Estimation and Inference by the Method of Projection Minimum Distance. Òscar Jordà Sharon Kozicki U.C. Davis Bank of Canada

Size: px
Start display at page:

Download "Estimation and Inference by the Method of Projection Minimum Distance. Òscar Jordà Sharon Kozicki U.C. Davis Bank of Canada"

Transcription

1 Estimation and Inference by the Method of Projection Minimum Distance Òscar Jordà Sharon Kozicki U.C. Davis Bank of Canada

2 The Paper in a Nutshell: An Efficient Limited Information Method Step 1: estimate the Wold representation of the data semiparametrically (local projections, Jordà, 2005) Step 2: Replace the variables in the model by their Wold representation Minimize the distance function relating the model s parameters and the semiparametric estimates of the Wold coefficients July 2007 Projection Minimum Distance 2

3 Preview of Results Local projections are consistent and asymptotically normal (and only require least-squares) Minimum chi-square step produces consistent and asymptotically normal estimates of the parameters (often only requires least-squares) A χ 2 test of the distance in the second step is a model misspecification test. PMD is asymptotically MLE/fully efficient GMM is a special case of PMD but PMD addresses some invalid/weak instrument problems + efficient July 2007 Projection Minimum Distance 3

4 Motivating Example: Galí and Gertler (1999) xr t could be a predictor of π, hence a valid instrument/omitted variable Let July 2007 Projection Minimum Distance 4

5 Implications Substituting the Wold representation into the model July 2007 Projection Minimum Distance 5

6 Remarks xr t is a natural predictor of inflation and fulfills two roles: As an instrument: the impulse responses of the included variables with respect to xr are used to estimate the parameters As a possibly omitted variable: even if we do not use the previous impulse responses, the responses of the included variables are calculated, orthogonal to xr July 2007 Projection Minimum Distance 6

7 1 st Step: Local Projections Suppose: with ε i.i.d. and assume the Wold rep is invertible such that July 2007 Projection Minimum Distance 7

8 Local Projections then, iterating the VAR( ) with July 2007 Projection Minimum Distance 8

9 Local Projections in finite samples Consider estimating a truncated version given by July 2007 Projection Minimum Distance 9

10 Local Projections Least Squares July 2007 Projection Minimum Distance 10

11 Local Projections (cont.) B rh rh I r 0 r... 0 r B 1 I r... 0 r... B h 1 B h 2... I r July 2007 Projection Minimum Distance 11

12 2 nd Step Minimum Distance Notice that: is a compact way of expressing Wold conditions with Objective: July 2007 Projection Minimum Distance 12

13 Minimum Chi-Square Objective function: Relative to classical minimum distance, the key is that first stage estimates appear both in the left and right hand sides, e.g. July 2007 Projection Minimum Distance 13

14 Min. Chi-Square Least Squares July 2007 Projection Minimum Distance 14

15 Key assumptions for Asymptotics is stochastically equicontinuous since b is infinite-dimensional when h as T 3. Instrument relevance: 4. Identification: July 2007 Projection Minimum Distance 15

16 Asymptotic Normality - Remarks Consistency and asymptotic normality is based on omitted lags vanishing asymptotically with the sample becomes infinite-dimensional with the sample: need stochastic equicontinuity condition as moment conditions go to infinity with the sample need condition that ensures enough explanatory power in the first stage estimates as the sample grows. In practice, use Hall et al. (2007) information criterion W is a function of nuisance parameters. Use equal weights estimator first to obtain consistent estimates and then plug into W and iterate. July 2007 Projection Minimum Distance 16

17 Misspecification Test Correct specification means the minimum distance function is zero. Hence we can test overidentifying conditions Since then July 2007 Projection Minimum Distance 17

18 GMM vs. PMD: An Example Estimated Model: True Model: Instrument validity condition: July 2007 Projection Minimum Distance 18

19 However Let: Notice that: y t M t 1 1 E t y t 1 M t 1 t M t 1 Hence: E t M t 1 y t h 0;h 1,...,H Lesson: Orthogonalize instruments w.r.t. possibly omitted variables July 2007 Projection Minimum Distance 19

20 GMM min vec Γ 0 h 1,0 Γ 1 h,0 W T GMM vec Γ0 h 1,0 Γ 1 h,0 W GMM 0 j 1 j j j T k h 1 T h T h t k Y t,h Y t j,h j utut j t k E h GMM 1 2 Γ h 1 1 Γ h 1 Γ h 0ash July 2007 Projection Minimum Distance 20

21 PMD min vec Γ 0 h 1 1 k Γ 1 h 1 k W T PMD vec Γ0 h 1 1 k Γ 1 h 1 k W T PMD Γ 0 1 k 1 v 1 v B I h B E h PMD 1 2 Γ h 1 k 1 Γ h 1 k Γ h k 0wheneitherh 1(ath 1 it is exactly zero) or h July 2007 Projection Minimum Distance 21

22 Monte Carlo Experiments 1. PMD vs MLE: ARMA(1,1) PMD vs MLE DGP: Parameter pairs (π 1, θ 1 ): (0.25, 0.5); (0.5; 0.25); (0, 0.5); (0.5; 0) T = 50, 100, 400 Lag length determined automatically by AIC c h = 2, 5, 10 July 2007 Projection Minimum Distance 22

