IVR: Open- and Closed-Loop Control. M. Herrmann

Size: px
Start display at page:

Download "IVR: Open- and Closed-Loop Control. M. Herrmann"

Transcription

1 IVR: Open- and Closed-Loop Control M. Herrmann

2 Overview Open-loop control Feed-forward control Towards feedback control

3 Controlling the motor over time Process model V B = k 1 s + M k 2 R ds dt Stationary behaviour (steady state) s (t ) = V B k 1 Inverse model: V B = k 1 s goal Solution provides forward model: s (t) = s 0 e MR (t t k 1 k 0 ) V ( ) B e MR (t t k 1 k 0 ) 2 k 1

4 The control problem Forward: Given the control signals, can we predict the motion of the robot? Inverse: Given the desired motion of the robot: Can we determine the right control signals? Control theory aims at unique or easy exact solutions Difficult in the presence of non-linearities or noise

5 Open loop control Examples: To execute a memorised trajectory, produce appropriate sequence of motor torques To obtain a goal, make a plan and execute it means-ends reasoning could be seen as inverting a forward model of cause-effect Ballistic movements such as saccades

6 Open loop control Potentially cheap and simple to implement e.g. if solution is already known. Fast, e.g. useful if feedback would come too late. Benefits from calibration e.g. tune parameters of approximate model. If model unknown, may be able to use statistical learning methods to find a good fit e.g. using neural networks

7 Open loop control Neglects possibility of disturbances, which might affect the outcome. Disturbances For example: Change in temperature may change the friction in all the robot joints. Unexpected obstacle may interrupt trajectory

8 Feed-forward control One solution is to measure the (potential) disturbance and use this to adjust the control signals. For example Thermometer signal alters friction parameter. Obstacle detection produces alternative trajectory.

9 Feed-forward control Can sometimes be effective and efficient. Requires anticipation, not just of the robot process characteristics, but of possible changes in the world. Does not provide or use knowledge of actual output (for this need to use feedback control).

10 Control paradigms Open loop control Feed-forward control Disturbances? Feedback control

11 Combining control methods In practise most robot systems require a combination of control methods Robot arm using servos on each joint to obtain angles required by geometric inverse model Forward model predicts feedback, so can use in fast control loop to avoid problems of delay Feed-forward: Measurements of disturbances can be used to adjust feedback control parameters Training of an open-loop system is essentially a feedback process

12 Feedback control Example: Watt governor

13 Compare: Room heating Open loop: For desired temperature, switch heater on, and after pre-set time, switch off. Feed forward: Use thermometer outside room to compensate timer for external temperature. Feedback: Use thermometer inside room to switch off when desired temperature reached. NO PREDICTION REQUIRED!

14 Control laws in feed-back control On-off: Switch system if desired = actual Servo: control signal proportional to difference between desired and actual, e.g. spring:

15 Complex control law May involve multiple inputs and outputs E.g. homeostatic control of human body temperature Multiple temperature sensors linked to hypothalamus in brain Depending on difference from desired temperature, regulates sweating, vasodilation, piloerection, shivering, metabolic rate, behaviour... Result is reliable core temperature control

16 Negative vs. Positive Feedback Examples so far have been negative feedback: control law involves subtracting the measured output, acting to decrease difference. Positive feedback results in amplification: e.g. microphone picking up its own output e.g. runaway selection in evolution Generally taken to be undesirable in robot control, but sometimes can be effective e.g. in exploratory control, self-excitation model of stick insect walking (H. Cruse et al., 1995) to counteract negative feedback from the environment

17 Stick insect walking 6-legged robot has 18 degrees of mobility. Difficult to derive co-ordinated control laws But have linked system: movement of one joint causes appropriate change to all other joints. Can use signal in a feed-forward loop to control 12 joints (remaining 6 use feedback to resist gravity).

18 Advantages of feedback control Major advantage is that (at least in theory) feedback control does not require a model of the process. E.g. thermostats work without any knowledge of the dynamics of room heating (except for time scales and gains) Thus controller can be very simple and direct E.g. hardware governor does not even need to do explicit measurement, representation and comparison Can (potentially) produce robust output in the face of unknown and unpredictable disturbances E.g. homeostatic body temperature control keeps working in unnatural environments

19 Issues to be solved Requires sensors capable of measuring output Not required by open-loop or feed-forward Low gain is slow, high gain is unstable Delays in feedback loop will produce oscillations (or worse) In practise, need to understand process to obtain good control: E.g. James Clerk Maxwell s analysis of dynamics of the Watt governor

Control 2. Keypoints: Given desired behaviour, determine control signals Inverse models:

Control 2. Keypoints: Given desired behaviour, determine control signals Inverse models: Control 2 Keypoints: Given desired behaviour, determine control signals Inverse models: Inverting the forward model for simple linear dynamic system Problems for more complex systems Open loop control:

More information

Simulation. x i. x i+1. degrees of freedom equations of motion. Newtonian laws gravity. ground contact forces

Simulation. x i. x i+1. degrees of freedom equations of motion. Newtonian laws gravity. ground contact forces Dynamic Controllers Simulation x i Newtonian laws gravity ground contact forces x i+1. x degrees of freedom equations of motion Simulation + Control x i Newtonian laws gravity ground contact forces internal

