Size: px
Start display at page:

Download ""

Transcription

1 FRACTALS

2

3

4

5

6

7

8

9

10

11 The term fractal was coined by mathematician Benoit Mandelbrot

12 A fractal object, unlike a circle or any regular object, has complexity at all scales

13

14 Natural Fractal Objects

15 Natural fractals occupy space in a complex way. They make the most out of a limited space.

16 Iteration as a Feedback Machine A repeat procedure where the output of one step becomes the input of the next step. The feedback machine with IU = input unit, OU=output unit, CU = control unit

17 The construction of the Koch curve by iteration

18 The Koch curve can also be produced by means of an L- System Axiom : F++F++F Production rules: F F F++F F

19

20 Cantor set

21 Constructing the Menger Sponge

22

23 Multiple Reduction Copy Machine (MRCM)

24 The Attractor of the MRCM

25 MRCM Applied to MRCM

26 Limit Object Koch Curve

27 Blueprint of Barnsley s Fern

28 The first Iterates

29 Fern

30 Koch Curve Transformed into the fern

31 Self-Similarity

32

33

34 No Self-Similarity at Finite Stage

35 A structure is self-similar if it is composed of arbitrarily small pieces, each being a small copy of the entire structure. More precisely: A structure is self-similar if any arbitrarily small pieces can be can be obtained from the whole structure by a similarity transformation.

36 A fractal is produced by a system of transformations. These transformations may include all kinds of similarity (or sometimes affine) transformations: Rotations, translations, reflections Scaling Shear and stretch.

37 IFS for a Twig

38 A Tree

39

40

41 Crystal with Four Similarity transformation

42 Crystal with Five Transformations

43 The self-similarity of a fractal is due to the fact that: the same, simple rules are applied across scales.

44

45 A rough definition A fractal is a geometric object whose fractal dimension is greater than its topological dimension We need to understand these expressions: Dimension Topology Fractal dimension

46 Many of the topics involved in gluing pertain to a field of mathematics known as: TOPOLOGY The word has a Greek origin: TOPOS = place LOGY = analysis, study It was once also known as analysis situs (Latin for study of place )

47

48 Which of the following questions is most important for a traveler? (a) The exact distance between two stations? (b) Is there is a link between two stations? (c) Is the railway line between two stations straight or curved?

49 Topology is not concerned with metric characteristics (it takes no account of distances or length). Topology is also not concerned with the question of whether lines are straight or curved.

50 So what is topology about?

51

52

53

54 TOPOLOGICAL DIMENSION Topological ideas can be used to describe the dimensions of objects. There are several ways to define a topological dimension, using: A. Boundaries B. Cuts C. Covering

55 TOPOLOGICAL DIMENSION 1. BOUNDARIES We describe our physical space as 3- dimensional because the walls of a prison are 2- dimensional. (H. Weyl) A volume (dimension 3) can be surrounded with planes (dimension two). A plane (dimension two) is bound by lines (dimension one). A line (dimension one) is bound by points (dimension zero).

56 2. CUTS A space of n-dimensions is cut by a space of n-1 dimensions. Every point (dimension 1) cuts the real line (dimension 2). A point cannot cut the plane. Only a line (dimension 1) cuts the plane (dimension 2).

57 3. COVERING DIMENSION

58 We can arrange a covering of a line or curve in such a way that every intersection is the intersection of no more than two discs.

59 Any covering with intersections of more than two discs can be refined so that every intersection is the intersection of two (and no more than two) discs.

60 A curve has dimension one because it is possible to cover it with open disks of small radius so that only pairs of disks have a nonempty intersection.

61

62 A figure has dimension N if: it can be covered with open disks so that: only N + 1 disks have a nonempty intersection.

63 A space is zero dimensional if it can be covered with small open discs that are disjoint.

64 A two-dimensional surface can be covered with balls but every intersection is the intersection of three rather than two balls.

65 The boundary dimension, cut dimension, and covering dimension normally give us the same results. A figure will always have the same dimension, no matter what method is used.

66

67 The topological dimension tells us HOW A FIGURE IS CONNECTED. This is the information that topological dimension tells us. Topological dimension has nothing to do with measurement!

68 Whatever definition we choose, the topological dimension of a figure is topologically invariant. The dimension will never change for objects which are topologically equivalent. A straight line can, for instance, be bent into a curve, but it will remain a one-dimensional object. Its topological dimension is preserved when it is bent.

69 We cannot change the dimension of a square by distorting it. To make it into a three-dimensional object, we must glue it to form (for example) a cube.

70 There are, however, other (non-topological) definitions of dimension. These do not make reference to topological properties but to metric properties (concerning distance). These other definitions are the basis for the concept of FRACTAL DIMENSION.

71 FRACTAL DIMENSION There are various kinds of fractal dimension. The easiest one to understand is the SELF-SIMILARITY DIMENSION.

72 SELF-SIMILARITY The idea is to use the self-similarity of an object to compute its dimension.

73 Self-Similarity in the Decimal System

74 Self-similarity of the line, square and cube

75 Begin with simple examples: a line, a square, and a cube. For each object we will: Reduce its scale by a factor of r. Combine N reduced objects so that we fill the same space as the original object.

76 Here is a one-dimensional line segment. First we reduce its size by a factor of two. Then fill up the available space. We need to use two lines. Next we reduce the size of the original line by a factor of three, and again fill the available space. Now we need three lines.

77 We discover the law: N = r D D is the self-similarity dimension of the object.

78 Another example: the square. The formula N = r D gives dimension 2.

79 For a cube, the formula N = r D gives dimension 3.

80

81 KEY CONCEPT There is a relation between: a. the reduction (or scaling) factor and b. the number of reduced pieces that occupy the same space as the original.

