DSAS Laboratory no 4. Laboratory 4. Logic forms

Size: px
Start display at page:

Download "DSAS Laboratory no 4. Laboratory 4. Logic forms"

Transcription

1 Laboratory 4 Logic forms 4.1 Laboratory work goals Going from Boolean functions to Boolean forms. Logic forms equivalence. Boolean forms simplification. Shannon s theorems. Representation in NAND and NOR logic. 4.2 Theoretical considerations It is named logic form (formula, logic expression) any combination of a finite number of switching variables and constants 0 or 1 reunited through switching operators. It is named Boolean form or Boolean expression a logic form containing only disjunction, conjunction and negation operators. The function generated by evaluating a logic form A(x 1 x n ) for all possible assignments of variables is called switching function attached to form A and is noted f A. It can be noticed that on one hand, there is an infinite number of logic forms that can be generated with variables x 1 x n, and on the other hand, there is a finite number of switching functions that 39

2 depend on the same set of variables. Because to each logic form it corresponds a unique attached switching function, depending on the same set of variables, it can be concluded that there is an infinite number of logic forms that have a same (only one) switching function attached. It is said that two logic forms A and B, depending on the same set of variables, are equivalent if and only if f A =f B. It is noted A=B. The logic forms that depend on the same set of variables and have the same switching function attached to them form a class of equivalence. Any logic form belongs to only one class of equivalence. The equivalence of logic forms is an equivalence relation thus respecting the three properties: 1) reflexivity (a forms is equivalent to itself); 2) commutativity (if A=B then B=A); 3) transitivity (if A=B and B=C then A=C) The set of logic forms depending on the same set of variables 2 x 1 x n can be divided in 2 n disjunctive classes of equivalence. Determining equivalent forms is extremely important in practice, because it allows the designer to choose for implementation the optimal form given a particular set of imposed conditions (technology, price, size, etc). Determination of various equivalent forms corresponding to a given switching function is performed during the synthesis phase. It is said that a representation form is normal if certain restrictions (norms) were imposed on that representation. 40

3 A normal form of representation is canonical if the imposed restrictions lead to the uniqueness of representation. The minterms are a canonical form of representation for a minterm function, while the maxterms allow canonical representation of a maxterm function. Let {x 1,,x n } be a set of Boolean variables. It is called P canonical term or minterm any logic product of all n variables, either in direct or complemented forms, that is x & 1 x& 2... x& n. Any logic product not containing all variables is called P term. It is called S canonical term or maxterm any logic sum of all n variables, either in direct or complemented form, that is x & 1 + x& x& n. Any logic sum not containing all variables is called S term. Any switching function (except the constant 0) can be uniquely represented as a logic sum of minterms corresponding to the combinations for which the function is 1. This representation form is called normal disjunctive canonical form. Any completely specified switching function (except the constant 0) can be uniquely represented as a modulo 2 sum of minterms corresponding to the combinations for which the function is 1. This form of representation is also a disjunctive canonical form. Any completely specified switching function (except the constant 1) can be uniquely represented as a logic product of maxterms corresponding to the combinations for which the function is mapped to 0. This representation form is called normal conjunctive canonical form. 41

4 It is called normal disjunctive form (NDF) any Boolean expression of type P terms logic sum. It is called normal conjunctive form (NCF) any Boolean expression of type S terms logic product. Unlike the canonical forms which are unique for a given function, there is a large number of equivalent NDF and NCF to represent the same function. Because in practice the canonical forms are extremely important, it is necessary to have simple methods to convert NDF and NCF to canonical forms. Algorithm to convert an NDF to the equivalent normal disjunctive canonical form: S1) Starting from an NDF, the missing variables are introduced in each P term as α + α where α is some variable. S2) By applying the distributivity, the parentheses are opened. Each resulting P term will contain all variables the function depends on, thus a minterm. S3) Based on the idempotency property, only one of many identical terms is kept. The resulting form is the normal disjunctive canonical form. Example: Consider the following NDF f(xyz)=xy+ z. f(xyz) = xy (z + z) + (x + x) (y + y) z = = xyz+xy z +xy z +x y z + x y z + x y z = = xyz+xy z +x y z + x y z + x y z = m 7 +m 6 +m 4 +m 2 +m 0 42

5 Algorithm to convert an NCF to the equivalent normal conjunctive canonical form: S1) Starting from an NCF, the missing variables are introduced in each S term, as α α where α is some variable. S2) By applying the distributivity a new NCF is obtained, in which each resulting S term will contain all variables the function depends on, thus a maxterm. S3) Based on the idempotency property, only one of many identical terms is kept. The resulting form is the normal conjunctive canonical form. Example: Consider the following NCF f(xyz)=(x+y)( x + z ). f(xyz)= (x+y+z z )( x +y y + z ) = =(x+y+z)(x+y+ z )( x +y+ z )( x + y + z ) = M 0 M 1 M 5 M 7 Shannon s expansion theorem Let A(x 1 x n ) be some logic form. This form can be expanded with respect in relation to variable x i, into one of the following two equivalent forms: A(x 1 x i x n ) = x i A(x 1 1 x n )+ xi A(x 1 0 x n ) (4.1) A(x 1 x i x n ) = [x i +A(x 1 0 x n )] [ x i +A(x 1 1 x n )] (4.2) The form (4.1) is called Shannon s expansion theorem disjunctive form while (4.2) is called Shannon s expansion theorem conjunctive form. A(x 1 0 x n ) and A(x 1 1 x n ) are named residual expressions. 43