More information

Cecilia Laschi The BioRobotics Institute Scuola Superiore Sant Anna, Pisa

Cecilia Laschi The BioRobotics Institute Scuola Superiore Sant Anna, Pisa University of Pisa Master of Science in Computer Science Course of Robotics (ROB) A.Y. 2016/17 cecilia.laschi@santannapisa.it http://didawiki.cli.di.unipi.it/doku.php/magistraleinformatica/rob/start Robot

More information

Design and Development of Cartesian Robot for Machining with Error Compensation and Chatter Reduction

Design and Development of Cartesian Robot for Machining with Error Compensation and Chatter Reduction International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 4 (2013), pp. 449-454 International Research Publication House http://www.irphouse.com Design and Development

More information

Written exams of Robotics 2

Written exams of Robotics 2 Written exams of Robotics 2 http://www.diag.uniroma1.it/~deluca/rob2_en.html All materials are in English, unless indicated (oldies are in Year Date (mm.dd) Number of exercises Topics 2018 07.11 4 Inertia

More information

Dynamic Controllers in Character Animation. Jack Wang

Dynamic Controllers in Character Animation. Jack Wang Dynamic Controllers in Character Animation Jack Wang Overview Definition Related Work Composable Controllers Framework (2001) Results Future Work 2 Physics-based Animation Dynamic Controllers vs. Simulation

More information

Torque-Position Transformer for Task Control of Position Controlled Robots

Torque-Position Transformer for Task Control of Position Controlled Robots 28 IEEE International Conference on Robotics and Automation Pasadena, CA, USA, May 19-23, 28 Torque-Position Transformer for Task Control of Position Controlled Robots Oussama Khatib, 1 Peter Thaulad,

More information

Robotic Systems ECE 401RB Fall 2006

Robotic Systems ECE 401RB Fall 2006 The following notes are from: Robotic Systems ECE 401RB Fall 2006 Lecture 15: Processors Part 3 Chapter 14, G. McComb, and M. Predko, Robot Builder's Bonanza, Third Edition, Mc- Graw Hill, 2006. I. Peripherals

More information

Robotics 2 Information

Robotics 2 Information Robotics 2 Information Prof. Alessandro De Luca Robotics 2! 2017/18! Second semester! Monday, February 26 Wednesday, May 30, 2018! Courses of study (code)! Master in Artificial Intelligence and Robotics

More information

Ch 5 Industrial Control Systems

Ch 5 Industrial Control Systems Ch 5 Industrial Control Systems Sections: 1. Process Industries vs. Discrete Manufacturing Industries 2. Continuous vs. Discrete Control 3. Computer Process Control Industrial Control - Defined The automatic

More information

Interaction with the Physical World

Interaction with the Physical World Interaction with the Physical World Methods and techniques for sensing and changing the environment Light Sensing and Changing the Environment Motion and acceleration Sound Proximity and touch RFID Sensors

More information

Control Systems. Introduction to Control System.

Control Systems. Introduction to Control System. Introduction to Control System chibum@seoultech.ac.kr Lecture Outline History of automatic control Examples of control systems Types of controller Control System Control system: An interconnection of components

More information

Manipulator trajectory planning

Manipulator trajectory planning Manipulator trajectory planning Václav Hlaváč Czech Technical University in Prague Faculty of Electrical Engineering Department of Cybernetics Czech Republic http://cmp.felk.cvut.cz/~hlavac Courtesy to

More information

Prof. Fanny Ficuciello Robotics for Bioengineering Visual Servoing

Prof. Fanny Ficuciello Robotics for Bioengineering Visual Servoing Visual servoing vision allows a robotic system to obtain geometrical and qualitative information on the surrounding environment high level control motion planning (look-and-move visual grasping) low level

More information

AUTOMATION. Dr. Ibrahim Al-Naimi

AUTOMATION. Dr. Ibrahim Al-Naimi AUTOMATION Dr. Ibrahim Al-Naimi Chapter four Industrial Control Systems Process and Discrete Industries Level of automation. Variables and parameters. Continuous and Discrete Variables/Parameters Continuous

More information

Simulation-Based Design of Robotic Systems

Simulation-Based Design of Robotic Systems Simulation-Based Design of Robotic Systems Shadi Mohammad Munshi* & Erik Van Voorthuysen School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052 shadimunshi@hotmail.com,

More information

Self-Correcting Projectile Launcher. Josh Schuster Yena Park Diana Mirabello Ryan Kindle

Self-Correcting Projectile Launcher. Josh Schuster Yena Park Diana Mirabello Ryan Kindle Self-Correcting Projectile Launcher Josh Schuster Yena Park Diana Mirabello Ryan Kindle Motivation & Applications Successfully reject disturbances without use of complex sensors Demonstrate viability of

More information

Model learning for robot control: a survey

Model learning for robot control: a survey Model learning for robot control: a survey Duy Nguyen-Tuong, Jan Peters 2011 Presented by Evan Beachly 1 Motivation Robots that can learn how their motors move their body Complexity Unanticipated Environments

More information

Simulink Based Robot Arm Control Workstation. Figure 1-1 High Level Block Diagram

