3D Mesh Compression in Open3DGC. Khaled MAMMOU

Size: px
Start display at page:

Download "3D Mesh Compression in Open3DGC. Khaled MAMMOU"

Transcription

1 3D Mesh Compression in Open3DGC Khaled MAMMOU

2 OPPORTUNITIES FOR COMPRESSION Indexed Face Set Geometry: positions Connectivity: of triangles Requires 192 bits per vertex! Redundancy Indexes repeated multiple times No need to preserve triangles and vertices order No need for 32-bit precision for positions/attributes Neighbour vertices exhibit high geometry correlations Lossy geometry compression and lossless connectivity encoding reduce the stream size to bpv Geometry X1, Y1, Z1 X2, Y2, Z2 X3, Y3, Z3 X4, Y4, Z4 X5, Y5, Z5 X6, Y6, Z6 X7, Y7, Z7 Reordered geometry X3, Y3, Z3 X7, Y7, Z7 X6, Y6, Z6 X2, Y2, Z X4, Y4, Z4 X5, Y5, Z5 X1, Y1, Z1 Connectivity 1, 3, 7 1, 7, 6 1, 6, 2 1, 2, 4 1, 4, 5 Reordered Connectivity 7, 5, 6 7, 4, 5 7, 3, 4 7, 1, 2 7, 2, 3 V 5 V 3 V 4 V 1 V 7 V 2 V 6

3 ENCODER OVERVIEW Algorithm based on TFAN codec [Mammou 09] Triangular meshes with attributes Arbitrary topologies (e.g., manifold or not, open/closed, oriented or not, arbitrary genus, holes ) MPEG-SDMC (Scalable Complexity 3D Mesh Coding) published in 2010 Encoder Connectivity TFAN-based Connectivity Encoding Geometry Uniform Quantization Prediction Arithmetic or ASCII Encoding Compressed stream [Mammou 09] K. Mammou, T. Zaharia, F. Prêteux, TFAN: A low complexity 3D mesh compression algorithm Computer Animation and Virtual Worlds, Vol. 20(2-3), pp , 2009

4 ENCODER OVERVIEW Algorithm based on TFAN codec [Mammou 09] Triangular meshes with attributes Arbitrary topologies (e.g., manifold or not, open, closed, holes ) MPEG-SDMC (Scalable Complexity 3D Mesh Coding) published in 2010 Encoder Connectivity TFAN-based Connectivity Encoding Geometry Uniform Quantization Prediction Arithmetic or ASCII Encoding Compressed stream [Mammou 09] K. Mammou, T. Zaharia, F. Prêteux, TFAN: A low complexity 3D mesh compression algorithm Computer Animation and Virtual Worlds, Vol. 20(2-3), pp , 2009

5 ENCODER OVERVIEW Uniform quantization Map real numbers to integers Maximum quantization error Uniform quantization reduces the number of bits per vertex for positions from 96 bpv to 24 bpv q=4 q=6 q=8 q=10 Original

6 ENCODER OVERVIEW Algorithm based on TFAN codec [Mammou 09] Triangular meshes with attributes Arbitrary topologies (e.g., manifold or not, open, closed, holes ) MPEG-SDMC (Scalable Complexity 3D Mesh Coding) published in 2010 Encoder Connectivity TFAN-based Connectivity Encoding Geometry Uniform Quantization Prediction Arithmetic or ASCII Encoding Compressed stream [Mammou 09] K. Mammou, T. Zaharia, F. Prêteux, TFAN: A low complexity 3D mesh compression algorithm Computer Animation and Virtual Worlds, Vol. 20(2-3), pp , 2009

7 ENCODER OVERVIEW Geometry prediction Exploit connectivity information Differential and parallelogram prediction

8 ENCODER OVERVIEW Geometry prediction Exploit connectivity information Differential and parallelogram prediction Adaptively choose the best predictor Geometry prediction reduces the number of bits per vertex for positions from 24 bpv to 10.3 bpv

9 ENCODER OVERVIEW Algorithm based on TFAN codec [Mammou 09] Triangular meshes with attributes Arbitrary topologies (e.g., manifold or not, open, closed, holes ) MPEG-SDMC (Scalable Complexity 3D Mesh Coding) published in 2010 Encoder Connectivity TFAN-based Connectivity Encoding Geometry Uniform Quantization Prediction Arithmetic or ASCII Encoding Compressed stream [Mammou 09] K. Mammou, T. Zaharia, F. Prêteux, TFAN: A low complexity 3D mesh compression algorithm Computer Animation and Virtual Worlds, Vol. 20(2-3), pp , 2009

10 ENCODER OVERVIEW Triangle FAN Each two successive triangles share a common edge All triangles share a common vertex (i.e., center of the TFAN) All the triangles have the same orientation Described by enumerating the vertices in their traversal order Implicitly encodes adjacency information (1,3,7,6,2,4,5) 7 indices instead of 15 for IFS

11 ENCODER OVERVIEW TFAN-based connectivity compression Decompose the mesh into a set of TFANs Traverse the vertices from neighbour to neighbour Rename vertices according to the traversal order For each vertex, group its incident non-visited triangles into TFANs V 3 V 10 V 7 V 7 V 5 V 4 V 8 V 9 V 6 V 4 V 6 V 9 V 2 V 3 V 10 V 8 V 2 V 5 V 1 V 1

12 ENCODER OVERVIEW TFAN-based connectivity compression Decompose the mesh into a set of TFANs Traverse the vertices from neighbour to neighbour Rename vertices according to the traversal order For each vertex, group its incident non-visited triangles into TFANs Encode TFANs Distinguish 10 topological configurations Use local indices instead of absolute ones