82 The self-similarity dimension is only one type of fractal dimension. Another type is the Hausdorff dimension. We will not study it here, since it is a more advanced topic.

83 Many of these ideas were introduced by a Jewish mathematician named Felix HAUSDORFF As a result of the Nazi Nuremberg Laws of 1935, Hausdorff was forced to leave his academic position at Bonn.. His research could only be published outside Germany. When the Nazis scheduled him to go to a concentration camp, he committed suicide together with his wife and his wife's sister (1942)

84 Hausdorff made many contributions to modern topology and set theory. He introduced the notion of Hausdorff dimension, the Hausdorff metric, and the term "metric space. He also developed the concept of a partially ordered set.

85 Let us now compute the fractal dimension of the Koch Curve

86 Each copy is reduced by 1/3. 4 copies of this piece are produced. 4 = 3 D Each iteration increases the total length by a ratio of 4/3. The self-similarity dimension is. D = log 4 / log 3 =

87 The self-similarity dimension indicates how the object occupies space.

88 Topologically, this is a curve with topological dimension 1. The curve s self-similarity dimension is greater than its topological dimension. Self-similarity dimension = Topological dimension = 1

89 Topological dimension is always an integer. Self-similarity dimension can be an integer, but it does not have to be.

90 The Peano curve. Each generation is composed of 9 n segments. The reduction factor is 1/3. This gives us D = 2. Topological dimension = 1 Self-similarity dimension = 2

91 The Sierpinksi Triangle Fractal dimension = log 3 / log 4 =

92 For some objects the topological dimension = the self-similarity dimension. These include ordinary straight lines, squares, cubes, etc. For other objects the self-similarity dimension is greater than the topological dimension. These objects are FRACTALS.

93 THE DEFINITION AGAIN FRACTAL A geometric object whose fractal dimension is greater than its topological dimension

94 Not every self-similar object is a fractal. A line segment, a square, and a cube are all self-similar, but they are not fractals. The topological dimension is the same as the self-similarity dimension.

95 Measuring the length of the coast of Britain with straight line segments of 200 miles

96 Measuring the length of the coast of Britain with straight line segments of 100 miles

97 Measuring the length of the coast of Britain with straight line segments of 50 miles

98 Measuring the length of the coast of Britain with straight line segments of 25 miles

99 Measuring the length of the coast of Britain

100 As the length of each interval becomes smaller and smaller, the total length of the coast becomes larger and larger. We are able to penetrate ever finer twists and turns of the curve Measurement cannot settle down to a stable length. As the length of the device approaches 0, the length of the coast approaches infinity. As the measurements become more precise, the lengths increase without bound.

101 "The result is most peculiar: coastline length turns out to be an elusive notion that slips between the fingers of one who wants to grasp it. All measurement methods ultimately lead to the conclusion that the typical coastline's length is very large and so ill determined that it is best considered infinite." Mandelbrot

102 Outside the world of regular mathematical objects, length is relative. It depends on our choice of scale and on the precision of our technical instruments of measurement. It is not entirely objective. The observer inevitably intervenes in its definition." (Mandelbrot)

103 "Nature does exist apart from Man, and anyone who gives too much weight to any specific [measuring device and total length] lets the study of Nature be dominated by Man, either through his typical yardstick size or his highly variable technical reach. If coastlines are ever to become an object of scientific inquiry, the uncertainty concerning their lengths cannot be legislated away." Mandelbrot

104 Contrast the coast of England with the measurement of a circumference. The true measure of a circumference can be determined.

105 The procedure for determining the length of the side of a polygon inscribed inside a circle

106 A curve is rectifiable if, as the number of intervals tends to infinity, and the length of each interval tends to zero, the total length of the polygonal line approaches a finite limit. The circle is rectifiable. The coast of England is NOT rectifiable.

107 Graph of the length of the coast of Britain and the circumference

108 For a smooth, rectifiable curve, as the length r of each interval is reduced (goes to zero), the product approaches a finite limit, which gives the length L of the curve.

109 What is the main difference between rectifiable and nonrectifiable curves? It has something to do with the spacefilling or space-occupying properties of the object: the spatial intricacy of the object.

110 A fractal object, unlike a circle, has complexity at all scales

111 The measurements are relative. Is there anything that is not relative in the act of measurement? To approximate the length L(e) of the coast we need roughly F(ε) 1-D intervals of length ε.

112 This relationship was found by observation. It was not a priori. It was not discovered through pure mathematics.

113 The value of D depends on the coastline, so that different coastlines, even different pieces of the same coastline, may produce different values of D. But its value is independent of the yardstick or method used to measure the coast. It is not relative to our measurement choice.

114 Use the expression scaling fractals The term fractal indicates the aspect of irregularity. The term scaling indicates the aspect of regularity or order.

115 The fractal dimension gives an index of the rate at which your estimated lengths for the coastline keep on growing as your resolution becomes finer. This indicates how the object occupies space. It gives a measure of its spatial complexity.

116

117

118 When a curve makes a sharp turn, its tangent is not uniquely defined.

119 Mathematicians like G. Peano and D. Hilbert invented curves that are everywhere continuous but every point is a sharp turn!

120 David Hilbert invented a space-filling curve

121 Hilbert s Paper Space-filling curve

122 Peano Curve Construction

123 There is a sharp 90 degree turn after every segment. After a certain number of iterations, a graphical representation of the curve is not visually distinguishable from a region of the plane. Infinite iterations will fill a whole region of the plane.

