# Permutation Matrices. Permutation Matrices. Permutation Matrices. Permutation Matrices. Isomorphisms of Graphs. 19 Nov 2015

Size: px
Start display at page:

Download "Permutation Matrices. Permutation Matrices. Permutation Matrices. Permutation Matrices. Isomorphisms of Graphs. 19 Nov 2015"

Transcription

1 9 Nov 25 A permutation matrix is an n by n matrix with a single in each row and column, elsewhere. If P is a permutation (bijection) on {,2,..,n} let A P be the permutation matrix with A ip(i) =, A ij = for j P(i) 9 Nov 25 CS 32 Let E uv be the n by n matrix with in the (u,v) position and elsewhere. * Note that E uv E rs = E us if v = r, and is the n by n zero matrix otherwise. Then A P = Σ i= n E ip(i) If Q = P - then you can check that A Q = (A P ) T, the transpose of A P. 9 Nov 25 CS 32 2 Note also that A P T A P = Σ i=n E P(i)i Σ t=n E tp(t) = Σ i=n Σ t=n E P(i)i E tp(t) = Σ t=n E P(t)P(t) = I n, the n by n identity matrix, by * Also, E ik A P = E ik Σ t=n E tp(t) = E ip(k). Right multiplying an m by n matrix B by A P permutes the columns of B, moving the k th column to the P(k) th column 9 Nov 25 CS 32 3 Likewise A PT E ik =Σ t=n E P(t)t E ik = E P(i)k so left multiplying an n by m matrix B by A PT will permute the rows, moving the i th row to the P(i) th place. If B is n by n then A PT B A P will be B with both rows and columns permuted by P: row i row P(i), column j column P(j) 9 Nov 25 CS 32 4 Isomorphisms of Graphs Suppose G and H are graphs, each with n vertices. If G has vertices g, g n and H has vertices h,,h n then a permutation P taking g i to h P(i) will give an isomorphism of graphs if A PT M G A P = M H, where M S is the adjacency matrix of graph S. 9 Nov 25 CS 32 5 Example The graphs G and H are clearly isomorphic, but can we tell that from their matrices? G 4 Map vertices of G to those of H by P() = 4, P(2) =, P(3) = 3, P(4) = Nov 25 CS 32 6 H 4 2 3

2 9 Nov 25 M G = M H = M G A P = = A P = A PT M G A P = = = M H 9 Nov 25 CS Nov 25 CS 32 8 Isomorphisms of Graphs Note that if F is an isomorphism from a graph G of n vertices v v n to a graph H of n vertices w w n then F defines a permutation of {,,n} and the adjacency matrices of G and H will be related by a permutation matrix. Isomorphisms of Graphs But not every permutation of the vertices will produce a graph isomorphism. The permutations producing a graph isomorphism F have to map the edges appropriately because (v,u) is an edge iff (F(v), F(u)) is an edge. 9 Nov 25 CS Nov 25 CS 32 Our Next Topic: Boolean Algebra Chapter 2 Boolean Algebra Boolean algebra provides the operations and the rules for working with the set {, }. These are the rules that underlie electronic circuits, and the methods we will discuss are fundamental to VLSI design. We are going to focus on three operations: Boolean complementation, Boolean sum, and Boolean product 9 Nov 25 CS 32 9 Nov 25 CS

3 9 Nov 25 Boolean Operations The complement is denoted by a bar (on the slides, we will use a minus sign). It is defined by - = and - =. The Boolean sum, denoted by + or by OR, has the following values: + =, + =, + =, + = The Boolean product, denoted by or by AND, has the following values: =, =, =, = Definition: Let B = {, }. The variable x is called a Boolean variable if it assumes values only from B. A function from B n, the set {(x, x 2,, x n ) x i B, i n}, to B is called a Boolean function of degree n. Boolean functions can be represented using expressions made up from the variables and Boolean operations. 9 Nov 25 CS Nov 25 CS 32 4 The Boolean expressions in the variables x, x 2,, x n are defined recursively as follows:,, x, x 2,, x n are Boolean expressions. If E and E 2 are Boolean expressions, then (-E ), (E E 2 ), and (E + E 2 ) are Boolean expressions. Each Boolean expression represents a Boolean function. The values of this function are obtained by substituting and for the variables in the expression. For example, we can create Boolean expression in the variables x, y, and z using the building blocks,, x, y, and z, and the construction rules: Since x and y are Boolean expressions, so is xy. Since z is a Boolean expression, so is (-z). Since xy and (-z) are expressions, so is xy + (-z). and so on 9 Nov 25 CS Nov 25 CS 32 6 Example: Give a Boolean expression for the Boolean function F(x, y) as defined by the following table: x y F(x, y) Possible solution: F(x, y) = (-x) y 9 Nov 25 CS 32 7 Another Example: Possible solution I: x y z F(x, y, z) F(x, y, z) = -(xz + y) Possible solution II: F(x, y, z) = (-(xz))(-y) 9 Nov 25 CS