13 Frequency ENCODER OVERVIEW TFAN-based connectivity compression Decompose the mesh into a set of TFANs Traverse the vertices from neighbour to neighbour Rename vertices according to the traversal order For each vertex, group its incident non-visited triangles into TFANs Encode TFANs Distinguish 10 topological configurations Use local indices instead of absolute ones Entropy encoding Exploit statistical redundancy 100% 80% TFAN-based connectivity compression reduces the number of bits per vertex for connectivity from 96 bpv to 3.1 bpv 60% 40% 20% 0% TFAN configurations

14 CONNECTIVITY ENCODING EXAMPLE Vertex re-ordering 10

15 CONNECTIVITY ENCODING EXAMPLE Vertex re-ordering V1 V1 {} 10 1,(7,1)

16 CONNECTIVITY ENCODING EXAMPLE Vertex re-ordering V1 V1 {V4} V6 V2 V4 V3 10 1,(7,1) 2,(4,1)

17 CONNECTIVITY ENCODING EXAMPLE Vertex re-ordering V1 V1 {V4, V5} V6 V2 V4 V3 V5 V4 10 1,(7,1) 2,(4,1),(7,2)

18 CONNECTIVITY ENCODING EXAMPLE Vertex re-ordering V1 V1 {V5, V2, V9, V7} V6 V2 V4 V3 V5 V4 V2 V5 V9 V6 V7 V7 10 1,(7,1) 2,(4,1),(7,2) 0

19 CONNECTIVITY ENCODING EXAMPLE Vertex re-ordering V1 V1 {} V6 V2 V4 V3 V5 V4 V2 V5 V9 V6 V7 V7 10 1,(7,1) 2,(4,1),(7,2) 0 0

20 CONNECTIVITY ENCODING EXAMPLE Vertex re-ordering V1 V1 {V9} V6 V2 V4 V3 V5 V4 V2 V5 V9 V6 V7 V7 10 1,(7,1) 2,(4,1),(7,2) 0 0 1,(4, 1)

21 CONNECTIVITY ENCODING EXAMPLE Vertex re-ordering V1 V1 {V7,V10} V6 V2 V4 V3 V5 V4 V2 V5 V9 V6 V7 V7 V10 V8 10 1,(7,1) 2,(4,1),(7,2) 0 0 1,(4, 1) 2,(6,2)

22 CONNECTIVITY ENCODING EXAMPLE Vertex re-ordering V1 V1 {V7,V10,V8} V6 V2 V4 V3 V5 V4 V2 V5 V9 V6 V7 V7 V10 V8 V8 V9 10 1,(7,1) 2,(4,1),(7,2) 0 0 1,(4, 1) 2,(6,2),(4,1)

23 CONNECTIVITY ENCODING EXAMPLE Vertex re-ordering V1 V1 {V3} V6 V2 V4 V3 V5 V4 V2 V5 V9 V6 V7 V7 V10 V8 10 1,(7,1) 2,(4,1),(7,2) 0 0 1,(4, 1) V8 V9 V3 V10 2,(6,2),(4,1) 0

24 CONNECTIVITY ENCODING EXAMPLE Vertex re-ordering V1 V1 {V8} V6 V2 V4 V3 V5 V4 V2 V5 V9 V6 V7 V7 V10 V8 10 1,(7,1) 2,(4,1),(7,2) 0 0 1,(4, 1) V8 V9 V3 V10 2,(6,2),(4,1) 0 0

25 CONNECTIVITY DECODING EXAMPLE {} 10 1,(7,1) 2,(4,1),(7,2) 0 0 1,(4, 1) 2,(6,2),(4,1)

26 CONNECTIVITY DECODING EXAMPLE {V3} 10 1,(7,1) 2,(4,1),(7,2) 0 0 1,(4, 1) 2,(6,2),(4,1)

27 CONNECTIVITY DECODING EXAMPLE {V3, V4} 10 1,(7,1) 2,(4,1),(7,2) 0 0 1,(4, 1) 2,(6,2),(4,1)

28 CONNECTIVITY DECODING EXAMPLE {V4} 10 1,(7,1) 2,(4,1),(7,2) 0 0 1,(4, 1) 2,(6,2),(4,1)

29 CONNECTIVITY DECODING EXAMPLE {} 10 1,(7,1) 2,(4,1),(7,2) 0 0 1,(4, 1) 2,(6,2),(4,1)

30 CONNECTIVITY DECODING EXAMPLE {V6} 10 1,(7,1) 2,(4,1),(7,2) 0 0 1,(4, 1) 2,(6,2),(4,1)

31 CONNECTIVITY DECODING EXAMPLE {V7, V8} 10 1,(7,1) 2,(4,1),(7,2) 0 0 1,(4, 1) 2,(6,2),(4,1)

32 CONNECTIVITY DECODING EXAMPLE {V7, V8, V9} 10 1,(7,1) 2,(4,1),(7,2) 0 0 1,(4, 1) 2,(6,2),(4,1)

33 CONNECTIVITY DECODING EXAMPLE {V9} 10 1,(7,1) 2,(4,1),(7,2) 0 0 1,(4, 1) 2,(6,2),(4,1)

34 CONNECTIVITY DECODING EXAMPLE {V10} 10 1,(7,1) 2,(4,1),(7,2) 0 0 1,(4, 1) 2,(6,2),(4,1)

35 CONNECTIVITY DECODING EXAMPLE {} 10 1,(7,1) 2,(4,1),(7,2) 0 0 1,(4, 1) 2,(6,2),(4,1)

36 CONNECTIVITY DECODING EXAMPLE {} 10 1,(7,1) 2,(4,1),(7,2) 0 0 1,(4, 1) 2,(6,2),(4,1)

: Mesh Processing. Chapter 2

: Mesh Processing. Chapter 2 600.657: Mesh Processing Chapter 2 Data Structures Polygon/Triangle Soup Indexed Polygon/Triangle Set Winged-Edge Half-Edge Directed-Edge List of faces Polygon Soup Each face represented independently

More information

Handles. The justification: For a 0 genus triangle mesh we can write the formula as follows:

Handles. The justification: For a 0 genus triangle mesh we can write the formula as follows: Handles A handle in a 3d mesh is a through hole. The number of handles can be extracted of the genus of the 3d mesh. Genus is the number of times we can cut 2k edges without disconnecting the 3d mesh.