Simulink Based Robot Arm Control Workstation. Figure 1-1 High Level Block Diagram Introduction: This project consists of designing a software-based control workstation in the Simulink environment using the SimMechanics Toolbox. The Quanser robot arm system will be modeled using this

More information

Mechanical Design Challenges for Collaborative Robots

Mechanical Design Challenges for Collaborative Robots Motor Technologies Mechanical Design Challenges for Collaborative Robots TN-3301 REV 170526 THE CHALLENGE Robotics and additive manufacturing markets have entered into a new phase of growth. This growth

More information

1 Introduction. Control 1:

1 Introduction. Control 1: 1 1 Introduction Hierarchical Control for Mobile Robots Motive Autonomy Control Level We build controllers because: Real hardware ultimately responds to forces, energy, power, etc. whereas we are concerned

More information

Carnegie Mellon University

Carnegie Mellon University Actuators & Motion Instructors: Prof. Manuela Veloso & Dr. Paul E. Rybski TAs: Sonia Chernova & Nidhi Kalra 15-491, Fall 2004 http://www.andrew.cmu.edu/course/15-491 Computer Science Department Carnegie

More information

Overview of Course. Practical Robot Implementation Details. August 28, 2008

Overview of Course. Practical Robot Implementation Details. August 28, 2008 Overview of Course + Practical Robot Implementation Details August 28, 2008 Announcements/Questions Course mailing list set up: cs594mr-students@eecs.utk.edu If you haven t received a welcome message from

More information

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 1: Introduction

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 1: Introduction MCE/EEC 647/747: Robot Dynamics and Control Lecture 1: Introduction Reading: SHV Chapter 1 Robotics and Automation Handbook, Chapter 1 Assigned readings from several articles. Cleveland State University

More information

Cerebellar Augmented Joint Control for a Humanoid Robot

Cerebellar Augmented Joint Control for a Humanoid Robot Cerebellar Augmented Joint Control for a Humanoid Robot Damien Kee and Gordon Wyeth School of Information Technology and Electrical Engineering University of Queensland, Australia Abstract. The joints

More information

Jinkun Liu Xinhua Wang. Advanced Sliding Mode Control for Mechanical Systems. Design, Analysis and MATLAB Simulation

Jinkun Liu Xinhua Wang. Advanced Sliding Mode Control for Mechanical Systems. Design, Analysis and MATLAB Simulation Jinkun Liu Xinhua Wang Advanced Sliding Mode Control for Mechanical Systems Design, Analysis and MATLAB Simulation Jinkun Liu Xinhua Wang Advanced Sliding Mode Control for Mechanical Systems Design, Analysis

More information

Robotics 2 Iterative Learning for Gravity Compensation

Robotics 2 Iterative Learning for Gravity Compensation Robotics 2 Iterative Learning for Gravity Compensation Prof. Alessandro De Luca Control goal! regulation of arbitrary equilibium configurations in the presence of gravity! without explicit knowledge of

More information

Robust Control of Bipedal Humanoid (TPinokio)

Robust Control of Bipedal Humanoid (TPinokio) Available online at www.sciencedirect.com Procedia Engineering 41 (2012 ) 643 649 International Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012) Robust Control of Bipedal Humanoid (TPinokio)

More information

Automated Parameterization of the Joint Space Dynamics of a Robotic Arm. Josh Petersen

Automated Parameterization of the Joint Space Dynamics of a Robotic Arm. Josh Petersen Automated Parameterization of the Joint Space Dynamics of a Robotic Arm Josh Petersen Introduction The goal of my project was to use machine learning to fully automate the parameterization of the joint

More information

Thomas Bräunl EMBEDDED ROBOTICS. Mobile Robot Design and Applications with Embedded Systems. Second Edition. With 233 Figures and 24 Tables.

Thomas Bräunl EMBEDDED ROBOTICS. Mobile Robot Design and Applications with Embedded Systems. Second Edition. With 233 Figures and 24 Tables. Thomas Bräunl EMBEDDED ROBOTICS Mobile Robot Design and Applications with Embedded Systems Second Edition With 233 Figures and 24 Tables Springer CONTENTS PART I: EMBEDDED SYSTEMS 1 Robots and Controllers

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Control Part 4 Other control strategies These slides are devoted to two advanced control approaches, namely Operational space control Interaction

More information

Robotics. Chapter 25-b. Chapter 25-b 1

Robotics. Chapter 25-b. Chapter 25-b 1 Robotics Chapter 25-b Chapter 25-b 1 Particle Filtering Particle filtering uses a population of particles (each particle is a state estimate) to localize a robot s position. This is called Monte Carlo

More information

Software Nodes Card. If the value satisfies the condition, the node will output yes ; otherwise, it will output no.

