O Perm(M) $ In another, k K, O = E(k, ) The adversary cannot tell in which world he leaves Example: E cannot be F2 -linear (or even close to ) Finite fields, block ciphers /31

30 Next week Extensions of F2 LFRs MACs Finite fields, block ciphers /31

31 References Knudsen & Robshaw, The Block Cipher Companion Daemen & Rijmen, The Design of Rijndael Finite fields, block ciphers /31

Cryptology complementary. Symmetric modes of operation

Cryptology complementary. Symmetric modes of operation Cryptology complementary Symmetric modes of operation Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/pierre.karpman/tea.html 2018 05 03 Symmetric modes 2018 05 03

More information

Cryptology complementary. Finite fields the practical side (1)

Cryptology complementary. Finite fields the practical side (1) Cryptology complementary Finite fields the practical side (1) Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/pierre.karpman/tea.html 2018 03 15 Finite Fields in practice

More information

Block cipher modes. Lecturers: Mark D. Ryan and David Galindo. Cryptography Slide: 75

Block cipher modes. Lecturers: Mark D. Ryan and David Galindo. Cryptography Slide: 75 Block cipher modes Lecturers: Mark D. Ryan and David Galindo. Cryptography 2017. Slide: 75 Lecturers: Mark D. Ryan and David Galindo. Cryptography 2017. Slide: 76 Block cipher modes Block ciphers (like

More information

Advanced Encryption Standard and Modes of Operation. Foundations of Cryptography - AES pp. 1 / 50

Advanced Encryption Standard and Modes of Operation. Foundations of Cryptography - AES pp. 1 / 50 Advanced Encryption Standard and Modes of Operation Foundations of Cryptography - AES pp. 1 / 50 AES Advanced Encryption Standard (AES) is a symmetric cryptographic algorithm AES has been originally requested

More information

Cryptography Functions

Cryptography Functions Cryptography Functions Lecture 3 1/29/2013 References: Chapter 2-3 Network Security: Private Communication in a Public World, Kaufman, Perlman, Speciner Types of Cryptographic Functions Secret (Symmetric)

More information

Computer Security CS 526

Computer Security CS 526 Computer Security CS 526 Topic 4 Cryptography: Semantic Security, Block Ciphers and Encryption Modes CS555 Topic 4 1 Readings for This Lecture Required reading from wikipedia Block Cipher Ciphertext Indistinguishability

More information

Block ciphers. CS 161: Computer Security Prof. Raluca Ada Popa. February 26, 2016

Block ciphers. CS 161: Computer Security Prof. Raluca Ada Popa. February 26, 2016 Block ciphers CS 161: Computer Security Prof. Raluca Ada Popa February 26, 2016 Announcements Last time Syntax of encryption: Keygen, Enc, Dec Security definition for known plaintext attack: attacker provides

More information

Permutation-based symmetric cryptography

Permutation-based symmetric cryptography Permutation-based symmetric cryptography Guido Bertoni 1 Joan Daemen 1 Michaël Peeters 2 Gilles Van Assche 1 1 STMicroelectronics 2 NXP Semiconductors Keccak & SHA-3 Day Université Libre de Bruxelles March

More information

Block ciphers used to encode messages longer than block size Needs to be done correctly to preserve security Will look at five ways of doing this

Block ciphers used to encode messages longer than block size Needs to be done correctly to preserve security Will look at five ways of doing this Lecturers: Mark D. Ryan and David Galindo. Cryptography 2015. Slide: 74 Block ciphers used to encode messages longer than block size Needs to be done correctly to preserve security Will look at five ways

More information

Cryptography [Symmetric Encryption]

Cryptography [Symmetric Encryption] CSE 484 / CSE M 584: Computer Security and Privacy Cryptography [Symmetric Encryption] Spring 2017 Franziska (Franzi) Roesner franzi@cs.washington.edu Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin,

More information

CS 161 Computer Security. Week of September 11, 2017: Cryptography I

CS 161 Computer Security. Week of September 11, 2017: Cryptography I Weaver Fall 2017 CS 161 Computer Security Discussion 3 Week of September 11, 2017: Cryptography I Question 1 Activity: Cryptographic security levels (20 min) Say Alice has a randomly-chosen symmetric key

More information

Crypto: Symmetric-Key Cryptography

Crypto: Symmetric-Key Cryptography Computer Security Course. Song Crypto: Symmetric-Key Cryptography Slides credit: Dan Boneh, David Wagner, Doug Tygar Overview Cryptography: secure communication over insecure communication channels Three