More information

CS 335 Graphics and Multimedia. Image Compression

CS 335 Graphics and Multimedia. Image Compression CS 335 Graphics and Multimedia Image Compression CCITT Image Storage and Compression Group 3: Huffman-type encoding for binary (bilevel) data: FAX Group 4: Entropy encoding without error checks of group

More information

A Brief History of 3D Mesh Compression

A Brief History of 3D Mesh Compression 2 nd Interna onal Mediterranean Science and Engineering Congress (IMSEC 2017) Çukurova University, Congress Center, October 25-27, 2017, Adana / TURKEY Pages: 136-140, Paper ID:72 A Brief History of 3D

More information

Topic 5 Image Compression

Topic 5 Image Compression Topic 5 Image Compression Introduction Data Compression: The process of reducing the amount of data required to represent a given quantity of information. Purpose of Image Compression: the reduction of

More information

Georgios Tziritas Computer Science Department

Georgios Tziritas Computer Science Department New Video Coding standards MPEG-4, HEVC Georgios Tziritas Computer Science Department http://www.csd.uoc.gr/~tziritas 1 MPEG-4 : introduction Motion Picture Expert Group Publication 1998 (Intern. Standardization

More information

Spirale Reversi: Reverse decoding of the Edgebreaker encoding

Spirale Reversi: Reverse decoding of the Edgebreaker encoding Spirale Reversi: Reverse decoding of the Edgebreaker encoding Martin Isenburg Jack Snoeyink University of North Carolina at Chapel Hill fisenburg j snoeyinkg@cs.unc.edu Abstract We present a simple linear

More information

Error-Resilient Coding of 3-D Graphic Models via Adaptive Mesh Segmentation

Error-Resilient Coding of 3-D Graphic Models via Adaptive Mesh Segmentation 860 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 7, JULY 2001 Error-Resilient Coding of 3-D Graphic Models via Adaptive Mesh Segmentation Zhidong Yan, Member, IEEE, Sunil

More information

Compressing Texture Coordinates with Selective Linear Predictions

Compressing Texture Coordinates with Selective Linear Predictions Compressing Texture Coordinates with Selective Linear Predictions Martin Isenburg Jack Snoeyink University of North Carolina at Chapel Hill Abstract large and detailed models this representation results

More information

Spectral Coding of Three-Dimensional Mesh Geometry Information Using Dual Graph

Spectral Coding of Three-Dimensional Mesh Geometry Information Using Dual Graph Spectral Coding of Three-Dimensional Mesh Geometry Information Using Dual Graph Sung-Yeol Kim, Seung-Uk Yoon, and Yo-Sung Ho Gwangju Institute of Science and Technology (GIST) 1 Oryong-dong, Buk-gu, Gwangju,

More information

3D Point Cloud Data and Triangle Face Compression by a Novel Geometry Minimization Algorithm and Comparison with other 3D Formats

3D Point Cloud Data and Triangle Face Compression by a Novel Geometry Minimization Algorithm and Comparison with other 3D Formats 3D Point Cloud Data and Triangle Face Compression by a Novel Geometry Minimization Algorithm and Comparison with other 3D Formats SIDDEQ, M.M. and RODRIGUES, Marcos

More information

*******************************************************************************************************************

******************************************************************************************************************* 0 0 0 0 0 COMPUTER ANIMATION AND VIRTUAL WORLDS Comp. Anim. Virtual Worlds 00; 0: Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 0.00/cav. TFAN: A low complexity D mesh compression

More information

Geometry Coding and VRML

Geometry Coding and VRML Geometry Coding and VRML GABRIEL TAUBIN, SENIOR MEMBER, IEEE, WILLIAM P. HORN, FRANCIS LAZARUS, AND JAREK ROSSIGNAC Invited Paper The virtual-reality modeling language (VRML) is rapidly becoming the standard

More information

TFAN: A low complexity 3D mesh compression algorithm

TFAN: A low complexity 3D mesh compression algorithm COMPUTER ANIMATION AND VIRTUAL WORLDS Comp. Anim. Virtual Worlds (2009) Published online in Wiley InterScience (www.interscience.wiley.com).319 TFAN: A low complexity 3D mesh compression algorithm By Khaled

More information

Compressing Polygon Mesh Geometry with Parallelogram Prediction

Compressing Polygon Mesh Geometry with Parallelogram Prediction UNC Technical Report TR-- Compressing Polygon Mesh Geometry with Parallelogram Prediction Martin Isenburg University of North Carolina at Chapel Hill Pierre Alliez INR Sophia-Antipolis Abstract In this

More information

Lossless Compression of Floating-Point Geometry

Lossless Compression of Floating-Point Geometry Preprint UCRL-CONF-204158 Lossless Compression of Floating-Point Geometry M. Isenburg, P. Lindstrom, and J. Snoeyink To appear in CAD 04, Pattaya City, Thailand, May 24 28, 2004 April 30, 2004 U.S. Department

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO1 1334 TITLE: Progressive Representation, Transmission, and Visualization of 3D Objects DISTRIBUTION: Approved for public release,

More information

Edgebreaker Based Triangle Mesh-Coding Method

Edgebreaker Based Triangle Mesh-Coding Method Edgebreaker Based Triangle Mesh-Coding Method by Yue Tang B.Sc., Queen Mary University of London, 2013 B.Sc., Beijing University of Posts and Telecommunications, 2013 A Dissertation Submitted in Partial

More information

Compression of Tetrahedral Meshes

Compression of Tetrahedral Meshes Compression of Tetrahedral Meshes Geometry Processing CS 7960 Louis Bavoil 01/19/2006 Outline Corner Table Edgebreaker Efficiency Edgebreaker with Boundary Corner Table Two arrays of integers: V and O