Software Nodes Card. If the value satisfies the condition, the node will output yes ; otherwise, it will output no. Nodes Name: Compare Explanation: Compare the inputting number with a pre-configured number. How it is used: when you want something to happen if some value is above, below or equal a certain number. For

More information

Lecture 13 Visual Inertial Fusion

Lecture 13 Visual Inertial Fusion Lecture 13 Visual Inertial Fusion Davide Scaramuzza Course Evaluation Please fill the evaluation form you received by email! Provide feedback on Exercises: good and bad Course: good and bad How to improve

More information

Big Picture: Overview of Issues and Challenges in Autonomous Robotics + Impact on Practical Implementation Details

Big Picture: Overview of Issues and Challenges in Autonomous Robotics + Impact on Practical Implementation Details Big Picture: Overview of Issues and Challenges in Autonomous Robotics + Impact on Practical Implementation Details August 27, 2002 Class Meeting 2 Announcements/Questions Course mailing list set up: cs594-sir@cs.utk.edu

More information

Inverse Kinematics Software Design and Trajectory Control Programming of SCARA Manipulator robot

Inverse Kinematics Software Design and Trajectory Control Programming of SCARA Manipulator robot International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 11, Number 11 (2018), pp. 1759-1779 International Research Publication House http://www.irphouse.com Inverse Kinematics

More information

10/25/2018. Robotics and automation. Dr. Ibrahim Al-Naimi. Chapter two. Introduction To Robot Manipulators

10/25/2018. Robotics and automation. Dr. Ibrahim Al-Naimi. Chapter two. Introduction To Robot Manipulators Robotics and automation Dr. Ibrahim Al-Naimi Chapter two Introduction To Robot Manipulators 1 Robotic Industrial Manipulators A robot manipulator is an electronically controlled mechanism, consisting of

More information

Programmable Springs: Developing Actuators with Programmable Compliance for Autonomous Robots

Programmable Springs: Developing Actuators with Programmable Compliance for Autonomous Robots Programmable Springs: Developing Actuators with Programmable Compliance for Autonomous Robots Bill Bigge, Inman R. Harvey Centre for Computational Neuroscience and Robotics, University of Sussex, Brighton

More information

Exam in DD2426 Robotics and Autonomous Systems

Exam in DD2426 Robotics and Autonomous Systems Exam in DD2426 Robotics and Autonomous Systems Lecturer: Patric Jensfelt KTH, March 16, 2010, 9-12 No aids are allowed on the exam, i.e. no notes, no books, no calculators, etc. You need a minimum of 20

More information

A Cost Oriented Humanoid Robot Motion Control System

A Cost Oriented Humanoid Robot Motion Control System Preprints of the 19th World Congress The International Federation of Automatic Control A Cost Oriented Humanoid Robot Motion Control System J. Baltes*, P. Kopacek**,M. Schörghuber** *Department of Computer

More information

A NOUVELLE MOTION STATE-FEEDBACK CONTROL SCHEME FOR RIGID ROBOTIC MANIPULATORS

A NOUVELLE MOTION STATE-FEEDBACK CONTROL SCHEME FOR RIGID ROBOTIC MANIPULATORS A NOUVELLE MOTION STATE-FEEDBACK CONTROL SCHEME FOR RIGID ROBOTIC MANIPULATORS Ahmad Manasra, 135037@ppu.edu.ps Department of Mechanical Engineering, Palestine Polytechnic University, Hebron, Palestine

More information

EV3 Programming Workshop for FLL Coaches

EV3 Programming Workshop for FLL Coaches EV3 Programming Workshop for FLL Coaches Tony Ayad 2017 Outline This workshop is intended for FLL coaches who are interested in learning about Mindstorms EV3 programming language. Programming EV3 Controller

More information

Final Exam Practice Fall Semester, 2012

Final Exam Practice Fall Semester, 2012 COS 495 - Autonomous Robot Navigation Final Exam Practice Fall Semester, 2012 Duration: Total Marks: 70 Closed Book 2 hours Start Time: End Time: By signing this exam, I agree to the honor code Name: Signature:

More information

Control of a Robot Manipulator for Aerospace Applications

Control of a Robot Manipulator for Aerospace Applications Control of a Robot Manipulator for Aerospace Applications Antonella Ferrara a, Riccardo Scattolini b a Dipartimento di Informatica e Sistemistica - Università di Pavia, Italy b Dipartimento di Elettronica

More information

ANALYTICAL MODEL OF THE CUTTING PROCESS WITH SCISSORS-ROBOT FOR HAPTIC SIMULATION

ANALYTICAL MODEL OF THE CUTTING PROCESS WITH SCISSORS-ROBOT FOR HAPTIC SIMULATION Bulletin of the ransilvania University of Braşov Series I: Engineering Sciences Vol. 4 (53) No. 1-2011 ANALYICAL MODEL OF HE CUING PROCESS WIH SCISSORS-ROBO FOR HAPIC SIMULAION A. FRAU 1 M. FRAU 2 Abstract:

More information

3.6 MONITORING AND CONTROL SYSTEMS

3.6 MONITORING AND CONTROL SYSTEMS 3.6 MONITORING AND CONTROL SYSTEMS 3.6.1 OVERVIEW OF MONITORING AND CONTROL SYSTEMS REAL-TIME APPLICATIONS A real-time system is one that can react quickly enough to data input to affect the real world.