23 π 1 = 0.5; θ 1 = 0.25 July 2007 Projection Minimum Distance 23

24 π 1 = 0.5; θ 1 = July 2007 Projection Minimum Distance 24

25 Monte Carlo Comparison: PMD vs GMM Euler equation: July 2007 Projection Minimum Distance 25

26 When Model is Correctly Specified PMD GMM July 2007 Projection Minimum Distance 26

27 Omitted Endogenous Dynamics July 2007 Projection Minimum Distance 27

28 Omitted Exogenous Dynamics July 2007 Projection Minimum Distance 28

29 PMD in Practice: PMD, MLE, GMM Fuhrer and Olivei (2005) Output Euler: z is the output gap and x is real interest rates Inflation Euler: z is inflation, x is the output gap July 2007 Projection Minimum Distance 29

30 Fuhrer and Olivei (2005) Sample: 1966:Q1 2001:Q4 Output gap: log deviation of GDP from (1) HP trend; (2) Segmented linear trend (ST) Inflation: log change in GDP chain-weighted index Real interest rate: fed funds rate next quarter s inflation Real Unit Labor Costs (RULC) July 2007 Projection Minimum Distance 30

31 Results Output Euler Equation Method Specification µ (S.E.) γ (S.E.) GMM HP 0.52 (0.053) (0.0094) GMM ST 0.51 (0.049) (0.0093) MLE HP 0.47 (0.035) (0.0037) MLE ST 0.42 (0.052) (0.0055) OI-GMM HP 0.47 (0.062) (0.023) OI-GMM ST 0.41 (0.064) (0.022) PMD (h = 12) HP 0.47 (0.025) (0.008) PMD (h = 12) ST 0.47 (0.027) (0.009) July 2007 Projection Minimum Distance 31

32 Inflation Euler Equations Method Specification µ (S.E.) γ (S.E.) GMM HP 0.66 (0.13) (0.072) GMM ST 0.63 (0.13) (0.050) GMM RULC 0.60 (0.086) (0.038) MLE HP 0.17 (0.037) 0.10 (0.042) MLE ST 0.18 (0.036) (0.034) MLE RULC 0.47 (0.024) (0.0081) OI-GMM HP 0.23 (0.093) 0.12 (0.042) OI-GMM ST 0.21 (0.11) (0.039) OI-GMM RULC 0.45 (0.028) (0.0081) PMD (h = 16) HP 0.59 (0.036) (0.019) PMD (h = 9) ST 0.63 (0.050) (0.019) PMD (h = 15) RULC 0.56 (0.027) (0.010) July 2007 Projection Minimum Distance 32

33 Summary 1. Models that require MLE + numerical techniques can be estimated by LS with PMD and nearly as efficiently (e.g. VARMA models) 2. PMD is asymptotically MLE 3. PMD accounts for serial correlation parametrically hence it is more efficient than GMM 4. PMD does appropriate, unsupervised conditioning of instruments, solving some cases of instrument invalidity 5. PMD provides natural statistics to evaluate model fit: J-test + plots of parameter variation as a function of h July 2007 Projection Minimum Distance 33

Analysis of Panel Data. Third Edition. Cheng Hsiao University of Southern California CAMBRIDGE UNIVERSITY PRESS

Analysis of Panel Data. Third Edition. Cheng Hsiao University of Southern California CAMBRIDGE UNIVERSITY PRESS Analysis of Panel Data Third Edition Cheng Hsiao University of Southern California CAMBRIDGE UNIVERSITY PRESS Contents Preface to the ThirdEdition Preface to the Second Edition Preface to the First Edition

More information

Nonparametric and Semiparametric Econometrics Lecture Notes for Econ 221. Yixiao Sun Department of Economics, University of California, San Diego

Nonparametric and Semiparametric Econometrics Lecture Notes for Econ 221. Yixiao Sun Department of Economics, University of California, San Diego Nonparametric and Semiparametric Econometrics Lecture Notes for Econ 221 Yixiao Sun Department of Economics, University of California, San Diego Winter 2007 Contents Preface ix 1 Kernel Smoothing: Density

More information

Chapter 7: Dual Modeling in the Presence of Constant Variance

Chapter 7: Dual Modeling in the Presence of Constant Variance Chapter 7: Dual Modeling in the Presence of Constant Variance 7.A Introduction An underlying premise of regression analysis is that a given response variable changes systematically and smoothly due to

More information

Serial Correlation and Heteroscedasticity in Time series Regressions. Econometric (EC3090) - Week 11 Agustín Bénétrix

Serial Correlation and Heteroscedasticity in Time series Regressions. Econometric (EC3090) - Week 11 Agustín Bénétrix Serial Correlation and Heteroscedasticity in Time series Regressions Econometric (EC3090) - Week 11 Agustín Bénétrix 1 Properties of OLS with serially correlated errors OLS still unbiased and consistent

More information

Chapter 3. Bootstrap. 3.1 Introduction. 3.2 The general idea

Chapter 3. Bootstrap. 3.1 Introduction. 3.2 The general idea Chapter 3 Bootstrap 3.1 Introduction The estimation of parameters in probability distributions is a basic problem in statistics that one tends to encounter already during the very first course on the subject.