More information

Winter 2011 Josh Benaloh Brian LaMacchia

Winter 2011 Josh Benaloh Brian LaMacchia Winter 2011 Josh Benaloh Brian LaMacchia Symmetric Cryptography January 20, 2011 Practical Aspects of Modern Cryptography 2 Agenda Symmetric key ciphers Stream ciphers Block ciphers Cryptographic hash

More information

1 Achieving IND-CPA security

1 Achieving IND-CPA security ISA 562: Information Security, Theory and Practice Lecture 2 1 Achieving IND-CPA security 1.1 Pseudorandom numbers, and stateful encryption As we saw last time, the OTP is perfectly secure, but it forces

More information

Introduction to Cryptography. Lecture 2. Benny Pinkas. Perfect Cipher. Perfect Ciphers. Size of key space

Introduction to Cryptography. Lecture 2. Benny Pinkas. Perfect Cipher. Perfect Ciphers. Size of key space Perfect Cipher Introduction to Cryptography Lecture 2 Benny Pinkas What type of security would we like to achieve? Given C, the adversary has no idea what M is Impossible since adversary might have a-priori

More information

Information Security CS526

Information Security CS526 Information CS 526 Topic 3 Ciphers and Cipher : Stream Ciphers, Block Ciphers, Perfect Secrecy, and IND-CPA 1 Announcements HW1 is out, due on Sept 10 Start early, late policy is 3 total late days for

More information

Private-Key Encryption

Private-Key Encryption Private-Key Encryption Ali El Kaafarani Mathematical Institute Oxford University 1 of 50 Outline 1 Block Ciphers 2 The Data Encryption Standard (DES) 3 The Advanced Encryption Standard (AES) 4 Attacks

More information

Introduction to Modern Cryptography. Lecture 2. Symmetric Encryption: Stream & Block Ciphers

Introduction to Modern Cryptography. Lecture 2. Symmetric Encryption: Stream & Block Ciphers Introduction to Modern Cryptography Lecture 2 Symmetric Encryption: Stream & Block Ciphers Stream Ciphers Start with a secret key ( seed ) Generate a keying stream i-th bit/byte of keying stream is a function

More information

Cryptography (cont.)

Cryptography (cont.) CSE 484 / CSE M 584 (Autumn 2011) Cryptography (cont.) Daniel Halperin Tadayoshi Kohno Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others

More information

page 1 Introduction to Cryptography Benny Pinkas Lecture 3 November 18, 2008 Introduction to Cryptography, Benny Pinkas

page 1 Introduction to Cryptography Benny Pinkas Lecture 3 November 18, 2008 Introduction to Cryptography, Benny Pinkas Introduction to Cryptography Lecture 3 Benny Pinkas page 1 1 Pseudo-random generator Pseudo-random generator seed output s G G(s) (random, s =n) Deterministic function of s, publicly known G(s) = 2n Distinguisher

More information

Cryptography CS 555. Topic 11: Encryption Modes and CCA Security. CS555 Spring 2012/Topic 11 1

Cryptography CS 555. Topic 11: Encryption Modes and CCA Security. CS555 Spring 2012/Topic 11 1 Cryptography CS 555 Topic 11: Encryption Modes and CCA Security CS555 Spring 2012/Topic 11 1 Outline and Readings Outline Encryption modes CCA security Readings: Katz and Lindell: 3.6.4, 3.7 CS555 Spring

More information

Assignment 3: Block Ciphers

Assignment 3: Block Ciphers Assignment 3: Block Ciphers CSCI3381-Cryptography Due October 3, 2014 1 Solutions to the Written Problems 1. Block Cipher Modes of Operation 6 points per part, 30 total. Parts (a)-(d) refer to the cipherblock

More information

Symmetric Cryptography

Symmetric Cryptography CSE 484 (Winter 2010) Symmetric Cryptography Tadayoshi Kohno Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials...