124 Non-Linear Curve as 2D space: It is a space-filling curve.

125 About the construction of a fractal: mr. bean

126

127

128

129

130

Session 27: Fractals - Handout

Session 27: Fractals - Handout Session 27: Fractals - Handout Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning travel in a straight line. Benoit Mandelbrot (1924-2010)

More information

FRACTAL: A SET WHICH IS LARGER THAN THE UNIVERSE

FRACTAL: A SET WHICH IS LARGER THAN THE UNIVERSE ISSN 2320-9143 40 International Journal of Advance Research, IJOAR.org Volume 1, Issue 3, March 2013, Online: ISSN 2320-9143 FRACTAL: A SET WHICH IS LARGER THAN THE UNIVERSE Soumya Prakash Sahu, Indian

More information

Fractal Coding. CS 6723 Image Processing Fall 2013

Fractal Coding. CS 6723 Image Processing Fall 2013 Fractal Coding CS 6723 Image Processing Fall 2013 Fractals and Image Processing The word Fractal less than 30 years by one of the history s most creative mathematician Benoit Mandelbrot Other contributors:

More information

Fractal Geometry. Prof. Thomas Bäck Fractal Geometry 1. Natural Computing Group

Fractal Geometry. Prof. Thomas Bäck Fractal Geometry 1. Natural Computing Group Fractal Geometry Prof. Thomas Bäck Fractal Geometry 1 Contents Introduction The Fractal Geometry of Nature - Self-Similarity - Some Pioneering Fractals - Dimension and Fractal Dimension Scope of Fractal

More information

Fractals: Self-Similarity and Fractal Dimension Math 198, Spring 2013

Fractals: Self-Similarity and Fractal Dimension Math 198, Spring 2013 Fractals: Self-Similarity and Fractal Dimension Math 198, Spring 2013 Background Fractal geometry is one of the most important developments in mathematics in the second half of the 20th century. Fractals

More information

Covering and Surrounding Extensions 1

Covering and Surrounding Extensions 1 Extensions 1 1. The Snowflake Curve. Begin with an equilateral triangle. Let s assume that each side of the triangle has length one. Remove the middle third of each line segment and replace it with two

More information

Fractals. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna.

Fractals. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna. Fractals Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ 2 Geometric Objects Man-made objects are geometrically simple (e.g., rectangles,

More information

Fractal Geometry. LIACS Natural Computing Group Leiden University

Fractal Geometry. LIACS Natural Computing Group Leiden University Fractal Geometry Contents Introduction The Fractal Geometry of Nature Self-Similarity Some Pioneering Fractals Dimension and Fractal Dimension Cellular Automata Particle Systems Scope of Fractal Geometry

More information

Stat 45: Our Fractal World? Topics for Today. Lecture 1: Getting Started. David Donoho Statistics Department Stanford University. Sierpinski Gaskets

Stat 45: Our Fractal World? Topics for Today. Lecture 1: Getting Started. David Donoho Statistics Department Stanford University. Sierpinski Gaskets Stat 45N: Our Fractal World? Lecture 1 1 Stat 45N: Our Fractal World? Lecture 1 2 Stat 45: Our Fractal World? Topics for Today Lecture 1: Getting Started What Are They? David Donoho Statistics Department

More information

Lecture 3: Some Strange Properties of Fractal Curves

Lecture 3: Some Strange Properties of Fractal Curves Lecture 3: Some Strange Properties of Fractal Curves I have been a stranger in a strange land. Exodus 2:22 1. Fractal Strangeness Fractals have a look and feel that is very different from ordinary curves.

More information

Fractal Image Compression

Fractal Image Compression Ball State University January 24, 2018 We discuss the works of Hutchinson, Vrscay, Kominek, Barnsley, Jacquin. Mandelbrot s Thesis 1977 Traditional geometry with its straight lines and smooth surfaces

More information

Fractals. University. 1 The approach and terminology used here are from Michael Frame s Fractal course taught for many years at Yale

Fractals. University. 1 The approach and terminology used here are from Michael Frame s Fractal course taught for many years at Yale Fractals The existence of these patterns [fractals] challenges us to study forms that Euclid leaves aside as being formless, to investigate the morphology of the amorphous. Mathematicians have disdained

More information

Hei nz-ottopeitgen. Hartmut Jürgens Dietmar Sau pe. Chaos and Fractals. New Frontiers of Science

Hei nz-ottopeitgen. Hartmut Jürgens Dietmar Sau pe. Chaos and Fractals. New Frontiers of Science Hei nz-ottopeitgen Hartmut Jürgens Dietmar Sau pe Chaos and Fractals New Frontiers of Science Preface Authors VU X I Foreword 1 Mitchell J. Feigenbaum Introduction: Causality Principle, Deterministic

More information

Generation of 3D Fractal Images for Mandelbrot and Julia Sets

Generation of 3D Fractal Images for Mandelbrot and Julia Sets 178 Generation of 3D Fractal Images for Mandelbrot and Julia Sets Bulusu Rama #, Jibitesh Mishra * # Department of Computer Science and Engineering, MLR Institute of Technology Hyderabad, India 1 rama_bulusu@yahoo.com

More information

Fractals: a way to represent natural objects

Fractals: a way to represent natural objects Fractals: a way to represent natural objects In spatial information systems there are two kinds of entity to model: natural earth features like terrain and coastlines; human-made objects like buildings

More information

Iterated Functions Systems and Fractal Coding

Iterated Functions Systems and Fractal Coding Qing Jun He 90121047 Math 308 Essay Iterated Functions Systems and Fractal Coding 1. Introduction Fractal coding techniques are based on the theory of Iterated Function Systems (IFS) founded by Hutchinson

