CSEE 6861 CAD of Digital Systems Handout: Lecture #3

Size: px
Start display at page:

Download "CSEE 6861 CAD of Digital Systems Handout: Lecture #3"

Transcription

1 SEE 6861 D of Digital Systems Handout: Lecture #3 2/4/16 Prof. Steven M. Nowick nowick@cs.columbia.edu Department of omputer Science (and Elect. Eng.) olumbia University New York, NY, US ESPRESSO lgorithm: The EPND Step, continued 1

2 EPND Step: Expansion Direction (REVIEW) asic idea: - Once cube c in cover F is selected for expansion, expand it in good directions 3 Heuristic Expansion Steps (in sequence): to expand a cube c 1. Expand c to completely contain (i.e. swallow up ) as many other cubes of cover F as possible - delete these completely-contained cubes immediately! 2. Once #1 done -- continue to expand c to partially overlap as many other cubes of cover F as possible - the goal is to induce redundancies, which then get deleted in the IRRED step 3. Once #2 done -- continue to expand c into a maximal size prime implicant New Focus: Step #2 and #3 #3 EPND Step: Expansion Direction Example #1: illustrates Step #1 + Step #2 Suppose cube has been picked for expansion! D E #4 2

3 EPND Step: Expansion Direction Example #1 (cont.): illustrates Step #1 + Step #2! STEP #1: expand cube to fully contain as many other cubes as possible D E #5 EPND Step: Expansion Direction Example #1 (cont.): illustrates Step #1 + Step #2! STEP #1: expand cube to fully contain as many other cubes as possible - expand cube to fully contain cube D E #6 3

4 EPND Step: Expansion Direction Example #1 (cont.): illustrates Step #1 + Step #2! D STEP #1: expand cube to fully contain as many other cubes as possible - expand cube to fully contain cube - delete cube E #7 EPND Step: Expansion Direction Example #1 (cont.): illustrates Step #1 + Step #2! STEP #2: expand cube, by 1 variable at a time, to overlap as many other cubes as possible D E #8 4

5 EPND Step: Expansion Direction Example #1 (cont.): illustrates Step #1 + Step #2 STEP #2: expand cube, by 1 variable at a time, to overlap as many other cubes as possible! Option 1: expand cube in z dimension : overlaps 1 additional cube () D E #9 EPND Step: Expansion Direction Example #1 (cont.): illustrates Step #1 + Step #2 STEP #2: expand cube, by 1 variable at a time, to overlap as many other cubes as possible! Option 2: expand cube in y dimension : overlaps 2 additional cubes (D, E) D E # 5

6 EPND Step: Expansion Direction Example #1 (cont.): illustrates Step #1 + Step #2 STEP #2: expand cube, by 1 variable at a time, to overlap as many other cubes as possible! Final choice = Option 2: expand cube in y dimension D E # EPND Step: Expansion Direction Example #2: illustrates Step #2 + Step #3 Suppose cube has been picked for expansion! #12 6

7 EPND Step: Expansion Direction Example #2 (cont.): illustrates Step #2 + Step #3 STEP #2: expand cube, by 1 variable at a time, to overlap as many other cubes as possible! Final choice = expand cube in y dimension overlaps cubes & #13 EPND Step: Expansion Direction Example #2 (cont.): illustrates Step #2 + Step #3 STEP #2: expand cube, by 1 variable at a time, to overlap as many other cubes as possible! Final choice = expand cube in y dimension #14 7

8 EPND Step: Expansion Direction Example #2 (cont.): illustrates Step #2 + Step #3 STEP #3: expand cube into a maximal size prime implicant! #15 EPND Step: Expansion Direction Example #2 (cont.): illustrates Step #2 + Step #3 STEP #3: expand cube into a maximal size prime implicant! Option 1: expand cube in z dimension - becomes #16 8

9 EPND Step: Expansion Direction Example #2 (cont.): illustrates Step #2 + Step #3 STEP #3: expand cube into a maximal size prime implicant! Option 2: expand cube in w /x dimensions - becomes z #17 EPND Step: Expansion Direction Example #2 (cont.): illustrates Step #2 + Step #3 STEP #3: expand cube into a maximal size prime implicant! Final choice = Option 2 - larger prime ( = z) has fewer literals #18 9

10 ESPRESSO lgorithm: The IRREDUNDNT Step The IRREDUNDNT Step Example over: after expand = prime cover Given: cover F (after EPND) P1! P3 P P4 1 1 P P6 0 Goal: make F irredundant = delete max # of implicants while still maintaining a valid cover #20

11 The IRREDUNDNT Step pproach #1 (SUOPTIML!): greedily remove one redundant cube at a time P1! P3 P P1! P P4 1 1 P5 0 0 P4 1 1 P P P6 0 before: after deleting P3: irredundant suboptimal cover #21 The IRREDUNDNT Step pproach #2 (OPTIML!): form & solve an exact optimization problem This is approach used in ESPRESSO : P1! P3 P P4 1 1 P P6 0 Goal: set up a simplified PI table, and solve it exactly, to determine min # of cubes to keep (delete all others) before: #22

12 The IRREDUNDNT Step Simplified PI Table: prime implicants P1 P2 P3 P4 P5 P6 ON-set minterms #23 The IRREDUNDNT Step pproach: solve PI table exactly Simplified PI Table: prime implicants P1 P2 P3 P4 P5 P6 ON-set minterms Optimal Solution: - select {P1,P2,P5,P6} - discard rest. #24 12