More information

Overview of the Simulation Process. CS1538: Introduction to Simulations

Overview of the Simulation Process. CS1538: Introduction to Simulations Overview of the Simulation Process CS1538: Introduction to Simulations Simulation Fundamentals A computer simulation is a computer program that models the behavior of a physical system over time. Program

More information

Statistical Matching using Fractional Imputation

Statistical Matching using Fractional Imputation Statistical Matching using Fractional Imputation Jae-Kwang Kim 1 Iowa State University 1 Joint work with Emily Berg and Taesung Park 1 Introduction 2 Classical Approaches 3 Proposed method 4 Application:

More information

Description Remarks and examples References Also see

Description Remarks and examples References Also see Title stata.com intro 4 Substantive concepts Description Remarks and examples References Also see Description The structural equation modeling way of describing models is deceptively simple. It is deceptive

More information

Machine Learning (BSMC-GA 4439) Wenke Liu

Machine Learning (BSMC-GA 4439) Wenke Liu Machine Learning (BSMC-GA 4439) Wenke Liu 01-25-2018 Outline Background Defining proximity Clustering methods Determining number of clusters Other approaches Cluster analysis as unsupervised Learning Unsupervised

More information

MCMC Diagnostics. Yingbo Li MATH Clemson University. Yingbo Li (Clemson) MCMC Diagnostics MATH / 24

MCMC Diagnostics. Yingbo Li MATH Clemson University. Yingbo Li (Clemson) MCMC Diagnostics MATH / 24 MCMC Diagnostics Yingbo Li Clemson University MATH 9810 Yingbo Li (Clemson) MCMC Diagnostics MATH 9810 1 / 24 Convergence to Posterior Distribution Theory proves that if a Gibbs sampler iterates enough,

More information

Model objects, Policy simulations and Forecasting in E-views: a step by step approach. Tinashe Bvirindi

Model objects, Policy simulations and Forecasting in E-views: a step by step approach. Tinashe Bvirindi Model objects, Policy simulations and Forecasting in E-views: a step by step approach By Tinashe Bvirindi tbvirindi@gmail.com Layout Model object creation Solving a model (in sample) Forecasting out of

More information

Bootstrapping Methods

Bootstrapping Methods Bootstrapping Methods example of a Monte Carlo method these are one Monte Carlo statistical method some Bayesian statistical methods are Monte Carlo we can also simulate models using Monte Carlo methods

More information

Machine Learning (BSMC-GA 4439) Wenke Liu

Machine Learning (BSMC-GA 4439) Wenke Liu Machine Learning (BSMC-GA 4439) Wenke Liu 01-31-017 Outline Background Defining proximity Clustering methods Determining number of clusters Comparing two solutions Cluster analysis as unsupervised Learning

More information

Dimension Reduction Methods for Multivariate Time Series

Dimension Reduction Methods for Multivariate Time Series Dimension Reduction Methods for Multivariate Time Series BigVAR Will Nicholson PhD Candidate wbnicholson.com github.com/wbnicholson/bigvar Department of Statistical Science Cornell University May 28, 2015

More information

Appendix A: An Alternative Estimation Procedure Dual Penalized Expansion

Appendix A: An Alternative Estimation Procedure Dual Penalized Expansion Supplemental Materials for Functional Linear Models for Zero-Inflated Count Data with Application to Modeling Hospitalizations in Patients on Dialysis by Şentürk, D., Dalrymple, L. S. and Nguyen, D. V.

More information

On the Test and Estimation of Fractional Parameter. in ARFIMA Model: Bootstrap Approach

On the Test and Estimation of Fractional Parameter. in ARFIMA Model: Bootstrap Approach Applied Mathematical Sciences, Vol. 8, 2014, no. 96, 4783-4792 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.46498 On the Test and Estimation of Fractional Parameter in ARFIMA Model:

More information

Intro to E-Views. E-views is a statistical package useful for cross sectional, time series and panel data statistical analysis.

Intro to E-Views. E-views is a statistical package useful for cross sectional, time series and panel data statistical analysis. Center for Teaching, Research & Learning Research Support Group at the CTRL Lab American University, Washington, D.C. http://www.american.edu/provost/ctrl/ 202-885-3862 Intro to E-Views E-views is a statistical

More information

Today. Lecture 4: Last time. The EM algorithm. We examine clustering in a little more detail; we went over it a somewhat quickly last time

Today. Lecture 4: Last time. The EM algorithm. We examine clustering in a little more detail; we went over it a somewhat quickly last time Today Lecture 4: We examine clustering in a little more detail; we went over it a somewhat quickly last time The CAD data will return and give us an opportunity to work with curves (!) We then examine

More information

Markov chain Monte Carlo methods

Markov chain Monte Carlo methods Markov chain Monte Carlo methods (supplementary material) see also the applet http://www.lbreyer.com/classic.html February 9 6 Independent Hastings Metropolis Sampler Outline Independent Hastings Metropolis