6 It can be noticed that the residual expressions depend at most on n-1 variables, being simpler than the initial form. This constitutes one of the biggest advantages in using this expansion theorem. Algorithm to convert an NDF to NAND logic representation S1) The NDF is complemented twice. S2) DeMorgan theorem is applied such that there are obtained only negated logic products. S3) Each complemented logic product is represented as a NAND operator. S4) If necessary, the complementations are replaced with NAND operators. Example: It is considered the following NDF A(x,y,z)=xy+yz+xz and the requirement is to represent it with NAND operators. A(x,y,z)= xy + yz + xz = xy yz xz =(x y) (y z) (x z) Algorithm to convert an NDF to NOR logic representation S1) The NCF is complemented twice. S2) DeMorgan theorem is applied such that there are obtained only negated logic sums. S3) Each complemented logic sum is represented as a NOR operator. S4) If necessary, the complementations are replaced with NOR operators. Example: It is considered the following NCF A(x,y,z)=(x+y)(y+z)(x+z) and the requirement is to represent it with NOR operators. 44

7 A(x,y,z)= (x + y)(y + z)(x + z) = x + y + y + z + x + z =(x y) (y z) (x z) 4.3 Lab activity progress It is given the function f(x,y,z)=σ(0,4,5,7) and it is required: Determination of disjunctive canonical form; Determination of conjunctive canonical form; Determination of a normal disjunctive form as simple as Determination of a normal conjunctive form as simple as The two normal forms must be implemented on the test It is given the logic form F(x,y,z)= (x y z) ( (. It will be experimentally determined the switching function attached to this logic form. It will be determined the equivalent normal disjunctive canonical form. It will be determined a normal disjunctive form as simple as possible and it will be implemented on the test board. It will be experimentally checked its equivalence with the initial form. It is considered the logic form G(u,x,y,z =(x y) (u It is required determination of a normal disjunctive form utilising the Shannon s expansion theorem. 45

8 The obtained expression must be simplified, using the theorems of the Boolean algebra. It will be proven experimentally the equivalence of the normal disjunctive form with the initial form. It will be determined the NAND logic form and it will be experimentally proven the equivalence with the previous forms. The last exercise is to be repeated for the switching function (,,, = Proposed problems 1. It is considered the switching function f(x,y,z,t) = Σ(0,1,3,5,7,10,14,15) and it is required: a) Determination of the disjunctive canonical form; b) Determination of the conjunctive canonical form; c) Determination of a normal disjunctive form as simple as d) Determination of a normal conjunctive form as simple as 2. It is given the logic form f(u,x,y,z =(xy+u) (u x + +(. a) It is required determination of a normal disjunctive form utilising the Shannon s expansion theorem. b) The obtained expression must be simplified, using the theorems of the Boolean algebra. c) It will be proven experimentally the equivalence of the normal disjunctive form with the initial form. 46

9 d) It will be determined the NAND logic form and it will be experimentally proven the equivalence with the previous forms. 3. It is considered the function f(x,y,z,u)= Σ (1,2,6,7,11,13,15) and it is required: a) Determination of the disjunctive canonical form; b) Determination of the conjunctive canonical form; c) Determination of a normal disjunctive form as simple as d) Determination of a normal conjunctive form as simple as 4. It is considered the logic form f(u,x,y,z =(u y+x y) (u + +(. a) It is required determination of a normal conjunctive form utilising the Shannon s expansion theorem. b) The obtained expression must be simplified, using the theorems of the Boolean algebra. c) It will be proven experimentally the equivalence of the normal conjunctive form with the initial form. d) It will be determined the NOR logic form and it will be proven the equivalence with the previous forms. 5. It is considered the function f(x,y,z,t)= Σ (0,1,2,7,9,11,14) and it is required: a) Determination of the disjunctive canonical form; b) Determination of the conjunctive canonical form; 47

10 c) Determination of a normal disjunctive form as simple as d) Determination of a normal conjunctive form as simple as 6. It is considered the logic form f(,,, = + + +( ( a) It is required determination of a normal disjunctive form utilising the Shannon s expansion theorem. b) The obtained expression must be simplified, using the theorems of the Boolean algebra. c) It will be proven experimentally the equivalence of the normal disjunctive form with the initial form. d) It will be determined the NAND logic form and it will be proven the equivalence with the previous forms. 7. It is considered the function f(x,y,z,u)= Σ (0,2,4,9,11, 13,14,15) and it is required: a) Determination of the disjunctive canonical form; b) Determination of the conjunctive canonical form; c) Determination of a normal disjunctive form as simple as d) Determination of a normal conjunctive form as simple as 8. It is considered the logic form f(u,x,y,z =(u y xy uz) (ux + +(. a) It is required determination of a normal disjunctive form utilising the Shannon s expansion theorem. 48