13 The IRREDUNDNT Step n Issue: - How can afford to compute an exact solution to prime implicant table (like the expensive Quine-Mcluskey method!) in the inner loop of a fast heuristic algorithm (espresso)? Justification: - This is not the same as the QM method! Key Observation: columns in this table are only the primes in current cover, -- not all the primes of the function! Hence, there is no prime generation step, and often a (much) smaller table! #25 The IRREDUNDNT Step pproach #2 (OPTIML): final solution P1! P3 P P1! P P4 1 1 P P P P6 0 before: after: irredundant optimal cover #26 13

14 ESPRESSO lgorithm: The REDUE Step The REDUE Step Example over: after expand and irredundant = prime irredundant cover z y x (D) #28 14

15 The REDUE Step Example over: after expand and irredundant = prime irredundant cover Given: cover F (after EPND/IRRED) z y x (D) Goal: maximally reduce all cubes of cover F, in some order, while still maintaining a valid cover #29 The REDUE Step Key Observation: reduce operation is order-dependent z y (D) z y x (D) x ube Reduction Order #1:,, - only can be reduced #30 15

16 The REDUE Step Key Observation: reduce operation is order-dependent z y x (D) z (D) y x ube Reduction Order #1:,, z y x (D) ube Reduction Order #2:,, - cubes and can be reduced #31 16

ICS 252 Introduction to Computer Design

ICS 252 Introduction to Computer Design ICS 252 Introduction to Computer Design Lecture 10 Eli Bozorgzadeh Computer Science Department-UCI Reference Lecture note Ankur Srivastava http://www.enee.umd.edu/class/enee644/ Chapter 7(7.3,7.4) of the

More information

Synthesis of 2-level Logic Heuristic Method. Two Approaches

Synthesis of 2-level Logic Heuristic Method. Two Approaches Synthesis of 2-level Logic Heuristic Method Lecture 8 Exact Two Approaches Find all primes Find a complete sum Find a minimum cover (covering problem) Heuristic Take an initial cover of cubes Repeat Expand

More information

Homework 3 Handout 19 February 18, 2016

Homework 3 Handout 19 February 18, 2016 CSEE E6861y Prof. Steven Nowick Homework 3 Handout 19 February 18, 2016 This homework is due at the beginning of class on Thursday, March 3. NOTE: A correct answer without adequate explanation or derivation

More information

Two-Level Logic Optimization ( Introduction to Computer-Aided Design) School of EECS Seoul National University

Two-Level Logic Optimization ( Introduction to Computer-Aided Design) School of EECS Seoul National University Two-Level Logic Optimization (4541.554 Introduction to Computer-Aided Design) School of EECS Seoul National University Minimization of Two-Level Functions Goals: Minimize cover cardinality Minimize number

More information

Giovanni De Micheli. Integrated Systems Centre EPF Lausanne

Giovanni De Micheli. Integrated Systems Centre EPF Lausanne Two-level Logic Synthesis and Optimization Giovanni De Micheli Integrated Systems Centre EPF Lausanne This presentation can be used for non-commercial purposes as long as this note and the copyright footers

More information

ECE 5745 Complex Digital ASIC Design Topic 12: Synthesis Algorithms

ECE 5745 Complex Digital ASIC Design Topic 12: Synthesis Algorithms ECE 5745 Complex Digital ASIC Design Topic 12: Synthesis Algorithms Christopher Batten School of Electrical and Computer Engineering Cornell University http://www.csl.cornell.edu/courses/ece5745 RTL to

More information

Supplement to. Logic and Computer Design Fundamentals 4th Edition 1

Supplement to. Logic and Computer Design Fundamentals 4th Edition 1 Supplement to Logic and Computer esign Fundamentals 4th Edition MORE OPTIMIZTION Selected topics not covered in the fourth edition of Logic and Computer esign Fundamentals are provided here for optional

More information

Unit 4: Formal Verification

Unit 4: Formal Verification Course contents Unit 4: Formal Verification Logic synthesis basics Binary-decision diagram (BDD) Verification Logic optimization Technology mapping Readings Chapter 11 Unit 4 1 Logic Synthesis & Verification

More information

Advanced Digital Logic Design EECS 303

Advanced Digital Logic Design EECS 303 Advanced Digital Logic Design EECS 303 http://ziyang.eecs.northwestern.edu/eecs303/ Teacher: Robert Dick Office: L477 Tech Email: dickrp@northwestern.edu Phone: 847 467 2298 Outline 1. 2. 2 Robert Dick

More information

ICS 252 Introduction to Computer Design

ICS 252 Introduction to Computer Design ICS 252 Introduction to Computer Design Logic Optimization Eli Bozorgzadeh Computer Science Department-UCI Hardware compilation flow HDL RTL Synthesis netlist Logic synthesis library netlist Physical design

More information

Introduction. The Quine-McCluskey Method Handout 5 January 24, CSEE E6861y Prof. Steven Nowick

Introduction. The Quine-McCluskey Method Handout 5 January 24, CSEE E6861y Prof. Steven Nowick CSEE E6861y Prof. Steven Nowick The Quine-McCluskey Method Handout 5 January 24, 2013 Introduction The Quine-McCluskey method is an exact algorithm which finds a minimum-cost sum-of-products implementation

More information

9/10/2016. ECE 120: Introduction to Computing. The Domain of a Boolean Function is a Hypercube. List All Implicants for One Variable A