More information

Neuro-Fuzzy Inverse Forward Models

Neuro-Fuzzy Inverse Forward Models CS9 Autumn Neuro-Fuzzy Inverse Forward Models Brian Highfill Stanford University Department of Computer Science Abstract- Internal cognitive models are useful methods for the implementation of motor control

More information

Automatic Control Industrial robotics

Automatic Control Industrial robotics Automatic Control Industrial robotics Prof. Luca Bascetta (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Prof. Luca Bascetta Industrial robots

More information

Controlling Humanoid Robots with Human Motion Data: Experimental Validation

Controlling Humanoid Robots with Human Motion Data: Experimental Validation 21 IEEE-RAS International Conference on Humanoid Robots Nashville, TN, USA, December 6-8, 21 Controlling Humanoid Robots with Human Motion Data: Experimental Validation Katsu Yamane, Stuart O. Anderson,

More information

BFF Driver Test App Quick Start Guide v1.2

BFF Driver Test App Quick Start Guide v1.2 BFF Driver Test App Quick Start Guide v1.2 Table of Contents 1. Introduction...2 2. Initial Settings...2 2. To Check a Joystick...3 3. To Calibrate the Driver Card at Power-up...3 6. To Output a Force

More information

Robotics kinematics and Dynamics

Robotics kinematics and Dynamics Robotics kinematics and Dynamics C. Sivakumar Assistant Professor Department of Mechanical Engineering BSA Crescent Institute of Science and Technology 1 Robot kinematics KINEMATICS the analytical study

More information

Serial Manipulator Statics. Robotics. Serial Manipulator Statics. Vladimír Smutný

Serial Manipulator Statics. Robotics. Serial Manipulator Statics. Vladimír Smutný Serial Manipulator Statics Robotics Serial Manipulator Statics Vladimír Smutný Center for Machine Perception Czech Institute for Informatics, Robotics, and Cybernetics (CIIRC) Czech Technical University

More information

Robot learning for ball bouncing

Robot learning for ball bouncing Robot learning for ball bouncing Denny Dittmar Denny.Dittmar@stud.tu-darmstadt.de Bernhard Koch Bernhard.Koch@stud.tu-darmstadt.de Abstract For robots automatically learning to solve a given task is still

More information

Height Control for a One-Legged Hopping Robot using a One-Dimensional Model

Height Control for a One-Legged Hopping Robot using a One-Dimensional Model Tech Rep IRIS-01-405 Institute for Robotics and Intelligent Systems, US, 2001 Height ontrol for a One-Legged Hopping Robot using a One-Dimensional Model Kale Harbick and Gaurav Sukhatme! Robotic Embedded

More information

PID tuning & UNICOS PID auto-tuning

PID tuning & UNICOS PID auto-tuning PID tuning & UNICOS PID auto-tuning Benjamin Bradu Ruben Marti Martinez CERN, BE-ICS On behalf of UNICOS-CPC Team 19 th April 2016 Content Regulation loops and feedback control Manual PID tuning in open

More information

Hand. Desk 4. Panda research 5. Franka Control Interface (FCI) Robot Model Library. ROS support. 1 technical data is subject to change

Hand. Desk 4. Panda research 5. Franka Control Interface (FCI) Robot Model Library. ROS support. 1 technical data is subject to change TECHNICAL DATA 1, 2 Arm degrees of freedom 7 DOF payload 3 kg sensitivity joint torque sensors in all 7 axes maximum reach 855 mm joint position limits A1: -170/170, A2: -105/105, [ ] A3: -170/170, A4:

More information

DESIGN AND MODELLING OF A 4DOF PAINTING ROBOT

DESIGN AND MODELLING OF A 4DOF PAINTING ROBOT DESIGN AND MODELLING OF A 4DOF PAINTING ROBOT MSc. Nilton Anchaygua A. Victor David Lavy B. Jose Luis Jara M. Abstract The following project has as goal the study of the kinematics, dynamics and control

More information

SPEED SYNCHRONIZATION OF MULTIPLE BLDC MOTORS BAIRAGDAR SAJID S.

SPEED SYNCHRONIZATION OF MULTIPLE BLDC MOTORS BAIRAGDAR SAJID S. SPEED SYNCHRONIZATION OF MULTIPLE BLDC MOTORS BAIRAGDAR SAJID S. (sajidbairagdar.sb@gmail.com) DESAI ASHISH A. (desaiashish219@gmail.com) PATIL SUSHANT D. (sushantpatil0208@gmail.com) CHAVAN DIGVIJAY M.

More information

DARPA Investments in GEO Robotics

DARPA Investments in GEO Robotics DARPA Investments in GEO Robotics Carl Glen Henshaw, Ph.D. Signe Redfield, Ph.D. Naval Center for Space Technology U.S. Naval Research Laboratory Washington, DC 20375 May 22, 2015 Introduction Program

More information

Tebis application software

Tebis application software 5 Tebis application software SXB322AU V 1.x 2 inputs / 2-output module LED SXB344AU V 1.x 4 inputs / 4-output module LED Product reference Product designation TXB322AU TXB344AU Embedded module: 2 inputs

More information

Computer Animation and Visualisation. Lecture 3. Motion capture and physically-based animation of characters

Computer Animation and Visualisation. Lecture 3. Motion capture and physically-based animation of characters Computer Animation and Visualisation Lecture 3. Motion capture and physically-based animation of characters Character Animation There are three methods Create them manually Use real human / animal motions