More information

Fun with Fractals Saturday Morning Math Group

Fun with Fractals Saturday Morning Math Group Fun with Fractals Saturday Morning Math Group Alistair Windsor Fractals Fractals are amazingly complicated patterns often produced by very simple processes. We will look at two different types of fractals

More information

Section 9.5. Tessellations. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section 9.5. Tessellations. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 9.5 Tessellations What You Will Learn Tessellations 9.5-2 Tessellations A tessellation (or tiling) is a pattern consisting of the repeated use of the same geometric figures to entirely cover a

More information

Fractals Week 10, Lecture 19

Fractals Week 10, Lecture 19 CS 430/536 Computer Graphics I Fractals Week 0, Lecture 9 David Breen, William Regli and Maim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Dreel University http://gicl.cs.dreel.edu

More information

Aspects of Geometry. Finite models of the projective plane and coordinates

Aspects of Geometry. Finite models of the projective plane and coordinates Review Sheet There will be an exam on Thursday, February 14. The exam will cover topics up through material from projective geometry through Day 3 of the DIY Hyperbolic geometry packet. Below are some

More information

Chapel Hill Math Circle: Symmetry and Fractals

Chapel Hill Math Circle: Symmetry and Fractals Chapel Hill Math Circle: Symmetry and Fractals 10/7/17 1 Introduction This worksheet will explore symmetry. To mathematicians, a symmetry of an object is, roughly speaking, a transformation that does not

More information

Prime Time (Factors and Multiples)

Prime Time (Factors and Multiples) CONFIDENCE LEVEL: Prime Time Knowledge Map for 6 th Grade Math Prime Time (Factors and Multiples). A factor is a whole numbers that is multiplied by another whole number to get a product. (Ex: x 5 = ;

More information

Chapter 12: Fractal Geometry The Koch Snowflake and Self-Similarity

Chapter 12: Fractal Geometry The Koch Snowflake and Self-Similarity Chapter 12: Fractal Geometry 12.1 The Koch Snowflake and Self-Similarity Geometric Fractal Our first example of a geometric fractal is a shape known as the Koch snowflake, named after the Swedish mathematician

More information

CGT 581 G Procedural Methods Fractals

CGT 581 G Procedural Methods Fractals CGT 581 G Procedural Methods Fractals Bedrich Benes, Ph.D. Purdue University Department of Computer Graphics Technology Procedural Techniques Model is generated by a piece of code. Model is not represented

More information

Clouds, biological growth, and coastlines are

Clouds, biological growth, and coastlines are L A B 11 KOCH SNOWFLAKE Fractals Clouds, biological growth, and coastlines are examples of real-life phenomena that seem too complex to be described using typical mathematical functions or relationships.

More information

Extension as the background of substance a formal approach

Extension as the background of substance a formal approach Extension as the background of substance a formal approach Bart lomiej Skowron Wroc law University The Pontifical University of John Paul II, Kraków bartlomiej.skowron@gmail.com February 11, 2013 Presentation

More information

Assignment 8; Due Friday, March 10

Assignment 8; Due Friday, March 10 Assignment 8; Due Friday, March 10 The previous two exercise sets covered lots of material. We ll end the course with two short assignments. This one asks you to visualize an important family of three

More information

Fractal Analysis. By: Mahnaz EtehadTavakol

Fractal Analysis. By: Mahnaz EtehadTavakol Fractal Analysis By: Mahnaz EtehadTavakol A fractal a non-regular geometric shape can be split into parts which posses self similarity Naturally Occurring Fractal A special type of broccoli, this cruciferous

More information

Fractal Image Coding (IFS) Nimrod Peleg Update: Mar. 2008

Fractal Image Coding (IFS) Nimrod Peleg Update: Mar. 2008 Fractal Image Coding (IFS) Nimrod Peleg Update: Mar. 2008 What is a fractal? A fractal is a geometric figure, often characterized as being self-similar : irregular, fractured, fragmented, or loosely connected

More information

A Flavor of Topology. Shireen Elhabian and Aly A. Farag University of Louisville January 2010

A Flavor of Topology. Shireen Elhabian and Aly A. Farag University of Louisville January 2010 A Flavor of Topology Shireen Elhabian and Aly A. Farag University of Louisville January 2010 In 1670 s I believe that we need another analysis properly geometric or linear, which treats place directly

More information

Filling Space with Random Line Segments

Filling Space with Random Line Segments Filling Space with Random Line Segments John Shier Abstract. The use of a nonintersecting random search algorithm with objects having zero width ("measure zero") is explored. The line length in the units

More information

274 Curves on Surfaces, Lecture 5

274 Curves on Surfaces, Lecture 5 274 Curves on Surfaces, Lecture 5 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 5 Ideal polygons Previously we discussed three models of the hyperbolic plane: the Poincaré disk, the upper half-plane,

More information

Mathematics 350 Section 6.3 Introduction to Fractals

Mathematics 350 Section 6.3 Introduction to Fractals Mathematics 350 Section 6.3 Introduction to Fractals A fractal is generally "a rough or fragmented geometric shape that is self-similar, which means it can be split into parts, each of which is (at least

More information

Lecture 8: Modelling Urban Morphology:

Lecture 8: Modelling Urban Morphology: SCHOOL OF GEOGRAPHY Lecture 8: Modelling Urban Morphology: Fractal Geometry, Relations to CA, And Urban Form Outline What are Fractals? Definitions and Properties Scaling and Links to Fractal Patterns

More information

1 Appendix to notes 2, on Hyperbolic geometry:

1 Appendix to notes 2, on Hyperbolic geometry: 1230, notes 3 1 Appendix to notes 2, on Hyperbolic geometry: The axioms of hyperbolic geometry are axioms 1-4 of Euclid, plus an alternative to axiom 5: Axiom 5-h: Given a line l and a point p not on l,

More information

Curriki Geometry Glossary

Curriki Geometry Glossary Curriki Geometry Glossary The following terms are used throughout the Curriki Geometry projects and represent the core vocabulary and concepts that students should know to meet Common Core State Standards.