9/10/2016. ECE 120: Introduction to Computing. The Domain of a Boolean Function is a Hypercube. List All Implicants for One Variable A University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering ECE 120: Introduction to Computing To Simplify, Write Function as a Sum of Prime Implicants One way to simplify a

More information

Synthesis 1. 1 Figures in this chapter taken from S. H. Gerez, Algorithms for VLSI Design Automation, Wiley, Typeset by FoilTEX 1

Synthesis 1. 1 Figures in this chapter taken from S. H. Gerez, Algorithms for VLSI Design Automation, Wiley, Typeset by FoilTEX 1 Synthesis 1 1 Figures in this chapter taken from S. H. Gerez, Algorithms for VLSI Design Automation, Wiley, 1998. Typeset by FoilTEX 1 Introduction Logic synthesis is automatic generation of circuitry

More information

ESE535: Electronic Design Automation. Today. EDA Use. Problem PLA. Programmable Logic Arrays (PLAs) Two-Level Logic Optimization

ESE535: Electronic Design Automation. Today. EDA Use. Problem PLA. Programmable Logic Arrays (PLAs) Two-Level Logic Optimization ESE535: Electronic Design Automation Day 18: March 25, 2013 Two-Level Logic-Synthesis Today Two-Level Logic Optimization Problem Behavioral (C, MATLAB, ) Arch. Select Schedule RTL FSM assign Definitions

More information

CSE241 VLSI Digital Circuits UC San Diego

CSE241 VLSI Digital Circuits UC San Diego CSE241 VLSI Digital Circuits UC San Diego Winter 2003 Lecture 05: Logic Synthesis Cho Moon Cadence Design Systems January 21, 2003 CSE241 L5 Synthesis.1 Kahng & Cichy, UCSD 2003 Outline Introduction Two-level

More information

University of Technology

University of Technology University of Technology Lecturer: Dr. Sinan Majid Course Title: microprocessors 4 th year Lecture 5 & 6 Minimization with Karnaugh Maps Karnaugh maps lternate way of representing oolean function ll rows

More information

1/28/2013. Synthesis. The Y-diagram Revisited. Structural Behavioral. More abstract designs Physical. CAD for VLSI 2

1/28/2013. Synthesis. The Y-diagram Revisited. Structural Behavioral. More abstract designs Physical. CAD for VLSI 2 Synthesis The Y-diagram Revisited Structural Behavioral More abstract designs Physical CAD for VLSI 2 1 Structural Synthesis Behavioral Physical CAD for VLSI 3 Structural Processor Memory Bus Behavioral

More information

VLSI System Design Part II : Logic Synthesis (1) Oct Feb.2007

VLSI System Design Part II : Logic Synthesis (1) Oct Feb.2007 VLSI System Design Part II : Logic Synthesis (1) Oct.2006 - Feb.2007 Lecturer : Tsuyoshi Isshiki Dept. Communications and Integrated Systems, Tokyo Institute of Technology isshiki@vlsi.ss.titech.ac.jp

More information

Combinational Logic Circuits Part III -Theoretical Foundations

Combinational Logic Circuits Part III -Theoretical Foundations Combinational Logic Circuits Part III -Theoretical Foundations Overview Simplifying Boolean Functions Algebraic Manipulation Karnaugh Map Manipulation (simplifying functions of 2, 3, 4 variables) Systematic

More information

CSE 140: Logic Minimization Lecture

CSE 140: Logic Minimization Lecture CSE 140: Logic Minimization Lecture What is Logic Minimization? Input: A set of minterms corresponding to a function F Output: A minimal set of prime implicants that corresponds to function F Example:

More information

ECE260B CSE241A Winter Logic Synthesis

ECE260B CSE241A Winter Logic Synthesis ECE260B CSE241A Winter 2007 Logic Synthesis Website: /courses/ece260b-w07 ECE 260B CSE 241A Static Timing Analysis 1 Slides courtesy of Dr. Cho Moon Introduction Why logic synthesis? Ubiquitous used almost

More information

Definitions Homework. Quine McCluskey Optimal solutions are possible for some large functions Espresso heuristic. Definitions Homework

Definitions Homework. Quine McCluskey Optimal solutions are possible for some large functions Espresso heuristic. Definitions Homework EECS 33 There be Dragons here http://ziyang.ees.northwestern.edu/ees33/ Teaher: Offie: Email: Phone: L477 Teh dikrp@northwestern.edu 847 467 2298 Today s material might at first appear diffiult Perhaps

More information

Simplification of two-level combinational logic

Simplification of two-level combinational logic ombinational logic optimization! lternate representations of oolean functions " cubes " karnaugh maps! Simplification " two-level simplification " exploiting don t cares " algorithm for simplification

More information

Quine-McCluskey Algorithm

Quine-McCluskey Algorithm Quine-McCluskey Algorithm Useful for minimizing equations with more than 4 inputs. Like K-map, also uses combining theorem Allows for automation Chapter Edward McCluskey (99-06) Pioneer in Electrical

More information

Working with Combinational Logic

Working with Combinational Logic KTZ_238576_M3.fm Page 93 Thursday, November 4, 24 2:38 PM H P T E R Working with ombinational Logic Introduction Now that we ve learned about two-level logic and had a short introduction to multilevel

More information

Specifying logic functions

Specifying logic functions CSE4: Components and Design Techniques for Digital Systems Specifying logic functions Instructor: Mohsen Imani Slides from: Prof.Tajana Simunic and Dr.Pietro Mercati We have seen various concepts: Last