More information

ADAPTIVE METROPOLIS-HASTINGS SAMPLING, OR MONTE CARLO KERNEL ESTIMATION

ADAPTIVE METROPOLIS-HASTINGS SAMPLING, OR MONTE CARLO KERNEL ESTIMATION ADAPTIVE METROPOLIS-HASTINGS SAMPLING, OR MONTE CARLO KERNEL ESTIMATION CHRISTOPHER A. SIMS Abstract. A new algorithm for sampling from an arbitrary pdf. 1. Introduction Consider the standard problem of

More information

Part I. Hierarchical clustering. Hierarchical Clustering. Hierarchical clustering. Produces a set of nested clusters organized as a

Part I. Hierarchical clustering. Hierarchical Clustering. Hierarchical clustering. Produces a set of nested clusters organized as a Week 9 Based in part on slides from textbook, slides of Susan Holmes Part I December 2, 2012 Hierarchical Clustering 1 / 1 Produces a set of nested clusters organized as a Hierarchical hierarchical clustering

More information

Assessing the Quality of the Natural Cubic Spline Approximation

Assessing the Quality of the Natural Cubic Spline Approximation Assessing the Quality of the Natural Cubic Spline Approximation AHMET SEZER ANADOLU UNIVERSITY Department of Statisticss Yunus Emre Kampusu Eskisehir TURKEY ahsst12@yahoo.com Abstract: In large samples,

More information

davidr Cornell University

davidr Cornell University 1 NONPARAMETRIC RANDOM EFFECTS MODELS AND LIKELIHOOD RATIO TESTS Oct 11, 2002 David Ruppert Cornell University www.orie.cornell.edu/ davidr (These transparencies and preprints available link to Recent

More information

Theoretical Concepts of Machine Learning

Theoretical Concepts of Machine Learning Theoretical Concepts of Machine Learning Part 2 Institute of Bioinformatics Johannes Kepler University, Linz, Austria Outline 1 Introduction 2 Generalization Error 3 Maximum Likelihood 4 Noise Models 5

More information

Nonparametric Regression

Nonparametric Regression Nonparametric Regression John Fox Department of Sociology McMaster University 1280 Main Street West Hamilton, Ontario Canada L8S 4M4 jfox@mcmaster.ca February 2004 Abstract Nonparametric regression analysis

More information

1 Methods for Posterior Simulation

1 Methods for Posterior Simulation 1 Methods for Posterior Simulation Let p(θ y) be the posterior. simulation. Koop presents four methods for (posterior) 1. Monte Carlo integration: draw from p(θ y). 2. Gibbs sampler: sequentially drawing

More information

The Bootstrap and Jackknife

The Bootstrap and Jackknife The Bootstrap and Jackknife Summer 2017 Summer Institutes 249 Bootstrap & Jackknife Motivation In scientific research Interest often focuses upon the estimation of some unknown parameter, θ. The parameter

More information

Monte Carlo Integration and Random Numbers

Monte Carlo Integration and Random Numbers Monte Carlo Integration and Random Numbers Higher dimensional integration u Simpson rule with M evaluations in u one dimension the error is order M -4! u d dimensions the error is order M -4/d u In general

More information

Two-Stage Least Squares

Two-Stage Least Squares Chapter 316 Two-Stage Least Squares Introduction This procedure calculates the two-stage least squares (2SLS) estimate. This method is used fit models that include instrumental variables. 2SLS includes

More information

Targeting Nominal GDP or Prices: Expectation Dynamics and the Interest Rate Lower Bound

Targeting Nominal GDP or Prices: Expectation Dynamics and the Interest Rate Lower Bound Targeting Nominal GDP or Prices: Expectation Dynamics and the Interest Rate Lower Bound Seppo Honkapohja, Bank of Finland Kaushik Mitra, University of Saint Andrews *Views expressed do not necessarily

More information

Exploring Econometric Model Selection Using Sensitivity Analysis

Exploring Econometric Model Selection Using Sensitivity Analysis Exploring Econometric Model Selection Using Sensitivity Analysis William Becker Paolo Paruolo Andrea Saltelli Nice, 2 nd July 2013 Outline What is the problem we are addressing? Past approaches Hoover

More information

Inference and Representation

Inference and Representation Inference and Representation Rachel Hodos New York University Lecture 5, October 6, 2015 Rachel Hodos Lecture 5: Inference and Representation Today: Learning with hidden variables Outline: Unsupervised

More information

Mixed Effects Models. Biljana Jonoska Stojkova Applied Statistics and Data Science Group (ASDa) Department of Statistics, UBC.

Mixed Effects Models. Biljana Jonoska Stojkova Applied Statistics and Data Science Group (ASDa) Department of Statistics, UBC. Mixed Effects Models Biljana Jonoska Stojkova Applied Statistics and Data Science Group (ASDa) Department of Statistics, UBC March 6, 2018 Resources for statistical assistance Department of Statistics

More information

Quantitative Biology II!

Quantitative Biology II! Quantitative Biology II! Lecture 3: Markov Chain Monte Carlo! March 9, 2015! 2! Plan for Today!! Introduction to Sampling!! Introduction to MCMC!! Metropolis Algorithm!! Metropolis-Hastings Algorithm!!