More information

CS 4300 Computer Graphics. Prof. Harriet Fell Fall 2012 Lecture 28 November 8, 2012

CS 4300 Computer Graphics. Prof. Harriet Fell Fall 2012 Lecture 28 November 8, 2012 CS 4300 Computer Graphics Prof. Harriet Fell Fall 2012 Lecture 28 November 8, 2012 1 Today s Topics Fractals Mandelbrot Set Julia Sets L-Systems 2 Fractals The term fractal was coined in 1975 by Benoît

More information

Anadarko Public Schools MATH Power Standards

Anadarko Public Schools MATH Power Standards Anadarko Public Schools MATH Power Standards Kindergarten 1. Say the number name sequence forward and backward beginning from a given number within the known sequence (counting on, spiral) 2. Write numbers

More information

Gentle Introduction to Fractals

Gentle Introduction to Fractals Gentle Introduction to Fractals www.nclab.com Contents 1 Fractals Basics 1 1.1 Concept................................................ 1 1.2 History................................................ 2 1.3

More information

Getting to know a beetle s world classification of closed 3 dimensional manifolds

Getting to know a beetle s world classification of closed 3 dimensional manifolds Getting to know a beetle s world classification of closed 3 dimensional manifolds Sophia Jahns Tübingen University December 31, 2017 Sophia Jahns A beetle s world December 31, 2017 1 / 34 A beetle s world

More information

Ohio Tutorials are designed specifically for the Ohio Learning Standards to prepare students for the Ohio State Tests and end-ofcourse

Ohio Tutorials are designed specifically for the Ohio Learning Standards to prepare students for the Ohio State Tests and end-ofcourse Tutorial Outline Ohio Tutorials are designed specifically for the Ohio Learning Standards to prepare students for the Ohio State Tests and end-ofcourse exams. Math Tutorials offer targeted instruction,

More information

The Space of Closed Subsets of a Convergent Sequence

The Space of Closed Subsets of a Convergent Sequence The Space of Closed Subsets of a Convergent Sequence by Ashley Reiter and Harold Reiter Many topological spaces are simply sets of points(atoms) endowed with a topology Some spaces, however, have elements

More information

Curves and Fractal Dimension

Curves and Fractal Dimension Claude Tricot Curves and Fractal Dimension With a Foreword by Michel Mendes France With 163 Illustrations Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest Contents

More information

A triangle that has three acute angles Example:

A triangle that has three acute angles Example: 1. acute angle : An angle that measures less than a right angle (90 ). 2. acute triangle : A triangle that has three acute angles 3. angle : A figure formed by two rays that meet at a common endpoint 4.

More information

Hyperbolic Geometry. Thomas Prince. Imperial College London. 21 January 2017

Hyperbolic Geometry. Thomas Prince. Imperial College London. 21 January 2017 Hyperbolic Geometry Thomas Prince Imperial College London 21 January 2017 Thomas Prince (Imperial College London) Hyperbolic Planes 21 January 2017 1 / 31 Introducing Geometry What does the word geometry

More information

Space Filling Curves and Hierarchical Basis. Klaus Speer

Space Filling Curves and Hierarchical Basis. Klaus Speer Space Filling Curves and Hierarchical Basis Klaus Speer Abstract Real world phenomena can be best described using differential equations. After linearisation we have to deal with huge linear systems of

More information

Fractals in Nature and Mathematics: From Simplicity to Complexity

Fractals in Nature and Mathematics: From Simplicity to Complexity Fractals in Nature and Mathematics: From Simplicity to Complexity Dr. R. L. Herman, UNCW Mathematics & Physics Fractals in Nature and Mathematics R. L. Herman OLLI STEM Society, Oct 13, 2017 1/41 Outline

More information

ARi. Amalgamated Research Inc. What are fractals?

ARi. Amalgamated Research Inc. What are fractals? ARi www.arifractal.com What are fractals? Amalgamated Research Inc. A key characteristic of fractals is self-similarity. This means that similar structure is observed at many scales. Figure 1 illustrates

More information

Fractal Dimension and the Cantor Set

Fractal Dimension and the Cantor Set Fractal Dimension and the Cantor Set Shailesh A Shirali Shailesh Shirali is Director of Sahyadri School (KFI), Pune, and also Head of the Community Mathematics Centre in Rishi Valley School (AP). He has

More information

Does it Look Square? Hexagonal Bipyramids, Triangular Antiprismoids, and their Fractals

Does it Look Square? Hexagonal Bipyramids, Triangular Antiprismoids, and their Fractals Does it Look Square? Hexagonal Bipyramids, Triangular Antiprismoids, and their Fractals Hideki Tsuiki Graduate School of Human and Environmental Studies Kyoto University Yoshida-Nihonmatsu, Kyoto 606-8501,

More information

Fractals and Multi-Layer Coloring Algorithms

Fractals and Multi-Layer Coloring Algorithms Fractals and Multi-Layer Coloring Algorithms Javier Barrallo and Santiago Sanchez Mathematics, Physics and Computer Science The University of the Basque Country School of Architecture. Plaza Onati, 2.

More information

A simple problem that has a solution that is far deeper than expected!