More information

ECE260B CSE241A Winter Logic Synthesis

ECE260B CSE241A Winter Logic Synthesis ECE260B CSE241A Winter 2005 Logic Synthesis Website: / courses/ ece260bw05 ECE 260B CSE 241A Static Timing Analysis 1 Slides courtesy of Dr. Cho Moon Introduction Why logic synthesis? Ubiquitous used almost

More information

(Refer Slide Time 6:48)

(Refer Slide Time 6:48) Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 8 Karnaugh Map Minimization using Maxterms We have been taking about

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian محرم 1439 ه Winter

More information

SEPP: a New Compact Three-Level Logic Form

SEPP: a New Compact Three-Level Logic Form SEPP: a New Compact Three-Level Logic Form Valentina Ciriani Department of Information Technologies Università degli Studi di Milano, Italy valentina.ciriani@unimi.it Anna Bernasconi Department of Computer

More information

Logic Synthesis and Verification

Logic Synthesis and Verification Logic Synthesis and Verification Jie-Hong Roland Jiang 江介宏 Department of Electrical Engineering National Taiwan University Fall 2012 1 SOPs and Incompletely Specified Functions Reading: Logic Synthesis

More information

Binary recursion. Unate functions. If a cover C(f) is unate in xj, x, then f is unate in xj. x

Binary recursion. Unate functions. If a cover C(f) is unate in xj, x, then f is unate in xj. x Binary recursion Unate unctions! Theorem I a cover C() is unate in,, then is unate in.! Theorem I is unate in,, then every prime implicant o is unate in. Why are unate unctions so special?! Special Boolean

More information

Karnaugh Map (K-Map) Karnaugh Map. Karnaugh Map Examples. Ch. 2.4 Ch. 2.5 Simplification using K-map

Karnaugh Map (K-Map) Karnaugh Map. Karnaugh Map Examples. Ch. 2.4 Ch. 2.5 Simplification using K-map Karnaugh Map (K-Map) Ch. 2.4 Ch. 2.5 Simplification using K-map A graphical map method to simplify Boolean function up to 6 variables A diagram made up of squares Each square represents one minterm (or

More information

Graph Algorithms Maximum Flow Applications

Graph Algorithms Maximum Flow Applications Chapter 5 Graph Algorithms Maximum Flow Applications Algorithm Theory WS 202/3 Fabian Kuhn Maximum Flow Applications Maximum flow has many applications Reducing a problem to a max flow problem can even

More information

1 Introduction Asynchronous design has been the focus of much recent research activity. In fact, asynchronous designs have been applied to several lar

1 Introduction Asynchronous design has been the focus of much recent research activity. In fact, asynchronous designs have been applied to several lar Fast Heuristic and Exact Algorithms for Two-Level Hazard-Free Logic Minimization Michael Theobald Steven M. Nowick Department of Computer Science Columbia University New York, NY 127 CUCS-1-98 Abstract

More information

User s Manual. Ronwaldo A. Collado Diosdado Y. Tejoso Jr. CMSC 130 Logistic Design and Digital Computer Circuits Second Semester, A. Y.

User s Manual. Ronwaldo A. Collado Diosdado Y. Tejoso Jr. CMSC 130 Logistic Design and Digital Computer Circuits Second Semester, A. Y. The Quine-McCluskey Method, also known as the Tabulation Method is a specific step-by-step method that is ensured to generate a simplified standard-form expression for a function. Ronwaldo A. Collado Diosdado

More information

Design of Framework for Logic Synthesis Engine

Design of Framework for Logic Synthesis Engine Design of Framework for Logic Synthesis Engine Tribikram Pradhan 1, Pramod Kumar 2, Anil N S 3, Amit Bakshi 4 1 School of Information technology and Engineering, VIT University, Vellore 632014, Tamilnadu,

More information

Heuristic Minimization of Boolean Relations Using Testing Techniques

Heuristic Minimization of Boolean Relations Using Testing Techniques Heuristic Minimization of Boolean Relations Using Testing Techniques Abhijit Ghosh Srinivas Devadas A. Richard Newton Department of Electrical Engineering and Coniputer Sciences University of California,

More information

COPYRIGHTED MATERIAL INDEX

COPYRIGHTED MATERIAL INDEX INDEX Absorption law, 31, 38 Acyclic graph, 35 tree, 36 Addition operators, in VHDL (VHSIC hardware description language), 192 Algebraic division, 105 AND gate, 48 49 Antisymmetric, 34 Applicable input

More information

ECE380 Digital Logic

ECE380 Digital Logic ECE38 Digital Logic Optimized Implementation of Logic Functions: Strategy for Minimization, Minimum Product-of-Sums Forms, Incompletely Specified Functions Dr. D. J. Jackson Lecture 8- Terminology For

More information

Incompletely Specified Functions with Don t Cares 2-Level Transformation Review Boolean Cube Karnaugh-Map Representation and Methods Examples

Incompletely Specified Functions with Don t Cares 2-Level Transformation Review Boolean Cube Karnaugh-Map Representation and Methods Examples Lecture B: Logic Minimization Incompletely Specified Functions with Don t Cares 2-Level Transformation Review Boolean Cube Karnaugh-Map Representation and Methods Examples Incompletely specified functions