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING Name Code Class Branch Page 1 INSTITUTE OF AERONAUTICAL ENGINEERING : ROBOTICS (Autonomous) Dundigal, Hyderabad - 500 0 MECHANICAL ENGINEERING TUTORIAL QUESTION BANK : A7055 : IV B. Tech I Semester : MECHANICAL

More information

Elastic Bands: Connecting Path Planning and Control

Elastic Bands: Connecting Path Planning and Control Elastic Bands: Connecting Path Planning and Control Sean Quinlan and Oussama Khatib Robotics Laboratory Computer Science Department Stanford University Abstract Elastic bands are proposed as the basis

More information

D115 The Fast Optimal Servo Amplifier For Brush, Brushless, Voice Coil Servo Motors

D115 The Fast Optimal Servo Amplifier For Brush, Brushless, Voice Coil Servo Motors D115 The Fast Optimal Servo Amplifier For Brush, Brushless, Voice Coil Servo Motors Ron Boe 5/15/2014 This user guide details the servo drives capabilities and physical interfaces. Users will be able to

More information

ONLINE-LEARNING IN HUMANOID ROBOTS

ONLINE-LEARNING IN HUMANOID ROBOTS ONLINE-LEARNING IN HUMANOID ROBOTS Diploma Thesis submitted to the Department of Real Time Systems and Robotics Institute of Computer Science Technical University Berlin by Jörg Conradt Matrikel Number

More information

Development of a Ground Based Cooperating Spacecraft Testbed for Research and Education

Development of a Ground Based Cooperating Spacecraft Testbed for Research and Education DIPARTIMENTO DI INGEGNERIA INDUSTRIALE Development of a Ground Based Cooperating Spacecraft Testbed for Research and Education Mattia Mazzucato, Sergio Tronco, Andrea Valmorbida, Fabio Scibona and Enrico

More information

BEST2015 Autonomous Mobile Robots Lecture 2: Mobile Robot Kinematics and Control

BEST2015 Autonomous Mobile Robots Lecture 2: Mobile Robot Kinematics and Control BEST2015 Autonomous Mobile Robots Lecture 2: Mobile Robot Kinematics and Control Renaud Ronsse renaud.ronsse@uclouvain.be École polytechnique de Louvain, UCLouvain July 2015 1 Introduction Mobile robot

More information

WIRELESS VEHICLE WITH ANIMATRONIC ROBOTIC ARM

WIRELESS VEHICLE WITH ANIMATRONIC ROBOTIC ARM WIRELESS VEHICLE WITH ANIMATRONIC ROBOTIC ARM PROJECT REFERENCE NO. : 37S0918 COLLEGE : P A COLLEGE OF ENGINEERING, MANGALORE BRANCH : ELECTRONICS & COMMUNICATION GUIDE : MOHAMMAD RAFEEQ STUDENTS : CHARANENDRA

More information

Prof. Fanny Ficuciello Robotics for Bioengineering Trajectory planning

Prof. Fanny Ficuciello Robotics for Bioengineering Trajectory planning Trajectory planning to generate the reference inputs to the motion control system which ensures that the manipulator executes the planned trajectories path and trajectory joint space trajectories operational

More information

Unit 2: Locomotion Kinematics of Wheeled Robots: Part 3

Unit 2: Locomotion Kinematics of Wheeled Robots: Part 3 Unit 2: Locomotion Kinematics of Wheeled Robots: Part 3 Computer Science 4766/6778 Department of Computer Science Memorial University of Newfoundland January 28, 2014 COMP 4766/6778 (MUN) Kinematics of

More information

Estimation of Unknown Disturbances in Gimbal Systems

Estimation of Unknown Disturbances in Gimbal Systems Estimation of Unknown Disturbances in Gimbal Systems Burak KÜRKÇÜ 1, a, Coşku KASNAKOĞLU 2, b 1 ASELSAN Inc., Ankara, Turkey 2 TOBB University of Economics and Technology, Ankara, Turkey a bkurkcu@aselsan.com.tr,

More information

Automatic Pouring Robot. Akilah Harris-Williams Adam Olmstead Philip Pratt-Szeliga Will Roantree

Automatic Pouring Robot. Akilah Harris-Williams Adam Olmstead Philip Pratt-Szeliga Will Roantree Automatic Pouring Robot Akilah Harris-Williams Adam Olmstead Philip Pratt-Szeliga Will Roantree Overview Objective and Motivation Mechanical System Modeling, Simulation and Verification Tilt Pan Pouring

More information

PRACTICAL SESSION 4: FORWARD DYNAMICS. Arturo Gil Aparicio.