A simple problem that has a solution that is far deeper than expected! The Water, Gas, Electricity Problem A simple problem that has a solution that is far deeper than expected! Consider the diagram below of three houses and three utilities: water, gas, and electricity. Each

More information

Scientific Calculation and Visualization

Scientific Calculation and Visualization Scientific Calculation and Visualization Topic Iteration Method for Fractal 2 Classical Electrodynamics Contents A First Look at Quantum Physics. Fractals.2 History of Fractal.3 Iteration Method for Fractal.4

More information

Computer Graphics (CS 543) Lecture 2c: Fractals. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Computer Graphics (CS 543) Lecture 2c: Fractals. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI) Computer Graphics (CS 543 Lecture c: Fractals Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI What are Fractals? Mathematical expressions to generate pretty pictures Evaluate

More information

Construction of 3D Mandelbrot Set and Julia Set

Construction of 3D Mandelbrot Set and Julia Set Construction of 3D Mandelbrot Set and Julia Set Ankit Garg Assistant Professor Amity University, Haryana Manesar, Gurgaon Akshat Agrawal Assistant Professor Amity University, Haryana Manesar, Gurgaon Ashish

More information

Glossary of dictionary terms in the AP geometry units

Glossary of dictionary terms in the AP geometry units Glossary of dictionary terms in the AP geometry units affine linear equation: an equation in which both sides are sums of terms that are either a number times y or a number times x or just a number [SlL2-D5]

More information

MATERIAL FOR A MASTERCLASS ON HYPERBOLIC GEOMETRY. Timeline. 10 minutes Exercise session: Introducing curved spaces

MATERIAL FOR A MASTERCLASS ON HYPERBOLIC GEOMETRY. Timeline. 10 minutes Exercise session: Introducing curved spaces MATERIAL FOR A MASTERCLASS ON HYPERBOLIC GEOMETRY Timeline 10 minutes Introduction and History 10 minutes Exercise session: Introducing curved spaces 5 minutes Talk: spherical lines and polygons 15 minutes

More information

Topic: Orientation, Surfaces, and Euler characteristic

Topic: Orientation, Surfaces, and Euler characteristic Topic: Orientation, Surfaces, and Euler characteristic The material in these notes is motivated by Chapter 2 of Cromwell. A source I used for smooth manifolds is do Carmo s Riemannian Geometry. Ideas of

More information

A Selection of Interesting Sets

A Selection of Interesting Sets A Selection of January 25, 2010 A Selection of Overview Overview Set, Oh joyous sets Overview Set, Oh joyous sets Some large, some small Overview Set, Oh joyous sets Some large, some small All of them

More information

Use Math to Solve Problems and Communicate. Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Use Math to Solve Problems and Communicate. Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Number Sense M.1.1 Connect and count number words and numerals from 0-999 to the quantities they represent. M.2.1 Connect and count number words and numerals from 0-1,000,000 to the quantities they represent.

More information

1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral

1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral 1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral Show your working and give your answer correct to three decimal places. 2 2.5 3 3.5 4 When When When When When

More information

Fractals & Iterative Function Systems

Fractals & Iterative Function Systems CS 543: Computer Graphics Fractals & Iterative Function Systems Robert W. Lindeman Associate Professor Department of Computer Science Worcester Polytechnic Institute gogo@wpi.edu (with lots of help from

More information

Solid models and fractals

Solid models and fractals Solid models and fractals COM3404 Richard Everson School of Engineering, Computer Science and Mathematics University of Exeter R.M.Everson@exeter.ac.uk http://www.secamlocal.ex.ac.uk/studyres/com304 Richard

More information

CSC 470 Computer Graphics. Fractals

CSC 470 Computer Graphics. Fractals CSC 47 Computer Graphics Fractals 1 This Week Approaches to Infinity Fractals and Self-Similarity Similarity Iterative Function Systems Lindenmayer Systems Curves Natural Images (trees, landscapes..) Introduction

More information

Computer Graphics 4731 Lecture 5: Fractals. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Computer Graphics 4731 Lecture 5: Fractals. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI) Computer Graphics 4731 Lecture 5: Fractals Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI What are Fractals? Mathematical expressions to generate pretty pictures Evaluate

More information

Geometry Scope & Sequence - Charles A. Dana Center, March 2006

Geometry Scope & Sequence - Charles A. Dana Center, March 2006 Geometric structure (3.5 weeks) Using inductive reasoning and conjectures Terms, notation, and representation 0.5 weeks G.2 (Geometric structure. The student analyzes geometric relationships in order to

More information

ITERATIVE OPERATIONS IN CONSTRUCTION CIRCULAR AND SQUARE FRACTAL CARPETS

ITERATIVE OPERATIONS IN CONSTRUCTION CIRCULAR AND SQUARE FRACTAL CARPETS ITERATIVE OPERATIONS IN CONSTRUCTION CIRCULAR AND SQUARE FRACTAL CARPETS Dr. Yusra Faisal Al-Irhaim, Marah Mohamed Taha University of Mosul, Iraq ABSTRACT: Carpet designing is not only a fascinating activity

More information

Course Number: Course Title: Geometry

Course Number: Course Title: Geometry Course Number: 1206310 Course Title: Geometry RELATED GLOSSARY TERM DEFINITIONS (89) Altitude The perpendicular distance from the top of a geometric figure to its opposite side. Angle Two rays or two line

More information

GTPS Curriculum Mathematics Grade 8

GTPS Curriculum Mathematics Grade 8 4.2.8.B2 Use iterative procedures to generate geometric patterns: Fractals (e.g., the Koch Snowflake); Self-similarity; Construction of initial stages; Patterns in successive stages (e.g., number of triangles