More information

3.4 QUINE MCCLUSKEY METHOD 73. f(a, B, C, D, E)¼AC ĒþB CD þ BCDþĀBD.

3.4 QUINE MCCLUSKEY METHOD 73. f(a, B, C, D, E)¼AC ĒþB CD þ BCDþĀBD. 3.4 QUINE MCCLUSKEY METHOD 73 FIGURE 3.22 f(a, B, C, D, E)¼B CD þ BCD. FIGURE 3.23 f(a, B, C, D, E)¼AC ĒþB CD þ BCDþĀBD. A¼1map are, 1, and 1, respectively, whereas the corresponding entries in the A¼0

More information

Optimization of Robust Asynchronous Circuits by Local Input Completeness Relaxation. Computer Science Department Columbia University

Optimization of Robust Asynchronous Circuits by Local Input Completeness Relaxation. Computer Science Department Columbia University Optimization of Robust Asynchronous ircuits by Local Input ompleteness Relaxation heoljoo Jeong Steven M. Nowick omputer Science Department olumbia University Outline 1. Introduction 2. Background: Hazard

More information

9 Conclusions. References [1] V. Akella and G. Gopalakrishnan. Shilpa: a high-level synthesis system for self-timed circuits. In ICCAD-1992.

9 Conclusions. References [1] V. Akella and G. Gopalakrishnan. Shilpa: a high-level synthesis system for self-timed circuits. In ICCAD-1992. Total Products Hazard- Hazard- % free free espresso- Over- Runname in/out Method exact head time(s) dean-ctrl 20/19 215 202 6 83 oscsci-ctrl 14/5 59 58 2 9 scsi-ctrl 12/5 60 59 2 11 pe-send-ifc 7/3 15

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian ذو الحجة 1438 ه Winter

More information

Espresso-HF: A Heuristic Hazard-Free Minimizer for Two-Level Logic

Espresso-HF: A Heuristic Hazard-Free Minimizer for Two-Level Logic Espresso-HF: A Heuristic Hazard-Free Minimizer for Two-Level Logic Michael Theobald Steven M. Nowick Tao Wu Department of Computer Science Columbia University New York, NY 027 Abstract We present a new

More information

Inadmissible Class of Boolean Functions under Stuck-at Faults

Inadmissible Class of Boolean Functions under Stuck-at Faults Inadmissible Class of Boolean Functions under Stuck-at Faults Debesh K. Das 1, Debabani Chowdhury 1, Bhargab B. Bhattacharya 2, Tsutomu Sasao 3 1 Computer Sc. & Engg. Dept., Jadavpur University, Kolkata

More information

A New Algorithm to Create Prime Irredundant Boolean Expressions

A New Algorithm to Create Prime Irredundant Boolean Expressions A New Algorithm to Create Prime Irredundant Boolean Expressions Michel R.C.M. Berkelaar Eindhoven University of technology, P.O. Box 513, NL 5600 MB Eindhoven, The Netherlands Email: michel@es.ele.tue.nl

More information

Larger K-maps. So far we have only discussed 2 and 3-variable K-maps. We can now create a 4-variable map in the

Larger K-maps. So far we have only discussed 2 and 3-variable K-maps. We can now create a 4-variable map in the EET 3 Chapter 3 7/3/2 PAGE - 23 Larger K-maps The -variable K-map So ar we have only discussed 2 and 3-variable K-maps. We can now create a -variable map in the same way that we created the 3-variable

More information

Overview. Design flow. Principles of logic synthesis. Logic Synthesis with the common tools. Conclusions

Overview. Design flow. Principles of logic synthesis. Logic Synthesis with the common tools. Conclusions Logic Synthesis Overview Design flow Principles of logic synthesis Logic Synthesis with the common tools Conclusions 2 System Design Flow Electronic System Level (ESL) flow System C TLM, Verification,

More information

Lecture 5 Heuristics. Last Time: A* Search

Lecture 5 Heuristics. Last Time: A* Search CSE 473 Lecture 5 Heuristics CSE AI Faculty Last Time: A* Search Use an evaluation function f(n) for node n. f(n) = estimated total cost of path thru n to goal f(n) = g(n) + h(n) g(n) = cost so far to

More information

CS8803: Advanced Digital Design for Embedded Hardware

CS8803: Advanced Digital Design for Embedded Hardware CS883: Advanced Digital Design for Embedded Hardware Lecture 2: Boolean Algebra, Gate Network, and Combinational Blocks Instructor: Sung Kyu Lim (limsk@ece.gatech.edu) Website: http://users.ece.gatech.edu/limsk/course/cs883

More information

Combinatorial Algorithms. Unate Covering Binate Covering Graph Coloring Maximum Clique

Combinatorial Algorithms. Unate Covering Binate Covering Graph Coloring Maximum Clique Combinatorial Algorithms Unate Covering Binate Covering Graph Coloring Maximum Clique Example As an Example, let s consider the formula: F(x,y,z) = x y z + x yz + x yz + xyz + xy z The complete sum of

More information

2/8/2017. SOP Form Gives Good Performance. ECE 120: Introduction to Computing. K-Maps Can Identify Single-Gate Functions

2/8/2017. SOP Form Gives Good Performance. ECE 120: Introduction to Computing. K-Maps Can Identify Single-Gate Functions University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering ECE 120: Introduction to Computing Two-Level Logic SOP Form Gives Good Performance s you know, one can use a K-map

More information

Graduate Institute of Electronics Engineering, NTU. CH5 Karnaugh Maps. Lecturer: 吳安宇教授 Date:2006/10/20 ACCESS IC LAB