More information

Block ciphers, stream ciphers

Block ciphers, stream ciphers Block ciphers, stream ciphers (start on:) Asymmetric cryptography CS 161: Computer Security Prof. Raluca Ada Popa Jan 31, 2018 Announcements Project 1 is out, due Feb 14 midnight Recall: Block cipher A

More information

ECE596C: Handout #7. Analysis of DES and the AES Standard. Electrical and Computer Engineering, University of Arizona, Loukas Lazos

ECE596C: Handout #7. Analysis of DES and the AES Standard. Electrical and Computer Engineering, University of Arizona, Loukas Lazos ECE596C: Handout #7 Analysis of DES and the AES Standard Electrical and Computer Engineering, University of Arizona, Loukas Lazos Abstract. In this lecture we analyze the security properties of DES and

More information

ENGI 8868/9877 Computer and Communications Security III. BLOCK CIPHERS. Symmetric Key Cryptography. insecure channel

ENGI 8868/9877 Computer and Communications Security III. BLOCK CIPHERS. Symmetric Key Cryptography. insecure channel (a) Introduction - recall symmetric key cipher: III. BLOCK CIPHERS k Symmetric Key Cryptography k x e k y yʹ d k xʹ insecure channel Symmetric Key Ciphers same key used for encryption and decryption two

More information

CIS 4360 Secure Computer Systems Symmetric Cryptography

CIS 4360 Secure Computer Systems Symmetric Cryptography CIS 4360 Secure Computer Systems Symmetric Cryptography Professor Qiang Zeng Spring 2017 Previous Class Classical Cryptography Frequency analysis Never use home-made cryptography Goals of Cryptography

More information

Cryptography: Symmetric Encryption [continued]

Cryptography: Symmetric Encryption [continued] CSE 484 / CSE M 584: Computer Security and Privacy Cryptography: Symmetric Encryption [continued] Fall 2016 Ada (Adam) Lerner lerner@cs.washington.edu Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann,

More information

Some Aspects of Block Ciphers

Some Aspects of Block Ciphers Some Aspects of Block Ciphers Palash Sarkar Applied Statistics Unit Indian Statistical Institute, Kolkata India palash@isical.ac.in CU-ISI Tutorial Workshop on Cryptology, 17 th July 2011 Palash Sarkar

More information

Computational Security, Stream and Block Cipher Functions

Computational Security, Stream and Block Cipher Functions Computational Security, Stream and Block Cipher Functions 18 March 2019 Lecture 3 Most Slides Credits: Steve Zdancewic (UPenn) 18 March 2019 SE 425: Communication and Information Security 1 Topics for

More information

Introduction to cryptology (GBIN8U16) Introduction

Introduction to cryptology (GBIN8U16) Introduction Introduction to cryptology (GBIN8U16) Introduction Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/pierre.karpman/tea.html 2018 01 24 Introduction 2018 01 24 1/27 First

More information

Symmetric Cryptography

Symmetric Cryptography CSE 484 (Winter 2010) Symmetric Cryptography Tadayoshi Kohno Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials...

More information

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017 COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Previously on COS 433 Pseudorandom Permutations unctions that look like random permutations Syntax: Key space K (usually {0,1}

More information

Symmetric Encryption. Thierry Sans

Symmetric Encryption. Thierry Sans Symmetric Encryption Thierry Sans Design principles (reminder) 1. Kerkoff Principle The security of a cryptosystem must not rely on keeping the algorithm secret 2. Diffusion Mixing-up symbols 3. Confusion

More information

Feedback Week 4 - Problem Set

Feedback Week 4 - Problem Set 4/26/13 Homework Feedback Introduction to Cryptography Feedback Week 4 - Problem Set You submitted this homework on Mon 17 Dec 2012 11:40 PM GMT +0000. You got a score of 10.00 out of 10.00. Question 1

More information

Lecture 2: Secret Key Cryptography

Lecture 2: Secret Key Cryptography T-79.159 Cryptography and Data Security Lecture 2: Secret Key Cryptography Helger Lipmaa Helsinki University of Technology helger@tcs.hut.fi 1 Reminder: Communication Model Adversary Eve Cipher, Encryption

More information

Solutions to exam in Cryptography December 17, 2013

Solutions to exam in Cryptography December 17, 2013 CHALMERS TEKNISKA HÖGSKOLA Datavetenskap Daniel Hedin DIT250/TDA351 Solutions to exam in Cryptography December 17, 2013 Hash functions 1. A cryptographic hash function is a deterministic function that

More information

ENEE 457: Computer Systems Security 09/12/16. Lecture 4 Symmetric Key Encryption II: Security Definitions and Practical Constructions

ENEE 457: Computer Systems Security 09/12/16. Lecture 4 Symmetric Key Encryption II: Security Definitions and Practical Constructions ENEE 457: Computer Systems Security 09/12/16 Lecture 4 Symmetric Key Encryption II: Security Definitions and Practical Constructions Charalampos (Babis) Papamanthou Department of Electrical and Computer