More information

THE H.264 ADVANCED VIDEO COMPRESSION STANDARD

THE H.264 ADVANCED VIDEO COMPRESSION STANDARD THE H.264 ADVANCED VIDEO COMPRESSION STANDARD Second Edition Iain E. Richardson Vcodex Limited, UK WILEY A John Wiley and Sons, Ltd., Publication About the Author Preface Glossary List of Figures List

More information

Compressing Polygon Mesh Connectivity with Degree Duality Prediction

Compressing Polygon Mesh Connectivity with Degree Duality Prediction UNC Technical Report TR-02-08 Compressing Polygon Mesh Connectivity with Degree Duality Prediction Martin Isenburg University of North Carolina at Chapel Hill isenburg@cs.unc.edu Abstract In this paper

More information

Efficient compression of non-manifold polygonal meshes

Efficient compression of non-manifold polygonal meshes Computational Geometry 14 (1999) 137 166 Efficient compression of non-manifold polygonal meshes André Guéziec a,, Frank Bossen b,1, Gabriel Taubin c,2, Claudio Silva d,3 a Multigen Paradigm, 550 S. Winchester

More information

Image Compression for Mobile Devices using Prediction and Direct Coding Approach

Image Compression for Mobile Devices using Prediction and Direct Coding Approach Image Compression for Mobile Devices using Prediction and Direct Coding Approach Joshua Rajah Devadason M.E. scholar, CIT Coimbatore, India Mr. T. Ramraj Assistant Professor, CIT Coimbatore, India Abstract

More information

REAL-TIME ENCODING OF LIVE RECONSTRUCTED MESH SEQUENCES FOR 3D TELE-IMMERSION

REAL-TIME ENCODING OF LIVE RECONSTRUCTED MESH SEQUENCES FOR 3D TELE-IMMERSION REAL-TIME ENCODING OF LIVE RECONSTRUCTED MESH SEQUENCES FOR 3D TELE-IMMERSION Rufael Mekuria +, Dimitrios Alexiadis *, Petros Daras * and Pablo Cesar + + Centrum Wiskunde en Informatica SciencePark 123

More information

Real-Time Network Streaming of Dynamic 3D Content with In-Frame and Inter-Frame Compression

Real-Time Network Streaming of Dynamic 3D Content with In-Frame and Inter-Frame Compression Real-Time Network Streaming of Dynamic 3D Content with In-Frame and Inter-Frame Compression P. Gasparello, G. Marino, F. Bannò, F. Tecchia, M. Bergamasco 15th IEEE/ACM DS-RT 2011 MediaCITYUK, Salford,

More information

Mesh Based Interpolative Coding (MBIC)

Mesh Based Interpolative Coding (MBIC) Mesh Based Interpolative Coding (MBIC) Eckhart Baum, Joachim Speidel Institut für Nachrichtenübertragung, University of Stuttgart An alternative method to H.6 encoding of moving images at bit rates below

More information

Perceptual Coding. Lossless vs. lossy compression Perceptual models Selecting info to eliminate Quantization and entropy encoding

Perceptual Coding. Lossless vs. lossy compression Perceptual models Selecting info to eliminate Quantization and entropy encoding Perceptual Coding Lossless vs. lossy compression Perceptual models Selecting info to eliminate Quantization and entropy encoding Part II wrap up 6.082 Fall 2006 Perceptual Coding, Slide 1 Lossless vs.

More information

Gabriel Taubin, William P. Horn, Jarek Rossignac and Francis Lazarus IBM T.J. Watson Research Center GVU, Georgia Institute of Technology

Gabriel Taubin, William P. Horn, Jarek Rossignac and Francis Lazarus IBM T.J. Watson Research Center GVU, Georgia Institute of Technology RC-0(#0) 07/XX/97 Computer Sciences 29 pages Research Report GEOMETRY CODING AND VRML Gabriel Taubin, William P. Horn, Jarek Rossignac and Francis Lazarus IBM T.J. Watson Research Center GVU, Georgia Institute

More information

Progressive Compression for Lossless Transmission of Triangle Meshes in Network Applications

Progressive Compression for Lossless Transmission of Triangle Meshes in Network Applications Progressive Compression for Lossless Transmission of Triangle Meshes in Network Applications Timotej Globačnik * Institute of Computer Graphics Laboratory for Geometric Modelling and Multimedia Algorithms

More information

Lecture 3 Mesh. Dr. Shuang LIANG. School of Software Engineering Tongji University Spring 2013

Lecture 3 Mesh. Dr. Shuang LIANG. School of Software Engineering Tongji University Spring 2013 Lecture 3 Mesh Dr. Shuang LIANG School of Software Engineering Tongji University Spring 2013 Today s Topics Overview Mesh Acquisition Mesh Data Structures Subdivision Surfaces Today s Topics Overview Mesh

More information

Mesh Compression. Triangle Meshes. Basic Definitions (II) Basic Definitions (I) Compression. History of Multimedia

Mesh Compression. Triangle Meshes. Basic Definitions (II) Basic Definitions (I) Compression. History of Multimedia Mesh Compression CS1 - Meshing Triangle Meshes Two main parts: Connectivity: Often, triangulated graph Sometimes, polygons 3-connected graphs Geometry: Positions in space 2 Basic Definitions (I) Basic

More information

Source Coding Techniques

Source Coding Techniques Source Coding Techniques Source coding is based on changing the content of the original signal. Also called semantic-based coding. Compression rates may be higher but at a price of loss of information.