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

Dynamic Thresholding for Image Analysis

Dynamic Thresholding for Image Analysis Dynamic Thresholding for Image Analysis Statistical Consulting Report for Edward Chan Clean Energy Research Center University of British Columbia by Libo Lu Department of Statistics University of British

More information

Chapter 6: Examples 6.A Introduction

Chapter 6: Examples 6.A Introduction Chapter 6: Examples 6.A Introduction In Chapter 4, several approaches to the dual model regression problem were described and Chapter 5 provided expressions enabling one to compute the MSE of the mean

More information

Detecting and Circumventing Collinearity or Ill-Conditioning Problems

Detecting and Circumventing Collinearity or Ill-Conditioning Problems Chapter 8 Detecting and Circumventing Collinearity or Ill-Conditioning Problems Section 8.1 Introduction Multicollinearity/Collinearity/Ill-Conditioning The terms multicollinearity, collinearity, and ill-conditioning

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 1 3.1 Linearization and Optimization of Functions of Vectors 1 Problem Notation 2 Outline 3.1.1 Linearization 3.1.2 Optimization of Objective Functions 3.1.3 Constrained

More information

Estimating Asset Pricing Models by GMM using EViews

Estimating Asset Pricing Models by GMM using EViews Estimating Asset Pricing Models by GMM using EViews Benedikt Heid Department of Statistics, Econometrics, and Empirical Economics Professor Joachim Grammig) University of Tübingen June 2005 Summary: This

More information

Towards Interactive Global Illumination Effects via Sequential Monte Carlo Adaptation. Carson Brownlee Peter S. Shirley Steven G.

Towards Interactive Global Illumination Effects via Sequential Monte Carlo Adaptation. Carson Brownlee Peter S. Shirley Steven G. Towards Interactive Global Illumination Effects via Sequential Monte Carlo Adaptation Vincent Pegoraro Carson Brownlee Peter S. Shirley Steven G. Parker Outline Motivation & Applications Monte Carlo Integration

More information

Lecture: Simulation. of Manufacturing Systems. Sivakumar AI. Simulation. SMA6304 M2 ---Factory Planning and scheduling. Simulation - A Predictive Tool

Lecture: Simulation. of Manufacturing Systems. Sivakumar AI. Simulation. SMA6304 M2 ---Factory Planning and scheduling. Simulation - A Predictive Tool SMA6304 M2 ---Factory Planning and scheduling Lecture Discrete Event of Manufacturing Systems Simulation Sivakumar AI Lecture: 12 copyright 2002 Sivakumar 1 Simulation Simulation - A Predictive Tool Next

More information

Outline. Advanced Digital Image Processing and Others. Importance of Segmentation (Cont.) Importance of Segmentation

Outline. Advanced Digital Image Processing and Others. Importance of Segmentation (Cont.) Importance of Segmentation Advanced Digital Image Processing and Others Xiaojun Qi -- REU Site Program in CVIP (7 Summer) Outline Segmentation Strategies and Data Structures Algorithms Overview K-Means Algorithm Hidden Markov Model

More information

Evaluating generalization (validation) Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support

Evaluating generalization (validation) Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support Evaluating generalization (validation) Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support Topics Validation of biomedical models Data-splitting Resampling Cross-validation

More information

Lecture on Modeling Tools for Clustering & Regression

Lecture on Modeling Tools for Clustering & Regression Lecture on Modeling Tools for Clustering & Regression CS 590.21 Analysis and Modeling of Brain Networks Department of Computer Science University of Crete Data Clustering Overview Organizing data into

More information

An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework

An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework IEEE SIGNAL PROCESSING LETTERS, VOL. XX, NO. XX, XXX 23 An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework Ji Won Yoon arxiv:37.99v [cs.lg] 3 Jul 23 Abstract In order to cluster

More information

Testing Random- Number Generators

Testing Random- Number Generators Testing Random- Number Generators Raj Jain Washington University Saint Louis, MO 63131 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-06/ 27-1 Overview

More information

Estimation of Item Response Models

Estimation of Item Response Models Estimation of Item Response Models Lecture #5 ICPSR Item Response Theory Workshop Lecture #5: 1of 39 The Big Picture of Estimation ESTIMATOR = Maximum Likelihood; Mplus Any questions? answers Lecture #5:

More information

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu FMA901F: Machine Learning Lecture 3: Linear Models for Regression Cristian Sminchisescu Machine Learning: Frequentist vs. Bayesian In the frequentist setting, we seek a fixed parameter (vector), with value(s)

More information

Introduction. Advanced Econometrics - HEC Lausanne. Christophe Hurlin. University of Orléans. October 2013

Introduction. Advanced Econometrics - HEC Lausanne. Christophe Hurlin. University of Orléans. October 2013 Advanced Econometrics - HEC Lausanne Christophe Hurlin University of Orléans October 2013 Christophe Hurlin (University of Orléans) Advanced Econometrics - HEC Lausanne October 2013 1 / 27 Instructor Contact

More information

1.1 - Functions, Domain, and Range

1.1 - Functions, Domain, and Range 1.1 - Functions, Domain, and Range Lesson Outline Section 1: Difference between relations and functions Section 2: Use the vertical line test to check if it is a relation or a function Section 3: Domain

More information

[spa-temp.inf] Spatial-temporal information

[spa-temp.inf] Spatial-temporal information [spa-temp.inf] Spatial-temporal information VI Table of Contents for Spatial-temporal information I. Spatial-temporal information........................................... VI - 1 A. Cohort-survival method.........................................