Graduate Institute of Electronics Engineering, NTU. CH5 Karnaugh Maps. Lecturer: 吳安宇教授 Date:2006/10/20 ACCESS IC LAB CH5 Karnaugh Maps Lecturer: 吳安宇教授 Date:2006/0/20 CCESS IC L Problems in lgebraic Simplification The procedures are difficult to apply in a systematic way. It is difficult to tell when you have arrived

More information

Digital Circuits ECS 371

Digital Circuits ECS 371 Digital Circuits ECS 37 Dr. Prapun Suksompong prapun@siit.tu.ac.th Lecture 7 Office Hours: KD 36-7 Monday 9:-:3, :3-3:3 Tuesday :3-:3 Announcement HW2 posted on the course web site Chapter 4: Write down

More information

ece5745-pla-notes.txt

ece5745-pla-notes.txt ece5745-pla-notes.txt ========================================================================== Follow up on PAL/PROM/PLA Activity ==========================================================================

More information

ESOP CIRCUIT MINIMIZATION BASED ON THE FUNCTION ON-SET. Likai Chai

ESOP CIRCUIT MINIMIZATION BASED ON THE FUNCTION ON-SET. Likai Chai ESOP CIRCUIT MINIMIZATION BASED ON THE FUNCTION ON-SET By Likai Chai A Thesis Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Master

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) Path Planning for Point Robots Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/mpa Class Objectives Motion planning framework Classic motion planning approaches 2 3 Configuration Space:

More information

Slides for Lecture 15

Slides for Lecture 15 Slides for Lecture 5 ENEL 353: Digital Circuits Fall 203 Term Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary October, 203 ENEL 353 F3 Section

More information

Chapter 8. 8 Minimization Techniques. 8.1 Introduction. 8.2 Single-Output Minimization Design Constraints

Chapter 8. 8 Minimization Techniques. 8.1 Introduction. 8.2 Single-Output Minimization Design Constraints 8 Minimization Techniques 8.1 Introduction The emphasis is on clean, irredundant, minimal designs has been dramatically affected by the evolution of LSI [VLSI] technology. There are instances where a minimal

More information

9.1 Cook-Levin Theorem

9.1 Cook-Levin Theorem CS787: Advanced Algorithms Scribe: Shijin Kong and David Malec Lecturer: Shuchi Chawla Topic: NP-Completeness, Approximation Algorithms Date: 10/1/2007 As we ve already seen in the preceding lecture, two

More information

Symbolic Hazard-Free Minimization and Encoding of Asynchronous Finite State Machines

Symbolic Hazard-Free Minimization and Encoding of Asynchronous Finite State Machines Symbolic Hazard-Free Minimization and Encoding of Asynchronous Finite State Machines Robert M. Fuhrer Bill Lin Steven M. Nowick Dept. of Computer Science IMEC Laboratory Dept. of Computer Science Columbia

More information

Setting Parameters for Simulated Annealing

Setting Parameters for Simulated Annealing Setting Parameters for Simulated Annealing All heuristic algorithms (and many nonlinear programming algorithms) are affected by algorithm parameters For Simulated Annealing the algorithm parameters are

More information

Minimization of Multiple-Valued Functions in Post Algebra

Minimization of Multiple-Valued Functions in Post Algebra Minimization of Multiple-Valued Functions in Post Algebra Elena Dubrova Yunjian Jiang Robert Brayton Department of Electronics Dept. of Electrical Engineering and Computer Sciences Royal Institute of Technology

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Overview Part Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra Standard

More information

Informed Search and Exploration for Agents

Informed Search and Exploration for Agents Informed Search and Exploration for Agents R&N: 3.5, 3.6 Michael Rovatsos University of Edinburgh 29 th January 2015 Outline Best-first search Greedy best-first search A * search Heuristics Admissibility

More information

Assign auniquecodeto each state to produce a. Given jsj states, needed at least dlog jsje state bits. (minimum width encoding), at most jsj state bits

Assign auniquecodeto each state to produce a. Given jsj states, needed at least dlog jsje state bits. (minimum width encoding), at most jsj state bits State Assignment The problem: Assign auniquecodeto each state to produce a logic level description. Given jsj states, needed at least dlog jsje state bits (minimum width encoding), at most jsj state bits

More information

Minimum Satisfying Assignments for SMT. Işıl Dillig, Tom Dillig Ken McMillan Alex Aiken College of William & Mary Microsoft Research Stanford U.

Minimum Satisfying Assignments for SMT. Işıl Dillig, Tom Dillig Ken McMillan Alex Aiken College of William & Mary Microsoft Research Stanford U. Minimum Satisfying Assignments for SMT Işıl Dillig, Tom Dillig Ken McMillan Alex Aiken College of William & Mary Microsoft Research Stanford U. 1 / 20 Satisfiability Modulo Theories (SMT) Today, SMT solvers

More information

A Fast Two-level Logic Minimizer

A Fast Two-level Logic Minimizer A Fast Two-level Logic Minimizer P. Srinivasa Rao = James Jacobt Microelectronics and Computer Division Nortel, P.O. Box 3511 I. T. I.. Bangalore, India palati itibang. ernet. in Ottawa KIY 4H7, Canada

More information

Lecture 21: Other Reductions Steven Skiena

Lecture 21: Other Reductions Steven Skiena Lecture 21: Other Reductions Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.stonybrook.edu/ skiena Problem of the Day Show that the dense

More information

Lecture 21: Other Reductions Steven Skiena. Department of Computer Science State University of New York Stony Brook, NY

Lecture 21: Other Reductions Steven Skiena. Department of Computer Science State University of New York Stony Brook, NY Lecture 21: Other Reductions Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Problem of the Day Show that the Dense