PRACTICAL SESSION 4: FORWARD DYNAMICS. Arturo Gil Aparicio. PRACTICAL SESSION 4: FORWARD DYNAMICS Arturo Gil Aparicio arturo.gil@umh.es OBJECTIVES After this practical session, the student should be able to: Simulate the movement of a simple mechanism using the

More information

A Neural Network-Based Approach to Robot Motion Control

A Neural Network-Based Approach to Robot Motion Control In Visser, Ribeiro, Ohashi, and Dellaert, editors, RoboCup-2007, Springer Verlag, 2008. A Neural Network-Based Approach to Robot Motion Control Uli Grasemann, Daniel Stronger, and Peter Stone Department

More information

Jukebox Hero. Group #41. James Brewster Ross Bulkley Zach Glueckert Kevin Wills

Jukebox Hero. Group #41. James Brewster Ross Bulkley Zach Glueckert Kevin Wills Jukebox Hero Group #41 James Brewster Ross Bulkley Zach Glueckert Kevin Wills MECH 307 Mechatronics Colorado State University 12/7/2007 Table of Contents Figures, Schematics, and Illustrations 3 Design

More information

1. Project title: Home Monitoring System. Student: Alexandru Irasoc. Mail address: Student: Constantin Grijincu

1. Project title: Home Monitoring System. Student: Alexandru Irasoc. Mail address: Student: Constantin Grijincu 1. Project title: Home Monitoring System Student: Alexandru Irasoc Mail address: alexirasoc@gmail.com Student: Constantin Grijincu Mail address: grijincu.constantin@gmail.com 2. Abstract Sometimes it can

More information

Super Assembling Arms

Super Assembling Arms Super Assembling Arms Yun Jiang, Nan Xiao, and Hanpin Yan {yj229, nx27, hy95}@cornell.edu Abstract Although there are more and more things personal robots can do for us at home, they are unable to accomplish

More information

Table of Contents. Chapter 1. Modeling and Identification of Serial Robots... 1 Wisama KHALIL and Etienne DOMBRE

Table of Contents. Chapter 1. Modeling and Identification of Serial Robots... 1 Wisama KHALIL and Etienne DOMBRE Chapter 1. Modeling and Identification of Serial Robots.... 1 Wisama KHALIL and Etienne DOMBRE 1.1. Introduction... 1 1.2. Geometric modeling... 2 1.2.1. Geometric description... 2 1.2.2. Direct geometric

More information

Pointing Accuracy Analysis for a Commander s Independent Weapon Station Demonstrator

Pointing Accuracy Analysis for a Commander s Independent Weapon Station Demonstrator BAE Systems Platforms & Services Pointing Accuracy Analysis for a Commander s Independent Weapon Station Demonstrator April 22, 2015 Dirk Jungquist Dan Youtt 22 April 2015 1 Introduction This presentation

More information

Visual Servoing for Floppy Robots Using LWPR

Visual Servoing for Floppy Robots Using LWPR Visual Servoing for Floppy Robots Using LWPR Fredrik Larsson Erik Jonsson Michael Felsberg Abstract We have combined inverse kinematics learned by LWPR with visual servoing to correct for inaccuracies

More information

animation projects in digital art animation 2009 fabio pellacini 1

animation projects in digital art animation 2009 fabio pellacini 1 animation projects in digital art animation 2009 fabio pellacini 1 animation shape specification as a function of time projects in digital art animation 2009 fabio pellacini 2 how animation works? flip

More information

Force control of redundant industrial robots with an approach for singularity avoidance using extended task space formulation (ETSF)

Force control of redundant industrial robots with an approach for singularity avoidance using extended task space formulation (ETSF) Force control of redundant industrial robots with an approach for singularity avoidance using extended task space formulation (ETSF) MSc Audun Rønning Sanderud*, MSc Fredrik Reme**, Prof. Trygve Thomessen***

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 Motivation The presence of uncertainties and disturbances has always been a vital issue in the control of dynamic systems. The classical linear controllers, PI and PID controllers

More information

index Symbols < (Compare block in Less Than mode), 98 (Compare block in Less Than or Equal To mode), degree coupled gears, 115,

index Symbols < (Compare block in Less Than mode), 98 (Compare block in Less Than or Equal To mode), degree coupled gears, 115, index Symbols + (addition, using the Math block in Add mode), 92 / (division, using the Math block in Divide mode), 92 93 * (multiplication, using the Math block in Multiply mode), 92 (subtraction, using

More information

A Reduced-Order Analytical Solution to Mobile Robot Trajectory Generation in the Presence of Moving Obstacles

A Reduced-Order Analytical Solution to Mobile Robot Trajectory Generation in the Presence of Moving Obstacles A Reduced-Order Analytical Solution to Mobile Robot Trajectory Generation in the Presence of Moving Obstacles Jing Wang, Zhihua Qu,, Yi Guo and Jian Yang Electrical and Computer Engineering University

More information

Simulation in Computer Graphics. Deformable Objects. Matthias Teschner. Computer Science Department University of Freiburg

Simulation in Computer Graphics. Deformable Objects. Matthias Teschner. Computer Science Department University of Freiburg Simulation in Computer Graphics Deformable Objects Matthias Teschner Computer Science Department University of Freiburg Outline introduction forces performance collision handling visualization University

More information

Robots are built to accomplish complex and difficult tasks that require highly non-linear motions.