More information

COMPRESSING MATERIAL AND TEXTURE ATTRIBUTES FOR TRIANGULAR MESHES

COMPRESSING MATERIAL AND TEXTURE ATTRIBUTES FOR TRIANGULAR MESHES COMPRESSING MATERIAL AND TEXTURE ATTRIBUTES FOR TRIANGULAR MESHES Guoping Wang 1, Yongzhen Wu 1, Guojing Hu 1, Jingliang Peng,, Member, IEEE 1 Beijing Engineering Research Center of Virtual Simulation

More information

IMAGE PROCESSING (RRY025) LECTURE 13 IMAGE COMPRESSION - I

IMAGE PROCESSING (RRY025) LECTURE 13 IMAGE COMPRESSION - I IMAGE PROCESSING (RRY025) LECTURE 13 IMAGE COMPRESSION - I 1 Need For Compression 2D data sets are much larger than 1D. TV and movie data sets are effectively 3D (2-space, 1-time). Need Compression for

More information

Digital Video Processing

Digital Video Processing Video signal is basically any sequence of time varying images. In a digital video, the picture information is digitized both spatially and temporally and the resultant pixel intensities are quantized.

More information

Progressive Geometry Compression. Andrei Khodakovsky Peter Schröder Wim Sweldens

Progressive Geometry Compression. Andrei Khodakovsky Peter Schröder Wim Sweldens Progressive Geometry Compression Andrei Khodakovsky Peter Schröder Wim Sweldens Motivation Large (up to billions of vertices), finely detailed, arbitrary topology surfaces Difficult manageability of such

More information

Lossless and Lossy Minimal Redundancy Pyramidal Decomposition for Scalable Image Compression Technique

Lossless and Lossy Minimal Redundancy Pyramidal Decomposition for Scalable Image Compression Technique Lossless and Lossy Minimal Redundancy Pyramidal Decomposition for Scalable Image Compression Technique Marie Babel, Olivier Déforges To cite this version: Marie Babel, Olivier Déforges. Lossless and Lossy

More information

Image Coding and Data Compression

Image Coding and Data Compression Image Coding and Data Compression Biomedical Images are of high spatial resolution and fine gray-scale quantisiation Digital mammograms: 4,096x4,096 pixels with 12bit/pixel 32MB per image Volume data (CT

More information

2014 Summer School on MPEG/VCEG Video. Video Coding Concept

2014 Summer School on MPEG/VCEG Video. Video Coding Concept 2014 Summer School on MPEG/VCEG Video 1 Video Coding Concept Outline 2 Introduction Capture and representation of digital video Fundamentals of video coding Summary Outline 3 Introduction Capture and representation

More information

Introduction to Video Encoding

Introduction to Video Encoding Introduction to Video Encoding INF5063 23. September 2011 History of MPEG Motion Picture Experts Group MPEG1 work started in 1988, published by ISO in 1993 Part 1 Systems, Part 2 Video, Part 3 Audio, Part

More information

Index. 1. Motivation 2. Background 3. JPEG Compression The Discrete Cosine Transformation Quantization Coding 4. MPEG 5.

Index. 1. Motivation 2. Background 3. JPEG Compression The Discrete Cosine Transformation Quantization Coding 4. MPEG 5. Index 1. Motivation 2. Background 3. JPEG Compression The Discrete Cosine Transformation Quantization Coding 4. MPEG 5. Literature Lossy Compression Motivation To meet a given target bit-rate for storage

More information

7.5 Dictionary-based Coding

7.5 Dictionary-based Coding 7.5 Dictionary-based Coding LZW uses fixed-length code words to represent variable-length strings of symbols/characters that commonly occur together, e.g., words in English text LZW encoder and decoder

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION Source coding for transmission of reconstructed dynamic geometry: a rate-distortion-complexity analysis of different approaches Rufael N. Mekuria* a, Pablo Cesar a, Dick C.A. Bulterman bc a Centrum Wiskunde

More information

Chapter 11.3 MPEG-2. MPEG-2: For higher quality video at a bit-rate of more than 4 Mbps Defined seven profiles aimed at different applications:

Chapter 11.3 MPEG-2. MPEG-2: For higher quality video at a bit-rate of more than 4 Mbps Defined seven profiles aimed at different applications: Chapter 11.3 MPEG-2 MPEG-2: For higher quality video at a bit-rate of more than 4 Mbps Defined seven profiles aimed at different applications: Simple, Main, SNR scalable, Spatially scalable, High, 4:2:2,

More information

Lecture 13 Video Coding H.264 / MPEG4 AVC

Lecture 13 Video Coding H.264 / MPEG4 AVC Lecture 13 Video Coding H.264 / MPEG4 AVC Last time we saw the macro block partition of H.264, the integer DCT transform, and the cascade using the DC coefficients with the WHT. H.264 has more interesting

More information

Image and Video Compression Fundamentals

Image and Video Compression Fundamentals Video Codec Design Iain E. G. Richardson Copyright q 2002 John Wiley & Sons, Ltd ISBNs: 0-471-48553-5 (Hardback); 0-470-84783-2 (Electronic) Image and Video Compression Fundamentals 3.1 INTRODUCTION Representing

More information

Video Compression MPEG-4. Market s requirements for Video compression standard

Video Compression MPEG-4. Market s requirements for Video compression standard Video Compression MPEG-4 Catania 10/04/2008 Arcangelo Bruna Market s requirements for Video compression standard Application s dependent Set Top Boxes (High bit rate) Digital Still Cameras (High / mid

More information

Lecture 5: Error Resilience & Scalability

Lecture 5: Error Resilience & Scalability Lecture 5: Error Resilience & Scalability Dr Reji Mathew A/Prof. Jian Zhang NICTA & CSE UNSW COMP9519 Multimedia Systems S 010 jzhang@cse.unsw.edu.au Outline Error Resilience Scalability Including slides

More information

Geometry Based Connectivity Compression of Triangular Meshes

Geometry Based Connectivity Compression of Triangular Meshes Geometry Based Connectivity Compression of Triangular Meshes S.Nachiappan Sanjiv Kapoor Prem Kalra Illinois Institute of Technology Dept. CSE, IIT-Delhi and Illinois Dept. CSE, IIT-Delhi USA Institute