More information

Routers & Routing : Computer Networking. Binary Search on Ranges. Speeding up Prefix Match - Alternatives

Routers & Routing : Computer Networking. Binary Search on Ranges. Speeding up Prefix Match - Alternatives Routers & Routing -44: omputer Networking High-speed router architecture Intro to routing protocols ssigned reading [McK9] Fast Switched ackplane for a Gigabit Switched Router Know RIP/OSPF L-4 Intra-omain

More information

A B AB CD Objectives:

A B AB CD Objectives: Objectives:. Four variables maps. 2. Simplification using prime implicants. 3. "on t care" conditions. 4. Summary.. Four variables Karnaugh maps Minterms A A m m m3 m2 A B C m4 C A B C m2 m8 C C m5 C m3

More information

Lecture 6: Faces, Facets

Lecture 6: Faces, Facets IE 511: Integer Programming, Spring 2019 31 Jan, 2019 Lecturer: Karthik Chandrasekaran Lecture 6: Faces, Facets Scribe: Setareh Taki Disclaimer: These notes have not been subjected to the usual scrutiny

More information

11.1. Definitions. 11. Domination in Graphs

11.1. Definitions. 11. Domination in Graphs 11. Domination in Graphs Some definitions Minimal dominating sets Bounds for the domination number. The independent domination number Other domination parameters. 11.1. Definitions A vertex v in a graph

More information

VLSI Test Technology and Reliability (ET4076)

VLSI Test Technology and Reliability (ET4076) VLSI Test Technology and Reliability (ET476) Lecture 5 Combinational Circuit Test Generation (Chapter 7) Said Hamdioui Computer Engineering Lab elft University of Technology 29-2 Learning aims of today

More information

CMPE223/CMSE222 Digital Logic

CMPE223/CMSE222 Digital Logic CMPE223/CMSE222 Digital Logic Optimized Implementation of Logic Functions: Strategy for Minimization, Minimum Product-of-Sums Forms, Incompletely Specified Functions Terminology For a given term, each

More information

Flexible Two-Level Boolean Minimizer BOOM-II and Its Applications

Flexible Two-Level Boolean Minimizer BOOM-II and Its Applications Flexible Two-Level Boolean Minimizer BOOM-II and Its Applications Petr Fišer, Hana Kubátová Czech Technical University Dept. of Computer Science and Engineering, Karlovo nám. 13, 121 35, Prague 2 e-mail:

More information

Homework. Update on website issue Reading: Chapter 7 Homework: All exercises at end of Chapter 7 Due 9/26

Homework. Update on website issue Reading: Chapter 7 Homework: All exercises at end of Chapter 7 Due 9/26 Homework Update on website issue Reading: hapter 7 Homework: All exercises at end of hapter 7 Due 9/26 opyright c 22 28 UMaine omputer Science Department / 2 OS 4: Foundations of omputer Science Karnaugh

More information

Software Implementation of Break-Up Algorithm for Logic Minimization

Software Implementation of Break-Up Algorithm for Logic Minimization vol. 2, no. 6. 2, pp. 141-145, 2017 DOI: https://doi.org/10.24999/ijoaem/02060034 Software Implementation of Break-Up Algorithm for Logic Minimization Koustuvmoni Bharadwaj and Sahadev Roy Abstract In

More information

Informed search algorithms. Chapter 4

Informed search algorithms. Chapter 4 Informed search algorithms Chapter 4 Material Chapter 4 Section 1 - Exclude memory-bounded heuristic search 3 Outline Best-first search Greedy best-first search A * search Heuristics Local search algorithms

More information

WWW-BASED BOOLEAN FUNCTION MINIMIZATION

WWW-BASED BOOLEAN FUNCTION MINIMIZATION Int. J. Appl. Math. Comput. Sci., 2003, Vol. 13, No. 4, 577 583 WWW-BASED BOOLEAN FUNCTION MINIMIZATION SEBASTIAN P. TOMASZEWSKI, ILGAZ U. CELIK GEORGE E. ANTONIOU BAE SYSTEMS Controls 600 Main Street,

More information

CSE 140 Homework Three

CSE 140 Homework Three CSE 140 Homework Three March 3, 2014 Only Problem Set Part B will be graded. Turn in only Problem Set Part B which will be due on March 14, 2014 (Friday) at 4:00pm. 1 Problem Set Part A Roth&Kinney, 6th

More information

EE552 Extra Credit Project

EE552 Extra Credit Project EE552 Extra Credit Project Publications on Hazard-Free Implementations Submitted by: Rabia Essani essani@usc.edu List of the Papers included in this report: Algorithms for synthesis of hazard-free asynchronous

More information

Gate-Level Minimization. section instructor: Ufuk Çelikcan

Gate-Level Minimization. section instructor: Ufuk Çelikcan Gate-Level Minimization section instructor: Ufuk Çelikcan Compleity of Digital Circuits Directly related to the compleity of the algebraic epression we use to build the circuit. Truth table may lead to

More information

Breakup Algorithm for Switching Circuit Simplifications

Breakup Algorithm for Switching Circuit Simplifications , No.1, PP. 1-11, 2016 Received on: 22.10.2016 Revised on: 27.11.2016 Breakup Algorithm for Switching Circuit Simplifications Sahadev Roy Dept. of ECE, NIT Arunachal Pradesh, Yupia, 791112, India e-mail:sdr.ece@nitap.in