More information

CIS 6930/4930 Computer and Network Security. Topic 3.1 Secret Key Cryptography (Cont d)

CIS 6930/4930 Computer and Network Security. Topic 3.1 Secret Key Cryptography (Cont d) CIS 6930/4930 Computer and Network Security Topic 3.1 Secret Key Cryptography (Cont d) 1 Principles for S-Box Design S-box is the only non-linear part of DES Each row in the S-Box table should be a permutation

More information

Scanned by CamScanner

Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Symmetric-Key Cryptography CS 161: Computer Security

More information

CS 4770: Cryptography. CS 6750: Cryptography and Communication Security. Alina Oprea Associate Professor, CCIS Northeastern University

CS 4770: Cryptography. CS 6750: Cryptography and Communication Security. Alina Oprea Associate Professor, CCIS Northeastern University CS 4770: Cryptography CS 6750: Cryptography and Communication Security Alina Oprea Associate Professor, CCIS Northeastern University February 8 2018 Review CPA-secure construction Security proof by reduction

More information

Lecture 4: Symmetric Key Encryption

Lecture 4: Symmetric Key Encryption Lecture 4: Symmetric ey Encryption CS6903: Modern Cryptography Spring 2009 Nitesh Saxena Let s use the board, please take notes 2/20/2009 Lecture 1 - Introduction 2 Data Encryption Standard Encrypts by

More information

Stream Ciphers An Overview

Stream Ciphers An Overview Stream Ciphers An Overview Palash Sarkar Indian Statistical Institute, Kolkata email: palash@isicalacin stream cipher overview, Palash Sarkar p1/51 Classical Encryption Adversary message ciphertext ciphertext

More information

Computer Security. 08r. Pre-exam 2 Last-minute Review Cryptography. Paul Krzyzanowski. Rutgers University. Spring 2018

Computer Security. 08r. Pre-exam 2 Last-minute Review Cryptography. Paul Krzyzanowski. Rutgers University. Spring 2018 Computer Security 08r. Pre-exam 2 Last-minute Review Cryptography Paul Krzyzanowski Rutgers University Spring 2018 March 26, 2018 CS 419 2018 Paul Krzyzanowski 1 Cryptographic Systems March 26, 2018 CS

More information

Lecture 3: Symmetric Key Encryption

Lecture 3: Symmetric Key Encryption Lecture 3: Symmetric Key Encryption CS996: Modern Cryptography Spring 2007 Nitesh Saxena Outline Symmetric Key Encryption Continued Discussion of Potential Project Topics Project proposal due 02/22/07

More information

Cryptography and Network Security

Cryptography and Network Security Cryptography and Network Security CRYPTOGRAPHY AND NETWORK SECURITY PRAKASH C. GUPTA Former Head Department of Information Technology Maharashtra Institute of Technology Pune Delhi-110092 2015 CRYPTOGRAPHY

More information

CS 161 Computer Security

CS 161 Computer Security Raluca Popa Spring 2018 CS 161 Computer Security Discussion 3 Week of February 5, 2018: Cryptography I Question 1 Activity: Cryptographic security levels (20 min) Say Alice has a randomly-chosen symmetric

More information

ENEE 459-C Computer Security. Symmetric key encryption in practice: DES and AES algorithms

ENEE 459-C Computer Security. Symmetric key encryption in practice: DES and AES algorithms ENEE 459-C Computer Security Symmetric key encryption in practice: DES and AES algorithms A perfect encryption of a block Say you have a block of n bits You want to encrypt it You want to use the same

More information

Practical Aspects of Modern Cryptography

Practical Aspects of Modern Cryptography Practical Aspects of Modern Cryptography Lecture 3: Symmetric s and Hash Functions Josh Benaloh & Brian LaMacchia Meet Alice and Bob Alice Bob Message Modern Symmetric s Setup: Alice wants to send a private

More information

CS155. Cryptography Overview

CS155. Cryptography Overview CS155 Cryptography Overview Cryptography Is n n A tremendous tool The basis for many security mechanisms Is not n n n n The solution to all security problems Reliable unless implemented properly Reliable

More information

Cryptography: Symmetric Encryption (finish), Hash Functions, Message Authentication Codes