11 b) The obtained expression must be simplified, using the theorems of the Boolean algebra. c) It will be proven experimentally the equivalence of the normal disjunctive form with the initial form. d) It will be determined the NAND logic form and it will be proven the equivalence with the previous forms. 9. It is considered the function f(x,y,z,t)= Σ (1,2,4,8,9,10,14) and it is required: a) Determination of the disjunctive canonical form; b) Determination of the conjunctive canonical form; c) Determination of a normal disjunctive form as simple as d) Determination of a normal conjunctive form as simple as 10. It is considered the logic form f(,,, =( + + +( ( a) It is required determination of a normal conjunctive form utilising the Shannon s expansion theorem. b) The obtained expression must be simplified, using the theorems of the Boolean algebra. c) It will be proven experimentally the equivalence of the normal conjunctive form with the initial form. d) It will be determined the NOR logic form and it will be proven the equivalence with the previous forms. 49

CS February 17

CS February 17 Discrete Mathematics CS 26 February 7 Equal Boolean Functions Two Boolean functions F and G of degree n are equal iff for all (x n,..x n ) B, F (x,..x n ) = G (x,..x n ) Example: F(x,y,z) = x(y+z), G(x,y,z)

More information

Philadelphia University Faculty of Information Technology Department of Computer Science. Computer Logic Design. By Dareen Hamoudeh.

Philadelphia University Faculty of Information Technology Department of Computer Science. Computer Logic Design. By Dareen Hamoudeh. Philadelphia University Faculty of Information Technology Department of Computer Science Computer Logic Design By Dareen Hamoudeh Dareen Hamoudeh 1 Canonical Forms (Standard Forms of Expression) Minterms

More information

Unit-IV Boolean Algebra

Unit-IV Boolean Algebra Unit-IV Boolean Algebra Boolean Algebra Chapter: 08 Truth table: Truth table is a table, which represents all the possible values of logical variables/statements along with all the possible results of

More information

Experiment 3: Logic Simplification

Experiment 3: Logic Simplification Module: Logic Design Name:... University no:.. Group no:. Lab Partner Name: Mr. Mohamed El-Saied Experiment : Logic Simplification Objective: How to implement and verify the operation of the logical functions

More information

Menu. Algebraic Simplification - Boolean Algebra EEL3701 EEL3701. MSOP, MPOS, Simplification

Menu. Algebraic Simplification - Boolean Algebra EEL3701 EEL3701. MSOP, MPOS, Simplification Menu Minterms & Maxterms SOP & POS MSOP & MPOS Simplification using the theorems/laws/axioms Look into my... 1 Definitions (Review) Algebraic Simplification - Boolean Algebra Minterms (written as m i ):

More information

Standard Forms of Expression. Minterms and Maxterms

Standard Forms of Expression. Minterms and Maxterms Standard Forms of Expression Minterms and Maxterms Standard forms of expressions We can write expressions in many ways, but some ways are more useful than others A sum of products (SOP) expression contains:

More information

BOOLEAN ALGEBRA. 1. State & Verify Laws by using :

BOOLEAN ALGEBRA. 1. State & Verify Laws by using : BOOLEAN ALGEBRA. State & Verify Laws by using :. State and algebraically verify Absorption Laws. (2) Absorption law states that (i) X + XY = X and (ii) X(X + Y) = X (i) X + XY = X LHS = X + XY = X( + Y)

More information

Gate Level Minimization Map Method

Gate Level Minimization Map Method Gate Level Minimization Map Method Complexity of hardware implementation is directly related to the complexity of the algebraic expression Truth table representation of a function is unique Algebraically

More information

QUESTION BANK FOR TEST

QUESTION BANK FOR TEST CSCI 2121 Computer Organization and Assembly Language PRACTICE QUESTION BANK FOR TEST 1 Note: This represents a sample set. Please study all the topics from the lecture notes. Question 1. Multiple Choice

More information

Lecture 4: Implementation AND, OR, NOT Gates and Complement

Lecture 4: Implementation AND, OR, NOT Gates and Complement EE210: Switching Systems Lecture 4: Implementation AND, OR, NOT Gates and Complement Prof. YingLi Tian Feb. 13, 2018 Department of Electrical Engineering The City College of New York The City University

More information

Circuit analysis summary

Circuit analysis summary Boolean Algebra Circuit analysis summary After finding the circuit inputs and outputs, you can come up with either an expression or a truth table to describe what the circuit does. You can easily convert

More information

Chapter 2 Boolean algebra and Logic Gates

Chapter 2 Boolean algebra and Logic Gates Chapter 2 Boolean algebra and Logic Gates 2. Introduction In working with logic relations in digital form, we need a set of rules for symbolic manipulation which will enable us to simplify complex expressions

More information

Gate Level Minimization

Gate Level Minimization Gate Level Minimization By Dr. M. Hebaishy Digital Logic Design Ch- Simplifying Boolean Equations Example : Y = AB + AB Example 2: = B (A + A) T8 = B () T5 = B T Y = A(AB + ABC) = A (AB ( + C ) ) T8 =

More information

Simplification of Boolean Functions

Simplification of Boolean Functions Simplification of Boolean Functions Contents: Why simplification? The Map Method Two, Three, Four and Five variable Maps. Simplification of two, three, four and five variable Boolean function by Map method.