More information

Chapter 1 Introduction

Chapter 1 Introduction Page 1 Chapter 1 Introduction 1.1 Introduction The twin subjects of fractal geometry and chaotic dynamics have been behind an enormous change in the way scientists and engineers perceive, and subsequently

More information

Module 1 Session 1 HS. Critical Areas for Traditional Geometry Page 1 of 6

Module 1 Session 1 HS. Critical Areas for Traditional Geometry Page 1 of 6 Critical Areas for Traditional Geometry Page 1 of 6 There are six critical areas (units) for Traditional Geometry: Critical Area 1: Congruence, Proof, and Constructions In previous grades, students were

More information

absolute value- the absolute value of a number is the distance between that number and 0 on a number line. Absolute value is shown 7 = 7-16 = 16

absolute value- the absolute value of a number is the distance between that number and 0 on a number line. Absolute value is shown 7 = 7-16 = 16 Grade Six MATH GLOSSARY absolute value- the absolute value of a number is the distance between that number and 0 on a number line. Absolute value is shown 7 = 7-16 = 16 abundant number: A number whose

More information

UNIT 7 Mensuration Activities

UNIT 7 Mensuration Activities UNIT 7 Mensuration Activities Activities 7.1 Tangram 7.2 Closed Doodles 7.3 Map Colouring 7.4 Euler's Formula 7.5 Square-based Oblique Pyramid 7.6 Klein Cube (3 pages) 7.7 Transforming Polygons 7.8 Tubes

More information

Lectures on Challenging Mathematics. Integrated Mathematics 3. Idea Math. Algebra (part 2) Summer Internal Use

Lectures on Challenging Mathematics. Integrated Mathematics 3. Idea Math. Algebra (part 2) Summer Internal Use Lectures on Challenging Mathematics c Copyright 2008 2018 Integrated Mathematics 3 Algebra (part 2) Summer 2018 Zuming Feng Phillips Exeter Academy and IDEA Math zfeng@exeteredu Copyright c 2008 2018 IDEA

More information

Möbius Transformations in Scientific Computing. David Eppstein

Möbius Transformations in Scientific Computing. David Eppstein Möbius Transformations in Scientific Computing David Eppstein Univ. of California, Irvine School of Information and Computer Science (including joint work with Marshall Bern from WADS 01 and SODA 03) Outline

More information

Answer Key: Three-Dimensional Cross Sections

Answer Key: Three-Dimensional Cross Sections Geometry A Unit Answer Key: Three-Dimensional Cross Sections Name Date Objectives In this lesson, you will: visualize three-dimensional objects from different perspectives be able to create a projection

More information

Fixed Point Iterative Techniques An Application to Fractals

Fixed Point Iterative Techniques An Application to Fractals Fixed Point Iterative Techniques An Application to Fractals Narayan Partap 1 and Prof. Renu Chugh 2 1 Amity Institute of Applied Sciences, Amity University, Noida, India 2 Department of Mathematics, M.D.

More information

Mathematics. Year 7. Autumn Term

Mathematics. Year 7. Autumn Term Mathematics Year 7 Autumn Term Decimals o Use place value with decimals o Add and subtract, multiply and divide decimal numbers Basic Arithmetic o Multiply by a two or three digit number o Divide by a

More information

Let be a function. We say, is a plane curve given by the. Let a curve be given by function where is differentiable with continuous.

Let be a function. We say, is a plane curve given by the. Let a curve be given by function where is differentiable with continuous. Module 8 : Applications of Integration - II Lecture 22 : Arc Length of a Plane Curve [Section 221] Objectives In this section you will learn the following : How to find the length of a plane curve 221

More information

The Size of the Cantor Set

The Size of the Cantor Set The Size of the Cantor Set Washington University Math Circle November 6, 2016 In mathematics, a set is a collection of things called elements. For example, {1, 2, 3, 4}, {a,b,c,...,z}, and {cat, dog, chicken}

More information

Framework for developing schemes of work for the geometry curriculum for ages 11-14

Framework for developing schemes of work for the geometry curriculum for ages 11-14 Framework for developing schemes of work for the geometry curriculum for ages 11-14 CURRICULUM CONTENT TOPIC TEACHING OPPORTUNITIES Classify 2D shapes using angle and side properties. Recognise congruence

More information

A TECHNOLOGY-ENHANCED FRACTAL/CHAOS COURSE. Taeil Yi University of Texas at Brownsville 80 Fort Brown Brownsville, TX

A TECHNOLOGY-ENHANCED FRACTAL/CHAOS COURSE. Taeil Yi University of Texas at Brownsville 80 Fort Brown Brownsville, TX A TECHNOLOGY-ENHANCED FRACTAL/CHAOS COURSE Taeil Yi University of Texas at Brownsville 80 Fort Brown Brownsville, TX 78520 tyi@utb.edu Abstract Easy construction of fractal figures is the most valuable

More information

Scope and Sequence for the New Jersey Core Curriculum Content Standards

Scope and Sequence for the New Jersey Core Curriculum Content Standards Scope and Sequence for the New Jersey Core Curriculum Content Standards The following chart provides an overview of where within Prentice Hall Course 3 Mathematics each of the Cumulative Progress Indicators

More information

Exploring the Effect of Direction on Vector-Based Fractals

Exploring the Effect of Direction on Vector-Based Fractals BRIDGES Mathematical Connections in Art, Music, and Science Exploring the Effect of Direction on Vector-Based Fractals Magdy Ibrahim and Robert J. Krawczyk College of Architecture Dlinois Institute of

More information

What would you see if you live on a flat torus? What is the relationship between it and a room with 2 mirrors?