Cryptography: Symmetric Encryption (finish), Hash Functions, Message Authentication Codes CSE 484 / CSE M 584: Computer Security and Privacy Cryptography: Symmetric Encryption (finish), Hash Functions, Message Authentication Codes Spring 2016 Franziska (Franzi) Roesner franzi@cs.washington.edu

More information

3 Symmetric Key Cryptography 3.1 Block Ciphers Symmetric key strength analysis Electronic Code Book Mode (ECB) Cipher Block Chaining Mode (CBC) Some

3 Symmetric Key Cryptography 3.1 Block Ciphers Symmetric key strength analysis Electronic Code Book Mode (ECB) Cipher Block Chaining Mode (CBC) Some 3 Symmetric Key Cryptography 3.1 Block Ciphers Symmetric key strength analysis Electronic Code Book Mode (ECB) Cipher Block Chaining Mode (CBC) Some popular block ciphers Triple DES Advanced Encryption

More information

CSC 474/574 Information Systems Security

CSC 474/574 Information Systems Security CSC 474/574 Information Systems Security Topic 2.2 Secret Key Cryptography CSC 474/574 Dr. Peng Ning 1 Agenda Generic block cipher Feistel cipher DES Modes of block ciphers Multiple encryptions Message

More information

Symmetric-Key Cryptography

Symmetric-Key Cryptography Symmetric-Key Cryptography CS 161: Computer Security Prof. Raluca Ada Popa Sept 13, 2016 Announcements Project due Sept 20 Special guests Alice Bob The attacker (Eve - eavesdropper, Malice) Sometimes Chris

More information

7. Symmetric encryption. symmetric cryptography 1

7. Symmetric encryption. symmetric cryptography 1 CIS 5371 Cryptography 7. Symmetric encryption symmetric cryptography 1 Cryptographic systems Cryptosystem: t (MCKK GED) (M,C,K,K,G,E,D) M, plaintext message space C, ciphertext message space K, K, encryption

More information

L3. An Introduction to Block Ciphers. Rocky K. C. Chang, 29 January 2015

L3. An Introduction to Block Ciphers. Rocky K. C. Chang, 29 January 2015 L3. An Introduction to Block Ciphers Rocky K. C. Chang, 29 January 2015 Outline Product and iterated ciphers A simple substitution-permutation network DES and AES Modes of operations Cipher block chaining

More information

Stream Ciphers and Block Ciphers

Stream Ciphers and Block Ciphers Stream Ciphers and Block Ciphers Ruben Niederhagen September 18th, 2013 Introduction 2/22 Recall from last lecture: Public-key crypto: Pair of keys: public key for encryption, private key for decryption.

More information

Stream Ciphers and Block Ciphers

Stream Ciphers and Block Ciphers Stream Ciphers and Block Ciphers 2MMC10 Cryptology Fall 2015 Ruben Niederhagen October 6th, 2015 Introduction 2/32 Recall: Public-key crypto: Pair of keys: public key for encryption, private key for decryption.

More information

6 Block Ciphers. 6.1 Block Ciphers CA642: CRYPTOGRAPHY AND NUMBER THEORY 1

6 Block Ciphers. 6.1 Block Ciphers CA642: CRYPTOGRAPHY AND NUMBER THEORY 1 CA642: CRYPTOGRAPHY AND NUMBER THEORY 1 6 Block Ciphers 6.1 Block Ciphers Block Ciphers Plaintext is divided into blocks of fixed length and every block is encrypted one at a time. A block cipher is a

More information

DataTraveler 5000 (DT5000) and DataTraveler 6000 (DT6000) Ultimate Security in a USB Flash Drive. Submitted by SPYRUS, Inc.

DataTraveler 5000 (DT5000) and DataTraveler 6000 (DT6000) Ultimate Security in a USB Flash Drive. Submitted by SPYRUS, Inc. Submitted by SPYRUS, Inc. Contents DT5000 and DT6000 Technology Overview...2 Why DT5000 and DT6000 Encryption Is Different...3 Why DT5000 and DT6000 Encryption Is Different - Summary...4 XTS-AES Sector-Based

More information

Data Encryption Standard (DES)

Data Encryption Standard (DES) Data Encryption Standard (DES) Best-known symmetric cryptography method: DES 1973: Call for a public cryptographic algorithm standard for commercial purposes by the National Bureau of Standards Goals:

More information

Goals of Modern Cryptography

Goals of Modern Cryptography Goals of Modern Cryptography Providing information security: Data Privacy Data Integrity and Authenticity in various computational settings. Data Privacy M Alice Bob The goal is to ensure that the adversary