More information

The cointardl addon for gretl

The cointardl addon for gretl The cointardl addon for gretl Artur Tarassow Version 0.51 Changelog Version 0.51 (May, 2017) correction: following the literature, the wild bootstrap does not rely on resampled residuals but the initially

More information

Estimation of Bilateral Connections in a Network: Copula vs. Maximum Entropy

Estimation of Bilateral Connections in a Network: Copula vs. Maximum Entropy Estimation of Bilateral Connections in a Network: Copula vs. Maximum Entropy Pallavi Baral and Jose Pedro Fique Department of Economics Indiana University at Bloomington 1st Annual CIRANO Workshop on Networks

More information

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin Clustering K-means Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, 2014 Carlos Guestrin 2005-2014 1 Clustering images Set of Images [Goldberger et al.] Carlos Guestrin 2005-2014

More information

Monte Carlo for Spatial Models

Monte Carlo for Spatial Models Monte Carlo for Spatial Models Murali Haran Department of Statistics Penn State University Penn State Computational Science Lectures April 2007 Spatial Models Lots of scientific questions involve analyzing

More information

Note Set 4: Finite Mixture Models and the EM Algorithm

Note Set 4: Finite Mixture Models and the EM Algorithm Note Set 4: Finite Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine Finite Mixture Models A finite mixture model with K components, for

More information

Macroeconomic Model Data Base User Guide

Macroeconomic Model Data Base User Guide Macroeconomic Model Data Base 2.3 - User Guide This user guide describes how to install and use the Macroeconomic Model Data Base, version 2.3 (hereafter the Modelbase). After reading Sections 1 and 2

More information

Resources for statistical assistance. Quantitative covariates and regression analysis. Methods for predicting continuous outcomes.

Resources for statistical assistance. Quantitative covariates and regression analysis. Methods for predicting continuous outcomes. Resources for statistical assistance Quantitative covariates and regression analysis Carolyn Taylor Applied Statistics and Data Science Group (ASDa) Department of Statistics, UBC January 24, 2017 Department

More information

Feature extraction. Bi-Histogram Binarization Entropy. What is texture Texture primitives. Filter banks 2D Fourier Transform Wavlet maxima points

Feature extraction. Bi-Histogram Binarization Entropy. What is texture Texture primitives. Filter banks 2D Fourier Transform Wavlet maxima points Feature extraction Bi-Histogram Binarization Entropy What is texture Texture primitives Filter banks 2D Fourier Transform Wavlet maxima points Edge detection Image gradient Mask operators Feature space

More information

Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings Theory / 15

Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings Theory / 15 22.520 Numerical Methods for PDEs : Video 11: 1D Finite Difference Mappings Theory and Matlab February 15, 2015 22.520 Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings 2015

More information

CS839: Probabilistic Graphical Models. Lecture 10: Learning with Partially Observed Data. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 10: Learning with Partially Observed Data. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 10: Learning with Partially Observed Data Theo Rekatsinas 1 Partially Observed GMs Speech recognition 2 Partially Observed GMs Evolution 3 Partially Observed

More information

Why is Statistics important in Bioinformatics?

Why is Statistics important in Bioinformatics? Why is Statistics important in Bioinformatics? Random processes are inherent in evolution and in sampling (data collection). Errors are often unavoidable in the data collection process. Statistics helps

More information

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask Machine Learning and Data Mining Clustering (1): Basics Kalev Kask Unsupervised learning Supervised learning Predict target value ( y ) given features ( x ) Unsupervised learning Understand patterns of

More information

INTRODUCTION TO PANEL DATA ANALYSIS

INTRODUCTION TO PANEL DATA ANALYSIS INTRODUCTION TO PANEL DATA ANALYSIS USING EVIEWS FARIDAH NAJUNA MISMAN, PhD FINANCE DEPARTMENT FACULTY OF BUSINESS & MANAGEMENT UiTM JOHOR PANEL DATA WORKSHOP-23&24 MAY 2017 1 OUTLINE 1. Introduction 2.

More information

Modeling time series with hidden Markov models

Modeling time series with hidden Markov models Modeling time series with hidden Markov models Advanced Machine learning 2017 Nadia Figueroa, Jose Medina and Aude Billard Time series data Barometric pressure Temperature Data Humidity Time What s going

More information

PHYSICS 115/242 Homework 5, Solutions X = and the mean and variance of X are N times the mean and variance of 12/N y, so

PHYSICS 115/242 Homework 5, Solutions X = and the mean and variance of X are N times the mean and variance of 12/N y, so PHYSICS 5/242 Homework 5, Solutions. Central limit theorem. (a) Let y i = x i /2. The distribution of y i is equal to for /2 y /2 and zero otherwise. Hence We consider µ y y i = /2 /2 σ 2 y y 2 i y i 2

More information

DD2429 Computational Photography :00-19:00

DD2429 Computational Photography :00-19:00 . Examination: DD2429 Computational Photography 202-0-8 4:00-9:00 Each problem gives max 5 points. In order to pass you need about 0-5 points. You are allowed to use the lecture notes and standard list