More information

Lecture (05) Boolean Algebra and Logic Gates

Lecture (05) Boolean Algebra and Logic Gates Lecture (05) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee ١ Minterms and Maxterms consider two binary variables x and y combined with an AND operation. Since eachv ariable may appear in either

More information

2.6 BOOLEAN FUNCTIONS

2.6 BOOLEAN FUNCTIONS 2.6 BOOLEAN FUNCTIONS Binary variables have two values, either 0 or 1. A Boolean function is an expression formed with binary variables, the two binary operators AND and OR, one unary operator NOT, parentheses

More information

Propositional Calculus: Boolean Algebra and Simplification. CS 270: Mathematical Foundations of Computer Science Jeremy Johnson

Propositional Calculus: Boolean Algebra and Simplification. CS 270: Mathematical Foundations of Computer Science Jeremy Johnson Propositional Calculus: Boolean Algebra and Simplification CS 270: Mathematical Foundations of Computer Science Jeremy Johnson Propositional Calculus Topics Motivation: Simplifying Conditional Expressions

More information

Gate-Level Minimization. BME208 Logic Circuits Yalçın İŞLER

Gate-Level Minimization. BME208 Logic Circuits Yalçın İŞLER Gate-Level Minimization BME28 Logic Circuits Yalçın İŞLER islerya@yahoo.com http://me.islerya.com Complexity of Digital Circuits Directly related to the complexity of the algebraic expression we use to

More information

Introduction to Boolean logic and Logical Gates

Introduction to Boolean logic and Logical Gates Introduction to Boolean logic and Logical Gates Institute of Statistics Fall 2014 We saw the importance of the binary number system for data representation in a computer system. We ll see that the construction

More information

Variable, Complement, and Literal are terms used in Boolean Algebra.

Variable, Complement, and Literal are terms used in Boolean Algebra. We have met gate logic and combination of gates. Another way of representing gate logic is through Boolean algebra, a way of algebraically representing logic gates. You should have already covered the

More information

2.1 Binary Logic and Gates

2.1 Binary Logic and Gates 1 EED2003 Digital Design Presentation 2: Boolean Algebra Asst. Prof.Dr. Ahmet ÖZKURT Asst. Prof.Dr Hakkı T. YALAZAN Based on the Lecture Notes by Jaeyoung Choi choi@comp.ssu.ac.kr Fall 2000 2.1 Binary

More information

UNIT-4 BOOLEAN LOGIC. NOT Operator Operates on single variable. It gives the complement value of variable.

UNIT-4 BOOLEAN LOGIC. NOT Operator Operates on single variable. It gives the complement value of variable. UNIT-4 BOOLEAN LOGIC Boolean algebra is an algebra that deals with Boolean values((true and FALSE). Everyday we have to make logic decisions: Should I carry the book or not?, Should I watch TV or not?

More information

SYNERGY INSTITUTE OF ENGINEERING & TECHNOLOGY,DHENKANAL LECTURE NOTES ON DIGITAL ELECTRONICS CIRCUIT(SUBJECT CODE:PCEC4202)

SYNERGY INSTITUTE OF ENGINEERING & TECHNOLOGY,DHENKANAL LECTURE NOTES ON DIGITAL ELECTRONICS CIRCUIT(SUBJECT CODE:PCEC4202) Lecture No:5 Boolean Expressions and Definitions Boolean Algebra Boolean Algebra is used to analyze and simplify the digital (logic) circuits. It uses only the binary numbers i.e. 0 and 1. It is also called

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems

More information

Chapter 2. Boolean Expressions:

Chapter 2. Boolean Expressions: Chapter 2 Boolean Expressions: A Boolean expression or a function is an expression which consists of binary variables joined by the Boolean connectives AND and OR along with NOT operation. Any Boolean

More information

Binary logic. Dr.Abu-Arqoub

Binary logic. Dr.Abu-Arqoub Binary logic Binary logic deals with variables like (a, b, c,, x, y) that take on two discrete values (, ) and with operations that assume logic meaning ( AND, OR, NOT) Truth table is a table of all possible

More information

Boolean algebra. June 17, Howard Huang 1

Boolean algebra. June 17, Howard Huang 1 Boolean algebra Yesterday we talked about how analog voltages can represent the logical values true and false. We introduced the basic Boolean operations AND, OR and NOT, which can be implemented in hardware

More information

ENGINEERS ACADEMY. 7. Given Boolean theorem. (a) A B A C B C A B A C. (b) AB AC BC AB BC. (c) AB AC BC A B A C B C.

ENGINEERS ACADEMY. 7. Given Boolean theorem. (a) A B A C B C A B A C. (b) AB AC BC AB BC. (c) AB AC BC A B A C B C. Digital Electronics Boolean Function QUESTION BANK. The Boolean equation Y = C + C + C can be simplified to (a) (c) A (B + C) (b) AC (d) C. The Boolean equation Y = (A + B) (A + B) can be simplified to

More information

X Y Z F=X+Y+Z

X Y Z F=X+Y+Z This circuit is used to obtain the compliment of a value. If X = 0, then X = 1. The truth table for NOT gate is : X X 0 1 1 0 2. OR gate : The OR gate has two or more input signals but only one output

More information

Boolean Algebra and Logic Gates

Boolean Algebra and Logic Gates Boolean Algebra and Logic Gates Binary logic is used in all of today's digital computers and devices Cost of the circuits is an important factor Finding simpler and cheaper but equivalent circuits can

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R059210504 Set No. 1 II B.Tech I Semester Supplementary Examinations, February 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science