More information

CSCI 220: Computer Architecture I Instructor: Pranava K. Jha. Simplification of Boolean Functions using a Karnaugh Map

CSCI 220: Computer Architecture I Instructor: Pranava K. Jha. Simplification of Boolean Functions using a Karnaugh Map CSCI 22: Computer Architecture I Instructor: Pranava K. Jha Simplification of Boolean Functions using a Karnaugh Map Q.. Plot the following Boolean function on a Karnaugh map: f(a, b, c, d) = m(, 2, 4,

More information

Languages and Compiler Design II IR Code Optimization

Languages and Compiler Design II IR Code Optimization Languages and Compiler Design II IR Code Optimization Material provided by Prof. Jingke Li Stolen with pride and modified by Herb Mayer PSU Spring 2010 rev.: 4/16/2010 PSU CS322 HM 1 Agenda IR Optimization

More information

CHAPTER-2 STRUCTURE OF BOOLEAN FUNCTION USING GATES, K-Map and Quine-McCluskey

CHAPTER-2 STRUCTURE OF BOOLEAN FUNCTION USING GATES, K-Map and Quine-McCluskey CHAPTER-2 STRUCTURE OF BOOLEAN FUNCTION USING GATES, K-Map and Quine-McCluskey 2. Introduction Logic gates are connected together to produce a specified output for certain specified combinations of input

More information

Lecture 22: Implementing Combinational Logic

Lecture 22: Implementing Combinational Logic 8 Lecture 22: Implementing ombinational Logic S 5 L22 James. Hoe Dept of EE, MU April 9, 25 Today s Goal: Design some combinational logic circuits Announcements: Read Rizzoni 2.4 and 2.5 HW 8 due today

More information

Simplification of Boolean Functions

Simplification of Boolean Functions COM111 Introduction to Computer Engineering (Fall 2006-2007) NOTES 5 -- page 1 of 5 Introduction Simplification of Boolean Functions You already know one method for simplifying Boolean expressions: Boolean

More information

Blind, Greedy, and Random: Algorithms for Matching and Clustering Using only Ordinal Information

Blind, Greedy, and Random: Algorithms for Matching and Clustering Using only Ordinal Information lind, Greedy, and Random: lgorithms for Matching and lustering Using only Ordinal Information Elliot nshelevich (together with Shreyas Sekar) Rensselaer Polytechnic Institute (RPI), Troy, NY Maximum Utility

More information

Contents. Chapter 3 Combinational Circuits Page 1 of 34

Contents. Chapter 3 Combinational Circuits Page 1 of 34 Chapter 3 Combinational Circuits Page of 34 Contents Contents... 3 Combinational Circuits... 2 3. Analysis of Combinational Circuits... 2 3.. Using a Truth Table... 2 3..2 Using a Boolean unction... 4

More information

Variables vs. Registers/Memory. Simple Approach. Register Allocation. Interference Graph. Register Allocation Algorithm CS412/CS413

Variables vs. Registers/Memory. Simple Approach. Register Allocation. Interference Graph. Register Allocation Algorithm CS412/CS413 Variables vs. Registers/Memory CS412/CS413 Introduction to Compilers Tim Teitelbaum Lecture 33: Register Allocation 18 Apr 07 Difference between IR and assembly code: IR (and abstract assembly) manipulate

More information

Switching Circuits & Logic Design

Switching Circuits & Logic Design Switching Circuits & Logic Design Jie-Hong Roland Jiang 江介宏 Department of Electrical Engineering National Taiwan University Fall 23 5 Karnaugh Maps K-map Walks and Gray Codes http://asicdigitaldesign.wordpress.com/28/9/26/k-maps-walks-and-gray-codes/

More information

Decision tables. Combinational Models. Necessary Characteristics of the Implementation. Decision tables. Deriving decision tables

Decision tables. Combinational Models. Necessary Characteristics of the Implementation. Decision tables. Deriving decision tables ombinational Models Generating test cases when the test model is a decision table Textbook Reading: hapter 6 ecision tables Ideal representation for a test model for the following reasons: Straightforward

More information

ON AN OPTIMIZATION TECHNIQUE USING BINARY DECISION DIAGRAM

ON AN OPTIMIZATION TECHNIQUE USING BINARY DECISION DIAGRAM ON AN OPTIMIZATION TECHNIQUE USING BINARY DECISION DIAGRAM Debajit Sensarma # 1, Subhashis Banerjee #1, Krishnendu Basuli #1,Saptarshi Naskar #2, Samar Sen Sarma #3 #1 West Bengal State University, West

More information

Symbolic Hazard-Free Minimization and Encoding of Asynchronous Finite State Machines

Symbolic Hazard-Free Minimization and Encoding of Asynchronous Finite State Machines Symbolic Hazard-Free Minimization and Encoding of Asynchronous Finite State Machines 1 Introduction There has been a renewed interest in asynchronous design, because of their potential for high-performance,

More information

LOGIC SYNTHESIS AND VERIFICATION ALGORITHMS. Gary D. Hachtel University of Colorado. Fabio Somenzi University of Colorado.

LOGIC SYNTHESIS AND VERIFICATION ALGORITHMS. Gary D. Hachtel University of Colorado. Fabio Somenzi University of Colorado. LOGIC SYNTHESIS AND VERIFICATION ALGORITHMS by Gary D. Hachtel University of Colorado Fabio Somenzi University of Colorado Springer Contents I Introduction 1 1 Introduction 5 1.1 VLSI: Opportunity and

More information