More information

Cryptography CS 555. Topic 8: Modes of Encryption, The Penguin and CCA security

Cryptography CS 555. Topic 8: Modes of Encryption, The Penguin and CCA security Cryptography CS 555 Topic 8: Modes of Encryption, The Penguin and CCA security 1 Reminder: Homework 1 Due on Friday at the beginning of class Please typeset your solutions 2 Recap Pseudorandom Functions

More information

Permutation-based Authenticated Encryption

Permutation-based Authenticated Encryption Permutation-based Authenticated Encryption Gilles Van Assche 1 1 STMicroelectronics COST Training School on Symmetric Cryptography and Blockchain Torremolinos, Spain, February 2018 1 / 44 Outline 1 Why

More information

HOST Cryptography III ECE 525 ECE UNM 1 (1/18/18)

HOST Cryptography III ECE 525 ECE UNM 1 (1/18/18) AES Block Cipher Blockciphers are central tool in the design of protocols for shared-key cryptography What is a blockcipher? It is a function E of parameters k and n that maps { 0, 1} k { 0, 1} n { 0,

More information

Lecture Note 05 Date:

Lecture Note 05 Date: P.Lafourcade Lecture Note 05 Date: 29.09.2009 Security models 1st Semester 2008/2009 MANGEOT Guillaume ROJAT Antoine THARAUD Jrmie Contents 1 Block Cipher Modes 2 1.1 Electronic Code Block (ECB) [Dwo01]....................

More information

Introduction to Cryptography. Lecture 3

Introduction to Cryptography. Lecture 3 Introduction to Cryptography Lecture 3 Benny Pinkas March 6, 2011 Introduction to Cryptography, Benny Pinkas page 1 Pseudo-random generator seed s (random, s =n) Pseudo-random generator G Deterministic

More information

Network Security Essentials Chapter 2

Network Security Essentials Chapter 2 Network Security Essentials Chapter 2 Fourth Edition by William Stallings Lecture slides by Lawrie Brown Encryption What is encryption? Why do we need it? No, seriously, let's discuss this. Why do we need

More information

CSc 466/566. Computer Security. 6 : Cryptography Symmetric Key

CSc 466/566. Computer Security. 6 : Cryptography Symmetric Key 1/56 CSc 466/566 Computer Security 6 : Cryptography Symmetric Key Version: 2012/02/22 16:14:16 Department of Computer Science University of Arizona collberg@gmail.com Copyright c 2012 Christian Collberg

More information

Outline. Data Encryption Standard. Symmetric-Key Algorithms. Lecture 4

Outline. Data Encryption Standard. Symmetric-Key Algorithms. Lecture 4 EEC 693/793 Special Topics in Electrical Engineering Secure and Dependable Computing Lecture 4 Department of Electrical and Computer Engineering Cleveland State University wenbing@ieee.org Outline Review

More information

Message authentication codes

Message authentication codes Message authentication codes Martin Stanek Department of Computer Science Comenius University stanek@dcs.fmph.uniba.sk Cryptology 1 (2017/18) Content Introduction security of MAC Constructions block cipher

More information

in a 4 4 matrix of bytes. Every round except for the last consists of 4 transformations: 1. ByteSubstitution - a single non-linear transformation is a

in a 4 4 matrix of bytes. Every round except for the last consists of 4 transformations: 1. ByteSubstitution - a single non-linear transformation is a Cryptanalysis of Reduced Variants of Rijndael Eli Biham Λ Nathan Keller y Abstract Rijndael was submitted to the AES selection process, and was later selected as one of the five finalists from which one

More information

Computer Security. 08. Cryptography Part II. Paul Krzyzanowski. Rutgers University. Spring 2018

Computer Security. 08. Cryptography Part II. Paul Krzyzanowski. Rutgers University. Spring 2018 Computer Security 08. Cryptography Part II Paul Krzyzanowski Rutgers University Spring 2018 March 23, 2018 CS 419 2018 Paul Krzyzanowski 1 Block ciphers Block ciphers encrypt a block of plaintext at a

More information

Cryptography 2017 Lecture 3

Cryptography 2017 Lecture 3 Cryptography 2017 Lecture 3 Block Ciphers - AES, DES Modes of Operation - ECB, CBC, CTR November 7, 2017 1 / 1 What have seen? What are we discussing today? What is coming later? Lecture 2 One Time Pad

More information

How many DES keys, on the average, encrypt a particular plaintext block to a particular ciphertext block?