More information

A New Compression Method Strictly for English Textual Data

A New Compression Method Strictly for English Textual Data A New Compression Method Strictly for English Textual Data Sabina Priyadarshini Department of Computer Science and Engineering Birla Institute of Technology Abstract - Data compression is a requirement

More information

IMAGE COMPRESSION- I. Week VIII Feb /25/2003 Image Compression-I 1

IMAGE COMPRESSION- I. Week VIII Feb /25/2003 Image Compression-I 1 IMAGE COMPRESSION- I Week VIII Feb 25 02/25/2003 Image Compression-I 1 Reading.. Chapter 8 Sections 8.1, 8.2 8.3 (selected topics) 8.4 (Huffman, run-length, loss-less predictive) 8.5 (lossy predictive,

More information

Source Coding Basics and Speech Coding. Yao Wang Polytechnic University, Brooklyn, NY11201

Source Coding Basics and Speech Coding. Yao Wang Polytechnic University, Brooklyn, NY11201 Source Coding Basics and Speech Coding Yao Wang Polytechnic University, Brooklyn, NY1121 http://eeweb.poly.edu/~yao Outline Why do we need to compress speech signals Basic components in a source coding

More information

Digital Image Representation Image Compression

Digital Image Representation Image Compression Digital Image Representation Image Compression 1 Image Representation Standards Need for compression Compression types Lossless compression Lossy compression Image Compression Basics Redundancy/redundancy

More information

JPEG: An Image Compression System. Nimrod Peleg update: Nov. 2003

JPEG: An Image Compression System. Nimrod Peleg update: Nov. 2003 JPEG: An Image Compression System Nimrod Peleg update: Nov. 2003 Basic Structure Source Image Data Reconstructed Image Data Encoder Compressed Data Decoder Encoder Structure Source Image Data Compressed

More information

polygon meshes polygon meshes representation

polygon meshes polygon meshes representation polygon meshes computer graphics polygon meshes 2009 fabio pellacini 1 polygon meshes representation which representation is good? often triangles/quads only will work on triangles compact efficient for

More information

Module 6 STILL IMAGE COMPRESSION STANDARDS

Module 6 STILL IMAGE COMPRESSION STANDARDS Module 6 STILL IMAGE COMPRESSION STANDARDS Lesson 19 JPEG-2000 Error Resiliency Instructional Objectives At the end of this lesson, the students should be able to: 1. Name two different types of lossy

More information

EFFICIENT DEISGN OF LOW AREA BASED H.264 COMPRESSOR AND DECOMPRESSOR WITH H.264 INTEGER TRANSFORM

EFFICIENT DEISGN OF LOW AREA BASED H.264 COMPRESSOR AND DECOMPRESSOR WITH H.264 INTEGER TRANSFORM EFFICIENT DEISGN OF LOW AREA BASED H.264 COMPRESSOR AND DECOMPRESSOR WITH H.264 INTEGER TRANSFORM 1 KALIKI SRI HARSHA REDDY, 2 R.SARAVANAN 1 M.Tech VLSI Design, SASTRA University, Thanjavur, Tamilnadu,

More information

Dimension-Independent Data Structures for Arbitrary Simplicial Complexes

Dimension-Independent Data Structures for Arbitrary Simplicial Complexes Dimension-Independent Data Structures for Arbitrary Simplicial Complexes David Canino (canino.david@gmail.com) The Incidence Simplicial (IS) data structure The Generalized Indexed data structure with Adjacencies

More information

JPEG 2000 A versatile image coding system for multimedia applications

JPEG 2000 A versatile image coding system for multimedia applications International Telecommunication Union JPEG 2000 A versatile image coding system for multimedia applications Touradj Ebrahimi EPFL Why another still image compression standard? Low bit-rate compression

More information

A Developer s Survey of Polygonal Simplification algorithms. CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005

A Developer s Survey of Polygonal Simplification algorithms. CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005 A Developer s Survey of Polygonal Simplification algorithms CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005 Some questions to ask Why simplification? What are my models like? What matters

More information

Triangle Strip Compression

Triangle Strip Compression Triangle Strip Compression Martin Isenburg University of North Carolina at Chapel Hill isenburg@cs.unc.edu Abstract In this paper we introduce a simple and efficient scheme for encoding the connectivity

More information

CS 532: 3D Computer Vision 12 th Set of Notes

CS 532: 3D Computer Vision 12 th Set of Notes 1 CS 532: 3D Computer Vision 12 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Meshes Slides

More information

Geometric Compression Through Topological Surgery

Geometric Compression Through Topological Surgery Geometric Compression Through Topological Surgery GABRIEL TAUBIN IBM T. J. Watson Research Center and JAREK ROSSIGNAC GVU, Georgia Institute of Technology The abundance and importance of complex 3-D data

More information

Multimedia Networking ECE 599

Multimedia Networking ECE 599 Multimedia Networking ECE 599 Prof. Thinh Nguyen School of Electrical Engineering and Computer Science Based on B. Lee s lecture notes. 1 Outline Compression basics Entropy and information theory basics

More information

University of Bristol - Explore Bristol Research. Link to published version (if available): /s

University of Bristol - Explore Bristol Research. Link to published version (if available): /s Anantrasirichai, N., Canagarajah, C. N., Redmill, D. W., Akbari, A. S., & Bull, D. (2011). Colour volumetric compression for realistic view synthesis applications. Multimedia Tools and Applications, 53(1),

More information

ECE 533 Digital Image Processing- Fall Group Project Embedded Image coding using zero-trees of Wavelet Transform

ECE 533 Digital Image Processing- Fall Group Project Embedded Image coding using zero-trees of Wavelet Transform ECE 533 Digital Image Processing- Fall 2003 Group Project Embedded Image coding using zero-trees of Wavelet Transform Harish Rajagopal Brett Buehl 12/11/03 Contributions Tasks Harish Rajagopal (%) Brett