More information

Combinational Logic Circuits

Combinational Logic Circuits Chapter 3 Combinational Logic Circuits 12 Hours 24 Marks 3.1 Standard representation for logical functions Boolean expressions / logic expressions / logical functions are expressed in terms of logical

More information

Combinational Logic & Circuits

Combinational Logic & Circuits Week-I Combinational Logic & Circuits Spring' 232 - Logic Design Page Overview Binary logic operations and gates Switching algebra Algebraic Minimization Standard forms Karnaugh Map Minimization Other

More information

CS8803: Advanced Digital Design for Embedded Hardware

CS8803: Advanced Digital Design for Embedded Hardware CS883: Advanced Digital Design for Embedded Hardware Lecture 2: Boolean Algebra, Gate Network, and Combinational Blocks Instructor: Sung Kyu Lim (limsk@ece.gatech.edu) Website: http://users.ece.gatech.edu/limsk/course/cs883

More information

Definitions. 03 Logic networks Boolean algebra. Boolean set: B 0,

Definitions. 03 Logic networks Boolean algebra. Boolean set: B 0, 3. Boolean algebra 3 Logic networks 3. Boolean algebra Definitions Boolean functions Properties Canonical forms Synthesis and minimization alessandro bogliolo isti information science and technology institute

More information

1. Mark the correct statement(s)

1. Mark the correct statement(s) 1. Mark the correct statement(s) 1.1 A theorem in Boolean algebra: a) Can easily be proved by e.g. logic induction b) Is a logical statement that is assumed to be true, c) Can be contradicted by another

More information

Chapter 3. Gate-Level Minimization. Outlines

Chapter 3. Gate-Level Minimization. Outlines Chapter 3 Gate-Level Minimization Introduction The Map Method Four-Variable Map Five-Variable Map Outlines Product of Sums Simplification Don t-care Conditions NAND and NOR Implementation Other Two-Level

More information

Experiment 4 Boolean Functions Implementation

Experiment 4 Boolean Functions Implementation Experiment 4 Boolean Functions Implementation Introduction: Generally you will find that the basic logic functions AND, OR, NAND, NOR, and NOT are not sufficient to implement complex digital logic functions.

More information

Boolean Algebra. BME208 Logic Circuits Yalçın İŞLER

Boolean Algebra. BME208 Logic Circuits Yalçın İŞLER Boolean Algebra BME28 Logic Circuits Yalçın İŞLER islerya@yahoo.com http://me.islerya.com 5 Boolean Algebra /2 A set of elements B There exist at least two elements x, y B s. t. x y Binary operators: +

More information

Objectives: 1- Bolean Algebra. Eng. Ayman Metwali

Objectives: 1- Bolean Algebra. Eng. Ayman Metwali Objectives: Chapter 3 : 1- Boolean Algebra Boolean Expressions Boolean Identities Simplification of Boolean Expressions Complements Representing Boolean Functions 2- Logic gates 3- Digital Components 4-

More information

IT 201 Digital System Design Module II Notes

IT 201 Digital System Design Module II Notes IT 201 Digital System Design Module II Notes BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.

More information

Boolean Algebra. P1. The OR operation is closed for all x, y B x + y B

Boolean Algebra. P1. The OR operation is closed for all x, y B x + y B Boolean Algebra A Boolean Algebra is a mathematical system consisting of a set of elements B, two binary operations OR (+) and AND ( ), a unary operation NOT ('), an equality sign (=) to indicate equivalence

More information

Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions

Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions 1. Convert the following SOP expression to an equivalent POS expression. 2. Determine the values of A, B, C, and D that make

More information

Lecture 5. Chapter 2: Sections 4-7

Lecture 5. Chapter 2: Sections 4-7 Lecture 5 Chapter 2: Sections 4-7 Outline Boolean Functions What are Canonical Forms? Minterms and Maxterms Index Representation of Minterms and Maxterms Sum-of-Minterm (SOM) Representations Product-of-Maxterm

More information

Get Free notes at Module-I One s Complement: Complement all the bits.i.e. makes all 1s as 0s and all 0s as 1s Two s Complement: One s complement+1 SIGNED BINARY NUMBERS Positive integers (including zero)

More information

Gate-Level Minimization

Gate-Level Minimization Gate-Level Minimization ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2011 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines The Map Method

More information

3. According to universal addressing, what is the address of vertex d? 4. According to universal addressing, what is the address of vertex f?

3. According to universal addressing, what is the address of vertex d? 4. According to universal addressing, what is the address of vertex f? 1. Prove: A full m-ary tree with i internal vertices contains n = mi + 1 vertices. 2. For a full m-ary tree with n vertices, i internal vertices, and l leaves, prove: (i) i = (n 1)/m and l = [(m 1)n +

More information

ENGIN 112. Intro to Electrical and Computer Engineering

ENGIN 112. Intro to Electrical and Computer Engineering ENIN 2 Intro to Electrical and Computer Engineering Lecture 6 More Boolean Algebra ENIN2 L6: More Boolean Algebra September 5, 23 A B Overview Epressing Boolean functions Relationships between algebraic

More information

Lecture (04) Boolean Algebra and Logic Gates

Lecture (04) Boolean Algebra and Logic Gates Lecture (4) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee ١ Dr. Ahmed ElShafee, ACU : Spring 26, Logic Design Boolean algebra properties basic assumptions and properties: Closure law A set S is