Robots are built to accomplish complex and difficult tasks that require highly non-linear motions. Path and Trajectory specification Robots are built to accomplish complex and difficult tasks that require highly non-linear motions. Specifying the desired motion to achieve a specified goal is often a

More information

Advanced Robotic Manipulation

Advanced Robotic Manipulation Advanced Robotic Manipulation Handout CS327A (Spring 2017) Problem Set #4 Due Thurs, May 26 th Guidelines: This homework has both problem-solving and programming components. So please start early. In problems

More information

Line of Sight Stabilization Primer Table of Contents

Line of Sight Stabilization Primer Table of Contents Line of Sight Stabilization Primer Table of Contents Preface 1 Chapter 1.0 Introduction 3 Chapter 2.0 LOS Control Architecture and Design 11 2.1 Direct LOS Stabilization 15 2.2 Indirect LOS Stabilization

More information

Documents. OpenSim Tutorial. March 10, 2009 GCMAS Annual Meeting, Denver, CO. Jeff Reinbolt, Ajay Seth, Scott Delp. Website: SimTK.

Documents. OpenSim Tutorial. March 10, 2009 GCMAS Annual Meeting, Denver, CO. Jeff Reinbolt, Ajay Seth, Scott Delp. Website: SimTK. Documents OpenSim Tutorial March 10, 2009 GCMAS Annual Meeting, Denver, CO Jeff Reinbolt, Ajay Seth, Scott Delp Website: SimTK.org/home/opensim OpenSim Tutorial Agenda 10:30am 10:40am Welcome and goals

More information

ENGR101 T Engineering Technology. Arthur Roberts. School of Engineering and Computer Science Victoria University of Wellington

ENGR101 T Engineering Technology. Arthur Roberts. School of Engineering and Computer Science Victoria University of Wellington ENGR101 T1 2017 Engineering Technology Arthur Roberts School of Engineering and Computer Science Victoria University of Wellington Arthur Roberts (ECS) ENGR101 1 / 32 Housekeeping Important ANNOUNCEMENT:

More information

Mobile Robots with Wheeled Inverted Pendulum Base in Human Environments

Mobile Robots with Wheeled Inverted Pendulum Base in Human Environments Mobile Robots with Wheeled Inverted Pendulum Base in Human Environments Undergraduate Thesis Proposal Presented to the Academic Faculty in Partial Fulfillment of Institute Requirements for the Undergraduate

More information

A Model-Based Control Approach for Locomotion Control of Legged Robots

A Model-Based Control Approach for Locomotion Control of Legged Robots Biorobotics Laboratory A Model-Based Control Approach for Locomotion Control of Legged Robots Semester project Master Program: Robotics and Autonomous Systems Micro-Technique Department Student: Salman

More information

5 Programming and testing

5 Programming and testing Running LoadIdentify To start the load identification service routine you must have an active program in manual mode and the tool and payload that you want to identify must be defined and active in the

More information

Experimental Verification of Stability Region of Balancing a Single-wheel Robot: an Inverted Stick Model Approach

Experimental Verification of Stability Region of Balancing a Single-wheel Robot: an Inverted Stick Model Approach IECON-Yokohama November 9-, Experimental Verification of Stability Region of Balancing a Single-wheel Robot: an Inverted Stick Model Approach S. D. Lee Department of Mechatronics Engineering Chungnam National

More information

CMPUT 412 Motion Control Wheeled robots. Csaba Szepesvári University of Alberta

CMPUT 412 Motion Control Wheeled robots. Csaba Szepesvári University of Alberta CMPUT 412 Motion Control Wheeled robots Csaba Szepesvári University of Alberta 1 Motion Control (wheeled robots) Requirements Kinematic/dynamic model of the robot Model of the interaction between the wheel

More information

Robot Vision Control of robot motion from video. M. Jagersand

Robot Vision Control of robot motion from video. M. Jagersand Robot Vision Control of robot motion from video M. Jagersand Vision-Based Control (Visual Servoing) Initial Image User Desired Image Vision-Based Control (Visual Servoing) : Current Image Features : Desired

More information

Online Gain Switching Algorithm for Joint Position Control of a Hydraulic Humanoid Robot

Online Gain Switching Algorithm for Joint Position Control of a Hydraulic Humanoid Robot Online Gain Switching Algorithm for Joint Position Control of a Hydraulic Humanoid Robot Jung-Yup Kim *, Christopher G. Atkeson *, Jessica K. Hodgins *, Darrin C. Bentivegna *,** and Sung Ju Cho * * Robotics

More information

IMPLEMENTATION OF BALL-AND-BEAM CONTROL SYSTEM AS AN INSTANCE OF SIMULINK TO 32-BIT MICROCONTROLLER INTERFACE

IMPLEMENTATION OF BALL-AND-BEAM CONTROL SYSTEM AS AN INSTANCE OF SIMULINK TO 32-BIT MICROCONTROLLER INTERFACE POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 76 Electrical Engineering 2013 Krzysztof NOWOPOLSKI* IMPLEMENTATION OF BALL-AND-BEAM CONTROL SYSTEM AS AN INSTANCE OF SIMULINK TO 32-BIT MICROCONTROLLER

More information

EMO valve drive. 1. Function 1. Table of Contents. 2. Installation

EMO valve drive. 1. Function 1. Table of Contents. 2. Installation Chapter 13: Devices for single room heating 13.2 Valve drives EMO valve drive Art. no. 639119 EMO valve drive EMO valve drivechapter 13:Devices for single room heatingart. no.639119as at 08/0213.2Valve

More information