More information

Fundamentals of Video Compression. Video Compression

Fundamentals of Video Compression. Video Compression Fundamentals of Video Compression Introduction to Digital Video Basic Compression Techniques Still Image Compression Techniques - JPEG Video Compression Introduction to Digital Video Video is a stream

More information

JPEG 2000 compression

JPEG 2000 compression 14.9 JPEG and MPEG image compression 31 14.9.2 JPEG 2000 compression DCT compression basis for JPEG wavelet compression basis for JPEG 2000 JPEG 2000 new international standard for still image compression

More information

JPEG: An Image Compression System

JPEG: An Image Compression System JPEG: An Image Compression System ISO/IEC DIS 10918-1 ITU-T Recommendation T.81 http://www.jpeg.org/ Nimrod Peleg update: April 2007 Basic Structure Source Image Data Reconstructed Image Data Encoder Compressed

More information

CMPT 365 Multimedia Systems. Media Compression - Image

CMPT 365 Multimedia Systems. Media Compression - Image CMPT 365 Multimedia Systems Media Compression - Image Spring 2017 Edited from slides by Dr. Jiangchuan Liu CMPT365 Multimedia Systems 1 Facts about JPEG JPEG - Joint Photographic Experts Group International

More information

AN ANALYTICAL STUDY OF LOSSY COMPRESSION TECHINIQUES ON CONTINUOUS TONE GRAPHICAL IMAGES

AN ANALYTICAL STUDY OF LOSSY COMPRESSION TECHINIQUES ON CONTINUOUS TONE GRAPHICAL IMAGES AN ANALYTICAL STUDY OF LOSSY COMPRESSION TECHINIQUES ON CONTINUOUS TONE GRAPHICAL IMAGES Dr.S.Narayanan Computer Centre, Alagappa University, Karaikudi-South (India) ABSTRACT The programs using complex

More information

Compression II: Images (JPEG)

Compression II: Images (JPEG) Compression II: Images (JPEG) What is JPEG? JPEG: Joint Photographic Expert Group an international standard in 1992. Works with colour and greyscale images Up 24 bit colour images (Unlike GIF) Target Photographic

More information

Progressive Compression and Transmission of Arbitrary Triangular Meshes

Progressive Compression and Transmission of Arbitrary Triangular Meshes Progressive Compression and Transmission of Arbitrary Triangular Meshes Chandrajit L Bajaj Valerio Pascucci Guozhong Zhuang Department of Computer Sciences University of Texas at Austin, Austin, TX 78712

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 12 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Mesh Repairing and Simplification. Gianpaolo Palma

Mesh Repairing and Simplification. Gianpaolo Palma Mesh Repairing and Simplification Gianpaolo Palma Mesh Repairing Removal of artifacts from geometric model such that it becomes suitable for further processing Input: a generic 3D model Output: (hopefully)a

More information

Video Coding Standards

Video Coding Standards Based on: Y. Wang, J. Ostermann, and Y.-Q. Zhang, Video Processing and Communications, Prentice Hall, 2002. Video Coding Standards Yao Wang Polytechnic University, Brooklyn, NY11201 http://eeweb.poly.edu/~yao

More information

Image compression. Stefano Ferrari. Università degli Studi di Milano Methods for Image Processing. academic year

Image compression. Stefano Ferrari. Università degli Studi di Milano Methods for Image Processing. academic year Image compression Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Methods for Image Processing academic year 2017 2018 Data and information The representation of images in a raw

More information

Advanced Video Coding: The new H.264 video compression standard

Advanced Video Coding: The new H.264 video compression standard Advanced Video Coding: The new H.264 video compression standard August 2003 1. Introduction Video compression ( video coding ), the process of compressing moving images to save storage space and transmission

More information

Random-Accessible Compressed Triangle Meshes

Random-Accessible Compressed Triangle Meshes Random-Accessible Compressed Triangle Meshes Sung-Eui Yoon, Member, IEEE, and Peter Lindstrom, Member, IEEE Abstract With the exponential growth in size of geometric data, it is becoming increasingly important

More information

IMAGE COMPRESSION. Image Compression. Why? Reducing transportation times Reducing file size. A two way event - compression and decompression

IMAGE COMPRESSION. Image Compression. Why? Reducing transportation times Reducing file size. A two way event - compression and decompression IMAGE COMPRESSION Image Compression Why? Reducing transportation times Reducing file size A two way event - compression and decompression 1 Compression categories Compression = Image coding Still-image

More information

Connectivity and Attribute Compression of Triangle Meshes

Connectivity and Attribute Compression of Triangle Meshes GCC Graphics, Capture and Massively Parallel Computing 01001 1110100 0111010 01100 Bachelor's Thesis Connectivity and Attribute Compression of Triangle Meshes Maximilian Alexander von Bülow March 2017

More information

International Journal of Emerging Technology and Advanced Engineering Website: (ISSN , Volume 2, Issue 4, April 2012)

International Journal of Emerging Technology and Advanced Engineering Website:   (ISSN , Volume 2, Issue 4, April 2012) A Technical Analysis Towards Digital Video Compression Rutika Joshi 1, Rajesh Rai 2, Rajesh Nema 3 1 Student, Electronics and Communication Department, NIIST College, Bhopal, 2,3 Prof., Electronics and

More information

EE 5359 H.264 to VC 1 Transcoding

EE 5359 H.264 to VC 1 Transcoding EE 5359 H.264 to VC 1 Transcoding Vidhya Vijayakumar Multimedia Processing Lab MSEE, University of Texas @ Arlington vidhya.vijayakumar@mavs.uta.edu Guided by Dr.K.R. Rao Goals Goals The goal of this project

More information

University of Mustansiriyah, Baghdad, Iraq

University of Mustansiriyah, Baghdad, Iraq Volume 5, Issue 9, September 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Audio Compression