More information

Lecture (04) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee

Lecture (04) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee Lecture (4) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee Boolean algebra properties basic assumptions and properties: Closure law A set S is closed with respect to a binary operator, for every

More information

Chapter 2: Combinational Systems

Chapter 2: Combinational Systems Uchechukwu Ofoegbu Chapter 2: Combinational Systems Temple University Adapted from Alan Marcovitz s Introduction to Logic and Computer Design Riddle Four switches can be turned on or off. One is the switch

More information

Logic Design: Part 2

Logic Design: Part 2 Orange Coast College Business Division Computer Science Department CS 6- Computer Architecture Logic Design: Part 2 Where are we? Number systems Decimal Binary (and related Octal and Hexadecimal) Binary

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2006 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems

More information

Gate-Level Minimization

Gate-Level Minimization Gate-Level Minimization ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2017 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines The Map Method

More information

Introduction to Computer Architecture

Introduction to Computer Architecture Boolean Operators The Boolean operators AND and OR are binary infix operators (that is, they take two arguments, and the operator appears between them.) A AND B D OR E We will form Boolean Functions of

More information

Computer Science. Unit-4: Introduction to Boolean Algebra

Computer Science. Unit-4: Introduction to Boolean Algebra Unit-4: Introduction to Boolean Algebra Learning Objective At the end of the chapter students will: Learn Fundamental concepts and basic laws of Boolean algebra. Learn about Boolean expression and will

More information

UNIT 2 BOOLEAN ALGEBRA

UNIT 2 BOOLEAN ALGEBRA UNIT 2 BOOLEN LGEBR Spring 2 2 Contents Introduction Basic operations Boolean expressions and truth tables Theorems and laws Basic theorems Commutative, associative, and distributive laws Simplification

More information

R.M.D. ENGINEERING COLLEGE R.S.M. Nagar, Kavaraipettai

R.M.D. ENGINEERING COLLEGE R.S.M. Nagar, Kavaraipettai L T P C R.M.D. ENGINEERING COLLEGE R.S.M. Nagar, Kavaraipettai- 601206 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC8392 UNIT - I 3 0 0 3 OBJECTIVES: To present the Digital fundamentals, Boolean

More information

Spring 2010 CPE231 Digital Logic Section 1 Quiz 1-A. Convert the following numbers from the given base to the other three bases listed in the table:

Spring 2010 CPE231 Digital Logic Section 1 Quiz 1-A. Convert the following numbers from the given base to the other three bases listed in the table: Section 1 Quiz 1-A Convert the following numbers from the given base to the other three bases listed in the table: Decimal Binary Hexadecimal 1377.140625 10101100001.001001 561.24 454.3125 111000110.0101

More information

LSN 4 Boolean Algebra & Logic Simplification. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology

LSN 4 Boolean Algebra & Logic Simplification. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology LSN 4 Boolean Algebra & Logic Simplification Department of Engineering Technology LSN 4 Key Terms Variable: a symbol used to represent a logic quantity Compliment: the inverse of a variable Literal: a

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian محرم 1439 ه Winter

More information

數位系統 Digital Systems 朝陽科技大學資工系. Speaker: Fuw-Yi Yang 楊伏夷. 伏夷非征番, 道德經察政章 (Chapter 58) 伏者潛藏也道紀章 (Chapter 14) 道無形象, 視之不可見者曰夷

數位系統 Digital Systems 朝陽科技大學資工系. Speaker: Fuw-Yi Yang 楊伏夷. 伏夷非征番, 道德經察政章 (Chapter 58) 伏者潛藏也道紀章 (Chapter 14) 道無形象, 視之不可見者曰夷 數位系統 Digital Systems Department of Computer Science and Information Engineering, Chaoyang University of Technology 朝陽科技大學資工系 Speaker: Fuw-Yi Yang 楊伏夷 伏夷非征番, 道德經察政章 (Chapter 58) 伏者潛藏也道紀章 (Chapter 14) 道無形象,

More information

Combinational Logic Circuits

Combinational Logic Circuits Chapter 2 Combinational Logic Circuits J.J. Shann (Slightly trimmed by C.P. Chung) Chapter Overview 2-1 Binary Logic and Gates 2-2 Boolean Algebra 2-3 Standard Forms 2-4 Two-Level Circuit Optimization

More information

Code No: 07A3EC03 Set No. 1

Code No: 07A3EC03 Set No. 1 Code No: 07A3EC03 Set No. 1 II B.Tech I Semester Regular Examinations, November 2008 SWITCHING THEORY AND LOGIC DESIGN ( Common to Electrical & Electronic Engineering, Electronics & Instrumentation Engineering,

More information

Digital Logic Lecture 7 Gate Level Minimization

Digital Logic Lecture 7 Gate Level Minimization Digital Logic Lecture 7 Gate Level Minimization By Ghada Al-Mashaqbeh The Hashemite University Computer Engineering Department Outline Introduction. K-map principles. Simplification using K-maps. Don t-care

More information

Chapter 3. Boolean Algebra and Digital Logic

Chapter 3. Boolean Algebra and Digital Logic Chapter 3 Boolean Algebra and Digital Logic Chapter 3 Objectives Understand the relationship between Boolean logic and digital computer circuits. Learn how to design simple logic circuits. Understand how