What would you see if you live on a flat torus? What is the relationship between it and a room with 2 mirrors? DAY I Activity I: What is the sum of the angles of a triangle? How can you show it? How about a quadrilateral (a shape with 4 sides)? A pentagon (a shape with 5 sides)? Can you find the sum of their angles

More information

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College Topological Data Analysis - I Afra Zomorodian Department of Computer Science Dartmouth College September 3, 2007 1 Acquisition Vision: Images (2D) GIS: Terrains (3D) Graphics: Surfaces (3D) Medicine: MRI

More information

INTRODUCTION TO 3-MANIFOLDS

INTRODUCTION TO 3-MANIFOLDS INTRODUCTION TO 3-MANIFOLDS NIK AKSAMIT As we know, a topological n-manifold X is a Hausdorff space such that every point contained in it has a neighborhood (is contained in an open set) homeomorphic to

More information

Alaska Mathematics Standards Vocabulary Word List Grade 7

Alaska Mathematics Standards Vocabulary Word List Grade 7 1 estimate proportion proportional relationship rate ratio rational coefficient rational number scale Ratios and Proportional Relationships To find a number close to an exact amount; an estimate tells

More information

Hopalong Fractals. Linear complex. Quadratic complex

Hopalong Fractals. Linear complex. Quadratic complex Hopalong Fractals Hopalong fractals are created by iterating a more or less simple formula in x and y over and over again. In general three types of behaviour can be distinguished. Often the series will

More information

Cover-Based Method KD Tree Algorithm for Estimating Fractal Characteristics

Cover-Based Method KD Tree Algorithm for Estimating Fractal Characteristics Cover-Based Method KD Tree Algorithm for Estimating Fractal Characteristics by Troy A. Thielen A thesis submitted to the Graduate Office in partial fulfillment of the requirements for the degree of MASTER

More information

Direction Fields; Euler s Method

Direction Fields; Euler s Method Direction Fields; Euler s Method It frequently happens that we cannot solve first order systems dy (, ) dx = f xy or corresponding initial value problems in terms of formulas. Remarkably, however, this

More information

<The von Koch Snowflake Investigation> properties of fractals is self-similarity. It means that we can magnify them many times and after every

<The von Koch Snowflake Investigation> properties of fractals is self-similarity. It means that we can magnify them many times and after every Jiwon MYP 5 Math Ewa Puzanowska 18th of Oct 2012 About Fractal... In geometry, a fractal is a shape made up of parts that are the same shape as itself and are of

More information

Fractals in Nature. Ivan Sudakov. Mathematics Undergraduate Colloquium University of Utah 09/03/2014.

Fractals in Nature. Ivan Sudakov. Mathematics Undergraduate Colloquium University of Utah 09/03/2014. Chesapeake Bay Mathematics Undergraduate Colloquium University of Utah 09/03/2014 Fractals in Nature Ivan Sudakov www.math.utah.edu/~sudakov www.mathclimate.org References 1. W. Szemplinska-Stupnicka.

More information

Curriculum Connections (Fractions): K-8 found at under Planning Supports

Curriculum Connections (Fractions): K-8 found at   under Planning Supports Curriculum Connections (Fractions): K-8 found at http://www.edugains.ca/newsite/digitalpapers/fractions/resources.html under Planning Supports Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Grade

More information

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality Planar Graphs In the first half of this book, we consider mostly planar graphs and their geometric representations, mostly in the plane. We start with a survey of basic results on planar graphs. This chapter

More information

CS 543: Computer Graphics Lecture 3 (Part I): Fractals. Emmanuel Agu

CS 543: Computer Graphics Lecture 3 (Part I): Fractals. Emmanuel Agu CS 543: Computer Graphics Lecture 3 (Part I: Fractals Emmanuel Agu What are Fractals? Mathematical expressions Approach infinity in organized way Utilizes recursion on computers Popularized by Benoit Mandelbrot

More information

Applications. 44 Stretching and Shrinking

Applications. 44 Stretching and Shrinking Applications 1. Look for rep-tile patterns in the designs below. For each design, tell whether the small quadrilaterals are similar to the large quadrilateral. Explain. If the quadrilaterals are similar,

More information

Equations and Functions, Variables and Expressions

Equations and Functions, Variables and Expressions Equations and Functions, Variables and Expressions Equations and functions are ubiquitous components of mathematical language. Success in mathematics beyond basic arithmetic depends on having a solid working

More information

Lecture 7: Jan 31, Some definitions related to Simplical Complex. 7.2 Topological Equivalence and Homeomorphism

Lecture 7: Jan 31, Some definitions related to Simplical Complex. 7.2 Topological Equivalence and Homeomorphism CS 6170 Computational Topology: Topological Data Analysis University of Utah Spring 2017 School of Computing Lecture 7: Jan 31, 2017 Lecturer: Prof. Bei Wang Scribe: Avani Sharma,

More information

Graph Fractals. An Honors Thesis (Honrs 499) by Ben J. Kelly. Thesis Advisor. Ball State University Muncie, Indiana. May 1995

Graph Fractals. An Honors Thesis (Honrs 499) by Ben J. Kelly. Thesis Advisor. Ball State University Muncie, Indiana. May 1995 Graph Fractals An Honors Thesis (Honrs 499) by Ben J. Kelly Thesis Advisor Ball State University Muncie, Indiana May 1995 Expected Date Of Graduation: May 6, 1995 ~, 5fCol! rj,e5;s ~ 7) 2 J+B(). L~ if

More information