More information

JPEG 2000 vs. JPEG in MPEG Encoding

JPEG 2000 vs. JPEG in MPEG Encoding JPEG 2000 vs. JPEG in MPEG Encoding V.G. Ruiz, M.F. López, I. García and E.M.T. Hendrix Dept. Computer Architecture and Electronics University of Almería. 04120 Almería. Spain. E-mail: vruiz@ual.es, mflopez@ace.ual.es,

More information

Saab. Kyle McDonald. Polygon Meshes

Saab. Kyle McDonald. Polygon Meshes Saab Kyle McDonald Polygon Meshes Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 What is a polygon mesh? Like a point cloud, it is a discrete sampling of a surface... but, it adds linear (flat)

More information

DYNAMIC POLYGON CLOUD COMPRESSION

DYNAMIC POLYGON CLOUD COMPRESSION DYNAMIC POLYGON CLOUD COMPRESSION Eduardo Pavez 1, Philip A. Chou 2, Ricardo L. de Queiroz 3 1 University of Southern California, Los Angeles, CA, USA 2 Microsoft Research, Redmond, WA, USA 3 Universidade

More information

Intro. To Multimedia Engineering Lossless Compression

Intro. To Multimedia Engineering Lossless Compression Intro. To Multimedia Engineering Lossless Compression Kyoungro Yoon yoonk@konkuk.ac.kr 1/43 Contents Introduction Basics of Information Theory Run-Length Coding Variable-Length Coding (VLC) Dictionary-based

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 17 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

A New Progressive Lossy-to-Lossless Coding Method for 2.5-D Triangle Mesh with Arbitrary Connectivity

A New Progressive Lossy-to-Lossless Coding Method for 2.5-D Triangle Mesh with Arbitrary Connectivity A New Progressive Lossy-to-Lossless Coding Method for 2.5-D Triangle Mesh with Arbitrary Connectivity Dan Han University of Victoria October 31, 2016 New Mesh-Coding Method Dan Han 1 Outline 1 Introduction

More information

Curvature-Adaptive Remeshing with Feature Preservation of Manifold Triangle Meshes with Boundary

Curvature-Adaptive Remeshing with Feature Preservation of Manifold Triangle Meshes with Boundary Curvature-Adaptive Remeshing with Feature Preservation of Manifold Triangle Meshes with Boundary Master s Project Tanja Munz Master of Science Computer Animation and Visual Effects 24th August, 2015 Abstract

More information

15 Data Compression 2014/9/21. Objectives After studying this chapter, the student should be able to: 15-1 LOSSLESS COMPRESSION

15 Data Compression 2014/9/21. Objectives After studying this chapter, the student should be able to: 15-1 LOSSLESS COMPRESSION 15 Data Compression Data compression implies sending or storing a smaller number of bits. Although many methods are used for this purpose, in general these methods can be divided into two broad categories:

More information

Welcome Back to Fundamentals of Multimedia (MR412) Fall, 2012 Lecture 10 (Chapter 7) ZHU Yongxin, Winson

Welcome Back to Fundamentals of Multimedia (MR412) Fall, 2012 Lecture 10 (Chapter 7) ZHU Yongxin, Winson Welcome Back to Fundamentals of Multimedia (MR412) Fall, 2012 Lecture 10 (Chapter 7) ZHU Yongxin, Winson zhuyongxin@sjtu.edu.cn 2 Lossless Compression Algorithms 7.1 Introduction 7.2 Basics of Information

More information

Module 7 VIDEO CODING AND MOTION ESTIMATION

Module 7 VIDEO CODING AND MOTION ESTIMATION Module 7 VIDEO CODING AND MOTION ESTIMATION Lesson 20 Basic Building Blocks & Temporal Redundancy Instructional Objectives At the end of this lesson, the students should be able to: 1. Name at least five

More information

A Image Comparative Study using DCT, Fast Fourier, Wavelet Transforms and Huffman Algorithm

A Image Comparative Study using DCT, Fast Fourier, Wavelet Transforms and Huffman Algorithm International Journal of Engineering Research and General Science Volume 3, Issue 4, July-August, 15 ISSN 91-2730 A Image Comparative Study using DCT, Fast Fourier, Wavelet Transforms and Huffman Algorithm

More information

Stereo Image Compression

Stereo Image Compression Stereo Image Compression Deepa P. Sundar, Debabrata Sengupta, Divya Elayakumar {deepaps, dsgupta, divyae}@stanford.edu Electrical Engineering, Stanford University, CA. Abstract In this report we describe

More information

DCT Coefficients Compression Using Embedded Zerotree Algorithm

DCT Coefficients Compression Using Embedded Zerotree Algorithm DCT Coefficients Compression Using Embedded Zerotree Algorithm Dr. Tawfiq A. Abbas and Asa'ad. Hashim Abstract: The goal of compression algorithms is to gain best compression ratio with acceptable visual

More information

DIGITAL TELEVISION 1. DIGITAL VIDEO FUNDAMENTALS

DIGITAL TELEVISION 1. DIGITAL VIDEO FUNDAMENTALS DIGITAL TELEVISION 1. DIGITAL VIDEO FUNDAMENTALS Television services in Europe currently broadcast video at a frame rate of 25 Hz. Each frame consists of two interlaced fields, giving a field rate of 50

More information

Week 14. Video Compression. Ref: Fundamentals of Multimedia

Week 14. Video Compression. Ref: Fundamentals of Multimedia Week 14 Video Compression Ref: Fundamentals of Multimedia Last lecture review Prediction from the previous frame is called forward prediction Prediction from the next frame is called forward prediction

More information

Outline. Visualization Discretization Sampling Quantization Representation Continuous Discrete. Noise

Outline. Visualization Discretization Sampling Quantization Representation Continuous Discrete. Noise Fundamentals Data Outline Visualization Discretization Sampling Quantization Representation Continuous Discrete Noise 2 Data Data : Function dependent on one or more variables. Example Audio (1D) - depends

More information