More information

Announcements. Chapter 2 - Part 1 1

Announcements. Chapter 2 - Part 1 1 Announcements If you haven t shown the grader your proof of prerequisite, please do so by 11:59 pm on 09/05/2018 (Wednesday). I will drop students that do not show us the prerequisite proof after this

More information

2008 The McGraw-Hill Companies, Inc. All rights reserved.

2008 The McGraw-Hill Companies, Inc. All rights reserved. 28 The McGraw-Hill Companies, Inc. All rights reserved. 28 The McGraw-Hill Companies, Inc. All rights reserved. All or Nothing Gate Boolean Expression: A B = Y Truth Table (ee next slide) or AB = Y 28

More information

Digital Logic Design. Outline

Digital Logic Design. Outline Digital Logic Design Gate-Level Minimization CSE32 Fall 2 Outline The Map Method 2,3,4 variable maps 5 and 6 variable maps (very briefly) Product of sums simplification Don t Care conditions NAND and NOR

More information

Review. EECS Components and Design Techniques for Digital Systems. Lec 05 Boolean Logic 9/4-04. Seq. Circuit Behavior. Outline.

Review. EECS Components and Design Techniques for Digital Systems. Lec 05 Boolean Logic 9/4-04. Seq. Circuit Behavior. Outline. Review EECS 150 - Components and Design Techniques for Digital Systems Lec 05 Boolean Logic 94-04 David Culler Electrical Engineering and Computer Sciences University of California, Berkeley Design flow

More information

Gate-Level Minimization

Gate-Level Minimization Gate-Level Minimization Mano & Ciletti Chapter 3 By Suleyman TOSUN Ankara University Outline Intro to Gate-Level Minimization The Map Method 2-3-4-5 variable map methods Product-of-Sums Method Don t care

More information

Designing Computer Systems Boolean Algebra

Designing Computer Systems Boolean Algebra Designing Computer Systems Boolean Algebra 08:34:45 PM 4 June 2013 BA-1 Scott & Linda Wills Designing Computer Systems Boolean Algebra Programmable computers can exhibit amazing complexity and generality.

More information

Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University

Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University Logic Design First Stage Lecture No.5 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Boolean Operations Laws of Boolean Algebra Rules of Boolean Algebra

More information

Section 1.8. Simplifying Expressions

Section 1.8. Simplifying Expressions Section 1.8 Simplifying Expressions But, first Commutative property: a + b = b + a; a * b = b * a Associative property: (a + b) + c = a + (b + c) (a * b) * c = a * (b * c) Distributive property: a * (b

More information

SWITCHING THEORY AND LOGIC CIRCUITS

SWITCHING THEORY AND LOGIC CIRCUITS SWITCHING THEORY AND LOGIC CIRCUITS COURSE OBJECTIVES. To understand the concepts and techniques associated with the number systems and codes 2. To understand the simplification methods (Boolean algebra

More information

Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University

Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University Logic Design First Stage Lecture No.6 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Outlines Boolean Operations Laws of Boolean Algebra Rules of

More information

Chapter 2. Boolean Algebra and Logic Gates

Chapter 2. Boolean Algebra and Logic Gates Chapter 2. Boolean Algebra and Logic Gates Tong In Oh 1 Basic Definitions 2 3 2.3 Axiomatic Definition of Boolean Algebra Boolean algebra: Algebraic structure defined by a set of elements, B, together

More information

Review: Standard forms of expressions

Review: Standard forms of expressions Karnaugh maps Last time we saw applications of Boolean logic to circuit design. The basic Boolean operations are AND, OR and NOT. These operations can be combined to form complex expressions, which can

More information

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY Dept/Sem: II CSE/03 DEPARTMENT OF ECE CS8351 DIGITAL PRINCIPLES AND SYSTEM DESIGN UNIT I BOOLEAN ALGEBRA AND LOGIC GATES PART A 1. How many

More information

CHAPTER-2 STRUCTURE OF BOOLEAN FUNCTION USING GATES, K-Map and Quine-McCluskey

CHAPTER-2 STRUCTURE OF BOOLEAN FUNCTION USING GATES, K-Map and Quine-McCluskey CHAPTER-2 STRUCTURE OF BOOLEAN FUNCTION USING GATES, K-Map and Quine-McCluskey 2. Introduction Logic gates are connected together to produce a specified output for certain specified combinations of input

More information

Propositional Calculus. CS 270: Mathematical Foundations of Computer Science Jeremy Johnson

Propositional Calculus. CS 270: Mathematical Foundations of Computer Science Jeremy Johnson Propositional Calculus CS 270: Mathematical Foundations of Computer Science Jeremy Johnson Propositional Calculus Objective: To provide students with the concepts and techniques from propositional calculus

More information

Computer Organization

Computer Organization Computer Organization (Logic circuits design and minimization) KR Chowdhary Professor & Head Email: kr.chowdhary@gmail.com webpage: krchowdhary.com Department of Computer Science and Engineering MBM Engineering

More information

SUBJECT CODE: IT T35 DIGITAL SYSTEM DESIGN YEAR / SEM : 2 / 3

SUBJECT CODE: IT T35 DIGITAL SYSTEM DESIGN YEAR / SEM : 2 / 3 UNIT - I PART A (2 Marks) 1. Using Demorgan s theorem convert the following Boolean expression to an equivalent expression that has only OR and complement operations. Show the function can be implemented

More information

Module -7. Karnaugh Maps

Module -7. Karnaugh Maps 1 Module -7 Karnaugh Maps 1. Introduction 2. Canonical and Standard forms 2.1 Minterms 2.2 Maxterms 2.3 Canonical Sum of Product or Sum-of-Minterms (SOM) 2.4 Canonical product of sum or Product-of-Maxterms(POM)

More information

UNIT II. Circuit minimization

UNIT II. Circuit minimization UNIT II Circuit minimization The complexity of the digital logic gates that implement a Boolean function is directly related to the complexity of the algebraic expression from which the function is implemented.