How many DES keys, on the average, encrypt a particular plaintext block to a particular ciphertext block? Homework 1. Come up with as efficient an encoding as you can to specify a completely general one-to-one mapping between 64-bit input values and 64-bit output values. 2. Token cards display a number that

More information

Cryptology complementary. Introduction

Cryptology complementary. Introduction Cryptology complementary ] Introduction Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/pierre.karpman/tea.html 2018 02 08 Introduction 2018 02 08 1/21 First things

More information

Cryptography: Symmetric Encryption (finish), Hash Functions, Message Authentication Codes

Cryptography: Symmetric Encryption (finish), Hash Functions, Message Authentication Codes CSE 484 / CSE M 584: Computer Security and Privacy Cryptography: Symmetric Encryption (finish), Hash Functions, Message Authentication Codes Fall 2016 Adam (Ada) Lerner lerner@cs.washington.edu Thanks

More information

Block Cipher Operation. CS 6313 Fall ASU

Block Cipher Operation. CS 6313 Fall ASU Chapter 7 Block Cipher Operation 1 Outline q Multiple Encryption and Triple DES q Electronic Codebook q Cipher Block Chaining Mode q Cipher Feedback Mode q Output Feedback Mode q Counter Mode q XTS-AES

More information

Secret Key Cryptography

Secret Key Cryptography Secret Key Cryptography General Block Encryption: The general way of encrypting a 64-bit block is to take each of the: 2 64 input values and map it to a unique one of the 2 64 output values. This would

More information

symmetric cryptography s642 computer security adam everspaugh

symmetric cryptography s642 computer security adam everspaugh symmetric cryptography s642 adam everspaugh ace@cs.wisc.edu computer security Announcements Midterm next week: Monday, March 7 (in-class) Midterm Review session Friday: March 4 (here, normal class time)

More information

Block Cipher Modes of Operation

Block Cipher Modes of Operation Block Cipher Modes of Operation Luke Anderson luke@lukeanderson.com.au 23 rd March 2018 University Of Sydney Overview 1. Crypto-Bulletin 2. Modes Of Operation 2.1 Evaluating Modes 2.2 Electronic Code Book

More information

Outline. Block cipher, basic idea. From last time. Pseudorandom permutation. Confusion and diffusion. Block ciphers and modes of operation

Outline. Block cipher, basic idea. From last time. Pseudorandom permutation. Confusion and diffusion. Block ciphers and modes of operation Outline Block ciphers and modes of operation CSci 5271 Introduction to Computer Security Day 15: Cryptography part 2: public-key Stephen McCamant University of Minnesota, Computer Science & Engineering

More information

Lecture 2: Shared-Key Cryptography

Lecture 2: Shared-Key Cryptography Graduate Course on Computer Security Lecture 2: Cryptography Iliano Cervesato iliano@itd.nrl.navy.mil ITT Industries, Inc @ NRL Washington DC http://www.cs.stanford.edu/~iliano/ DIMI, Universita di Udine,

More information

Lecture 5. Constructions of Block ciphers. Winter 2018 CS 485/585 Introduction to Cryptography

Lecture 5. Constructions of Block ciphers. Winter 2018 CS 485/585 Introduction to Cryptography 1 Winter 2018 CS 485/585 Introduction to Cryptography Lecture 5 Portland State University Jan. 23, 2018 Lecturer: Fang Song Draft note. Version: January 25, 2018. Email fang.song@pdx.edu for comments and

More information

Few Other Cryptanalytic Techniques

Few Other Cryptanalytic Techniques Few Other Cryptanalytic Techniques Debdeep Mukhopadhyay Assistant Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur INDIA -721302 Objectives Boomerang Attack

More information

CENG 520 Lecture Note III

CENG 520 Lecture Note III CENG 520 Lecture Note III Symmetric Ciphers block ciphers process messages in blocks, each of which is then en/decrypted like a substitution on very big characters 64-bits or more stream ciphers process

More information

Secret Key Algorithms (DES) Foundations of Cryptography - Secret Key pp. 1 / 34

Secret Key Algorithms (DES) Foundations of Cryptography - Secret Key pp. 1 / 34 Secret Key Algorithms (DES) Foundations of Cryptography - Secret Key pp. 1 / 34 Definition a symmetric key cryptographic algorithm is characterized by having the same key used for both encryption and decryption.