More information

Monte Carlo Methods and Statistical Computing: My Personal E

Monte Carlo Methods and Statistical Computing: My Personal E Monte Carlo Methods and Statistical Computing: My Personal Experience Department of Mathematics & Statistics Indian Institute of Technology Kanpur November 29, 2014 Outline Preface 1 Preface 2 3 4 5 6

More information

MFx Macroeconomic Forecasting

MFx Macroeconomic Forecasting MFx Macroeconomic Forecasting Module: Introduction to EViews Note: This presentation serves as an outline of the topics discussed in the videos for this module. IMFx This training material is the property

More information

Apprenticeship Learning for Reinforcement Learning. with application to RC helicopter flight Ritwik Anand, Nick Haliday, Audrey Huang

Apprenticeship Learning for Reinforcement Learning. with application to RC helicopter flight Ritwik Anand, Nick Haliday, Audrey Huang Apprenticeship Learning for Reinforcement Learning with application to RC helicopter flight Ritwik Anand, Nick Haliday, Audrey Huang Table of Contents Introduction Theory Autonomous helicopter control

More information

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin Clustering K-means Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, 2014 Carlos Guestrin 2005-2014 1 Clustering images Set of Images [Goldberger et al.] Carlos Guestrin 2005-2014

More information

Generalized Indirect Inference for Discrete Choice Models

Generalized Indirect Inference for Discrete Choice Models Generalized Indirect Inference for Discrete Choice Models Michael Keane and Anthony A. Smith, Jr. PRELIMINARY AND INCOMPLETE October 2003 (first version: June 2003) Abstract This paper develops and implements

More information

Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford

Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford Department of Engineering Science University of Oxford January 27, 2017 Many datasets consist of multiple heterogeneous subsets. Cluster analysis: Given an unlabelled data, want algorithms that automatically

More information

Modified Metropolis-Hastings algorithm with delayed rejection

Modified Metropolis-Hastings algorithm with delayed rejection Modified Metropolis-Hastings algorithm with delayed reection K.M. Zuev & L.S. Katafygiotis Department of Civil Engineering, Hong Kong University of Science and Technology, Hong Kong, China ABSTRACT: The

More information

Latent variable transformation using monotonic B-splines in PLS Path Modeling

Latent variable transformation using monotonic B-splines in PLS Path Modeling Latent variable transformation using monotonic B-splines in PLS Path Modeling E. Jakobowicz CEDRIC, Conservatoire National des Arts et Métiers, 9 rue Saint Martin, 754 Paris Cedex 3, France EDF R&D, avenue

More information

Using Adaptive Sparse Grids to Solve High-Dimensional Dynamic Models. J. Brumm & S. Scheidegger BFI, University of Chicago, Nov.

Using Adaptive Sparse Grids to Solve High-Dimensional Dynamic Models. J. Brumm & S. Scheidegger BFI, University of Chicago, Nov. Using Adaptive Sparse Grids to Solve High-Dimensional Dynamic Models J. Brumm & S. Scheidegger, Nov. 1st 2013 Outline I.) From Full (Cartesian) Grids to Sparse Grids II.) Adaptive Sparse Grids III.) Time

More information

Bootstrapping Method for 14 June 2016 R. Russell Rhinehart. Bootstrapping

Bootstrapping Method for  14 June 2016 R. Russell Rhinehart. Bootstrapping Bootstrapping Method for www.r3eda.com 14 June 2016 R. Russell Rhinehart Bootstrapping This is extracted from the book, Nonlinear Regression Modeling for Engineering Applications: Modeling, Model Validation,

More information

Modeling and Performance Analysis with Discrete-Event Simulation

Modeling and Performance Analysis with Discrete-Event Simulation Simulation Modeling and Performance Analysis with Discrete-Event Simulation Chapter 10 Verification and Validation of Simulation Models Contents Model-Building, Verification, and Validation Verification

More information

Monte Carlo Method for Solving Inverse Problems of Radiation Transfer

Monte Carlo Method for Solving Inverse Problems of Radiation Transfer INVERSE AND ILL-POSED PROBLEMS SERIES Monte Carlo Method for Solving Inverse Problems of Radiation Transfer V.S.Antyufeev. ///VSP/// UTRECHT BOSTON KÖLN TOKYO 2000 Contents Chapter 1. Monte Carlo modifications

More information

Clustering web search results

Clustering web search results Clustering K-means Machine Learning CSE546 Emily Fox University of Washington November 4, 2013 1 Clustering images Set of Images [Goldberger et al.] 2 1 Clustering web search results 3 Some Data 4 2 K-means

More information

Computer Experiments. Designs

Computer Experiments. Designs Computer Experiments Designs Differences between physical and computer Recall experiments 1. The code is deterministic. There is no random error (measurement error). As a result, no replication is needed.