More information

VLSI System Design Part II : Logic Synthesis (1) Oct Feb.2007

VLSI System Design Part II : Logic Synthesis (1) Oct Feb.2007 VLSI System Design Part II : Logic Synthesis (1) Oct.2006 - Feb.2007 Lecturer : Tsuyoshi Isshiki Dept. Communications and Integrated Systems, Tokyo Institute of Technology isshiki@vlsi.ss.titech.ac.jp

More information

Combinational Circuits Digital Logic (Materials taken primarily from:

Combinational Circuits Digital Logic (Materials taken primarily from: Combinational Circuits Digital Logic (Materials taken primarily from: http://www.facstaff.bucknell.edu/mastascu/elessonshtml/eeindex.html http://www.cs.princeton.edu/~cos126 ) Digital Systems What is a

More information

S1 Teknik Telekomunikasi Fakultas Teknik Elektro FEH2H3 2016/2017

S1 Teknik Telekomunikasi Fakultas Teknik Elektro FEH2H3 2016/2017 S1 Teknik Telekomunikasi Fakultas Teknik Elektro FEH2H3 2016/2017 Karnaugh Map Karnaugh maps Last time we saw applications of Boolean logic to circuit design. The basic Boolean operations are AND, OR and

More information

Gate-Level Minimization

Gate-Level Minimization MEC520 디지털공학 Gate-Level Minimization Jee-Hwan Ryu School of Mechanical Engineering Gate-Level Minimization-The Map Method Truth table is unique Many different algebraic expression Boolean expressions may

More information

ENGIN 112 Intro to Electrical and Computer Engineering

ENGIN 112 Intro to Electrical and Computer Engineering ENGIN 2 Intro to Electrical and Computer Engineering Lecture 5 Boolean Algebra Overview Logic functions with s and s Building digital circuitry Truth tables Logic symbols and waveforms Boolean algebra

More information

Austin Herring Recitation 002 ECE 200 Project December 4, 2013

Austin Herring Recitation 002 ECE 200 Project December 4, 2013 1. Fastest Circuit a. How Design Was Obtained The first step of creating the design was to derive the expressions for S and C out from the given truth tables. This was done using Karnaugh maps. The Karnaugh

More information

Computer Engineering Chapter 3 Boolean Algebra

Computer Engineering Chapter 3 Boolean Algebra Computer Engineering Chapter 3 Boolean Algebra Hiroaki Kobayashi 5/30/2011 Ver. 06102011 5/30/2011 Computer Engineering 1 Agenda in Chapter 3 What is Boolean Algebra Basic Boolean/Logical Operations (Operators)

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian ذو الحجة 1438 ه Winter

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Overview Part Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra Standard

More information

Chapter 3 Simplification of Boolean functions

Chapter 3 Simplification of Boolean functions 3.1 Introduction Chapter 3 Simplification of Boolean functions In this chapter, we are going to discuss several methods for simplifying the Boolean function. What is the need for simplifying the Boolean

More information

DeMorgan's Theorem. George Self. 1 Introduction

DeMorgan's Theorem. George Self. 1 Introduction OpenStax-CNX module: m46633 1 DeMorgan's Theorem George Self This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Boolean Algebra is used to mathematically

More information

Permutation Matrices. Permutation Matrices. Permutation Matrices. Permutation Matrices. Isomorphisms of Graphs. 19 Nov 2015

Permutation Matrices. Permutation Matrices. Permutation Matrices. Permutation Matrices. Isomorphisms of Graphs. 19 Nov 2015 9 Nov 25 A permutation matrix is an n by n matrix with a single in each row and column, elsewhere. If P is a permutation (bijection) on {,2,..,n} let A P be the permutation matrix with A ip(i) =, A ij

More information

Introduction to Boolean Algebra

Introduction to Boolean Algebra Introduction to Boolean Algebra Boolean algebra which deals with two-valued (true / false or and ) variables and functions find its use in modern digital computers since they too use two-level systems

More information

2. BOOLEAN ALGEBRA 2.1 INTRODUCTION

2. BOOLEAN ALGEBRA 2.1 INTRODUCTION 2. BOOLEAN ALGEBRA 2.1 INTRODUCTION In the previous chapter, we introduced binary numbers and binary arithmetic. As you saw in binary arithmetic and in the handling of floating-point numbers, there is

More information

Introduction to Boolean Algebra

Introduction to Boolean Algebra Introduction to Boolean Algebra Boolean algebra which deals with two-valued (true / false or and ) variables and functions find its use in modern digital computers since they too use two-level systems

More information