More information

Network Security Technology Project

Network Security Technology Project Network Security Technology Project Shanghai Jiao Tong University Presented by Wei Zhang zhang-wei@sjtu.edu.cn!1 Part I Implement the textbook RSA algorithm. The textbook RSA is essentially RSA without

More information

CSE 127: Computer Security Cryptography. Kirill Levchenko

CSE 127: Computer Security Cryptography. Kirill Levchenko CSE 127: Computer Security Cryptography Kirill Levchenko October 24, 2017 Motivation Two parties want to communicate securely Secrecy: No one else can read messages Integrity: messages cannot be modified

More information

Introduction to Cryptography. Lecture 3

Introduction to Cryptography. Lecture 3 Introduction to Cryptography Lecture 3 Benny Pinkas March 6, 2011 Introduction to Cryptography, Benny Pinkas page 1 Pseudo-random generator seed s (random, s =n) Pseudo-random generator G Deterministic

More information

Computer and Data Security. Lecture 3 Block cipher and DES

Computer and Data Security. Lecture 3 Block cipher and DES Computer and Data Security Lecture 3 Block cipher and DES Stream Ciphers l Encrypts a digital data stream one bit or one byte at a time l One time pad is example; but practical limitations l Typical approach

More information

CS155. Cryptography Overview

CS155. Cryptography Overview CS155 Cryptography Overview Cryptography! Is n A tremendous tool n The basis for many security mechanisms! Is not n The solution to all security problems n Reliable unless implemented properly n Reliable

More information

P2_L6 Symmetric Encryption Page 1

P2_L6 Symmetric Encryption Page 1 P2_L6 Symmetric Encryption Page 1 Reference: Computer Security by Stallings and Brown, Chapter 20 Symmetric encryption algorithms are typically block ciphers that take thick size input. In this lesson,

More information

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2018

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2018 COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2018 Previously on COS 433 Confusion/Diffusion Paradigm f 1 f 2 f 3 f 4 f 5 f 6 Round π 1 f 7 f 8 f 9 f 10 f 11 f 12 π 2 Substitution

More information

Homework 2. Out: 09/23/16 Due: 09/30/16 11:59pm UNIVERSITY OF MARYLAND DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Homework 2. Out: 09/23/16 Due: 09/30/16 11:59pm UNIVERSITY OF MARYLAND DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF MARYLAND DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ENEE 457 Computer Systems Security Instructor: Charalampos Papamanthou Homework 2 Out: 09/23/16 Due: 09/30/16 11:59pm Instructions

More information

Paper presentation sign up sheet is up. Please sign up for papers by next class. Lecture summaries and notes now up on course webpage

Paper presentation sign up sheet is up. Please sign up for papers by next class. Lecture summaries and notes now up on course webpage 1 Announcements Paper presentation sign up sheet is up. Please sign up for papers by next class. Lecture summaries and notes now up on course webpage 2 Recap and Overview Previous lecture: Symmetric key

More information

Automated Analysis and Synthesis of Modes of Operation and Authenticated Encryption Schemes

Automated Analysis and Synthesis of Modes of Operation and Authenticated Encryption Schemes Automated Analysis and Synthesis of Modes of Operation and Authenticated Encryption Schemes Alex J. Malozemoff University of Maryland Joint work with Matthew Green, Viet Tung Hoang, and Jonathan Katz Presented

More information

3 Symmetric Cryptography

3 Symmetric Cryptography CA4005: CRYPTOGRAPHY AND SECURITY PROTOCOLS 1 3 Symmetric Cryptography Symmetric Cryptography Alice Bob m Enc c = e k (m) k c c Dec m = d k (c) Symmetric cryptography uses the same secret key k for encryption

More information

Cryptography III: Symmetric Ciphers

Cryptography III: Symmetric Ciphers Cryptography III: Symmetric Ciphers Computer Security Lecture 12 David Aspinall School of Informatics University of Edinburgh 14th February 2008 Outline Stream ciphers Block ciphers DES and Rijndael Summary

More information

Multiple forgery attacks against Message Authentication Codes

Multiple forgery attacks against Message Authentication Codes Multiple forgery attacks against Message Authentication Codes David A. McGrew and Scott R. Fluhrer Cisco Systems, Inc. {mcgrew,sfluhrer}@cisco.com May 31, 2005 Abstract Some message authentication codes

More information