More information

Computational Methods. Randomness and Monte Carlo Methods

Computational Methods. Randomness and Monte Carlo Methods Computational Methods Randomness and Monte Carlo Methods Manfred Huber 2010 1 Randomness and Monte Carlo Methods Introducing randomness in an algorithm can lead to improved efficiencies Random sampling

More information

Statistical modelling of the patterns of planar sections of prostatic capillaries on the basis of Strauss hard-core processes

Statistical modelling of the patterns of planar sections of prostatic capillaries on the basis of Strauss hard-core processes TITLE Statistical modelling of the patterns of planar sections of prostatic capillaries on the basis of Strauss hard-core processes AUTHORS Torsten Mattfeldt 1 Stefanie Eckel 2 Frank Fleischer 3 Volker

More information

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION Alessandro Artale UniBZ - http://www.inf.unibz.it/ artale/ SECTION 5.5 Application: Correctness of Algorithms Copyright Cengage Learning. All

More information

Monte Carlo Analysis

Monte Carlo Analysis Monte Carlo Analysis Andrew Q. Philips* February 7, 27 *Ph.D Candidate, Department of Political Science, Texas A&M University, 2 Allen Building, 4348 TAMU, College Station, TX 77843-4348. aphilips@pols.tamu.edu.

More information

Week 4: Simple Linear Regression III

Week 4: Simple Linear Regression III Week 4: Simple Linear Regression III Marcelo Coca Perraillon University of Colorado Anschutz Medical Campus Health Services Research Methods I HSMP 7607 2017 c 2017 PERRAILLON ARR 1 Outline Goodness of

More information

1 More configuration model

1 More configuration model 1 More configuration model In the last lecture, we explored the definition of the configuration model, a simple method for drawing networks from the ensemble, and derived some of its mathematical properties.

More information

The dynamic effects of interest rates and reserve requirements in Peru: A zero-sign restrictions approach

The dynamic effects of interest rates and reserve requirements in Peru: A zero-sign restrictions approach The dynamic effects of interest rates and reserve requirements in Peru: A zero-sign restrictions approach Sixth BIS CCA Research Conference - Mexico Fernando Pérez Forero fernando.perez@bcrp.gob.pe Marco

More information

Post-stratification and calibration

Post-stratification and calibration Post-stratification and calibration Thomas Lumley UW Biostatistics WNAR 2008 6 22 What are they? Post-stratification and calibration are ways to use auxiliary information on the population (or the phase-one

More information

5. Compare the volume of a three dimensional figure to surface area.

5. Compare the volume of a three dimensional figure to surface area. 5. Compare the volume of a three dimensional figure to surface area. 1. What are the inferences that can be drawn from sets of data points having a positive association and a negative association. 2. Why

More information

3. Lifting Scheme of Wavelet Transform

3. Lifting Scheme of Wavelet Transform 3. Lifting Scheme of Wavelet Transform 3. Introduction The Wim Sweldens 76 developed the lifting scheme for the construction of biorthogonal wavelets. The main feature of the lifting scheme is that all

More information

GAMs semi-parametric GLMs. Simon Wood Mathematical Sciences, University of Bath, U.K.

GAMs semi-parametric GLMs. Simon Wood Mathematical Sciences, University of Bath, U.K. GAMs semi-parametric GLMs Simon Wood Mathematical Sciences, University of Bath, U.K. Generalized linear models, GLM 1. A GLM models a univariate response, y i as g{e(y i )} = X i β where y i Exponential

More information

A spectral boundary element method

A spectral boundary element method Boundary Elements XXVII 165 A spectral boundary element method A. Calaon, R. Adey & J. Baynham Wessex Institute of Technology, Southampton, UK Abstract The Boundary Element Method (BEM) is not local and

More information

Inverse and Implicit functions

Inverse and Implicit functions CHAPTER 3 Inverse and Implicit functions. Inverse Functions and Coordinate Changes Let U R d be a domain. Theorem. (Inverse function theorem). If ϕ : U R d is differentiable at a and Dϕ a is invertible,

More information

Machine Learning / Jan 27, 2010

Machine Learning / Jan 27, 2010 Revisiting Logistic Regression & Naïve Bayes Aarti Singh Machine Learning 10-701/15-781 Jan 27, 2010 Generative and Discriminative Classifiers Training classifiers involves learning a mapping f: X -> Y,

More information

Part I. Production and Cost

Part I. Production and Cost Assignment 3 Stochastic Frontier Production and Cost Models Part I. Production and Cost This part of assignment 3 will involve fitting stochastic frontier models with production and cost function frameworks.

More information

Mean Value Analysis and Related Techniques

Mean Value Analysis and Related Techniques Mean Value Analysis and Related Techniques 34-1 Overview 1. Analysis of Open Queueing Networks 2. Mean-Value Analysis 3. Approximate MVA 4. Balanced Job Bounds 34-2 Analysis of Open Queueing Networks Used

More information

set mem 10m we can also decide to have the more separation line on the screen or not when the software displays results: set more on set more off

set mem 10m we can also decide to have the more separation line on the screen or not when the software displays results: set more on set more off Setting up Stata We are going to allocate 10 megabites to the dataset. You do not want to allocate to much memory to the dataset because the more memory you allocate to the dataset, the less memory will

More information

Mixture Models and EM

Mixture Models and EM Table of Content Chapter 9 Mixture Models and EM -means Clustering Gaussian Mixture Models (GMM) Expectation Maximiation (EM) for Mixture Parameter Estimation Introduction Mixture models allows Complex

More information