4 9 Nov 25 There is a simple method for deriving a Boolean expression for a function that is defined by a table. This method is based on minterms. Definition: A literal is a Boolean variable or its complement. A minterm of the Boolean variables x, x 2,, x n is a Boolean product y y 2 y n, where y i = x i or y i = -x i. Hence, a minterm is a product of n literals, with one literal for each variable. 9 Nov 25 CS 32 9 Consider F(x,y,z) again: x y z F(x, y, z) F(x, y, z) = if and only if: x = y = z = or x = y =, z = or x =, y = z = Therefore, F(x, y, z) = (-x)(-y)(-z) + (-x)(-y)z + x(-y)(-z) 9 Nov 25 CS 32 2 Definition: The Boolean functions F and G of n variables are equal if and only if F(b, b 2,, b n ) = G(b, b 2,, b n ) whenever b, b 2,, b n belong to B. Two different Boolean expressions that represent the same function are called equivalent. For example, the Boolean expressions xy, xy +, and xy are equivalent. The complement of the Boolean function F is the function F, where F(b, b 2,, b n ) = -(F(b, b 2,, b n )). Let F and G be Boolean functions of degree n. The Boolean sum F+G and Boolean product FG are then defined by (F + G)(b, b 2,, b n ) = F(b, b 2,, b n ) + G(b, b 2,, b n ) (FG)(b, b 2,, b n ) = F(b, b 2,, b n ) G(b, b 2,, b n ) 9 Nov 25 CS Nov 25 CS Question: How many different Boolean functions of degree are there? Solution: There are four of them, F, F 2, F 3, and F 4 : Question: How many different Boolean functions of degree 2 are there? Solution: There are 6 of them, F, F 2,, F 6 : x F F 2 F 3 F 4 x y F F 2 F 3 F 4 F 5 F 6 F 7 F 8 F 9 F F F 2 F 3 F 4 F 5 F 6 9 Nov 25 CS Nov 25 CS

5 9 Nov 25 Question: How many different Boolean functions of degree n are there? Solution: There are 2 n different n-tuples of s and s. A Boolean function is an assignment of or to each of these 2 n different n-tuples. Therefore, there are 2 2n different Boolean functions. Boolean Identities There are useful identities of Boolean expressions that can help us to transform an expression A into an equivalent expression B (see Table 5 on page 85 [6 th edition: page 753] in the textbook). 9 Nov 25 CS Nov 25 CS x = x, law of double complement x+x = x,idempotent laws x x = x x+ = x, identity laws x = x x+ =, domination laws x = x+y = y+x, commutative laws x y = y x 9 Nov 25 CS x+(y+z) = (x+y)+z, associative laws x (y z) = (x y) z x+yz = (x+y)(x+z), distributive laws x (y+z) = (x y)+(x z) -(xy) = -x + -y, De Morgan s laws -(x+y) = (-x)(-y) x+xy = x, Absorption laws x(x+y) = x x+-x =, unit property x(-x) =, zero property 9 Nov 25 CS Duality We can derive additional identities with the help of the dual of a Boolean expression. The dual of a Boolean expression is obtained by interchanging Boolean sums and Boolean products and interchanging s and s. 9 Nov 25 CS Duality Examples: The dual of x(y + z) is x + yz. The dual of -x + (-y + z) is (-x + )((-y)z). The dual is essentially the complement, but with any variable x replaced by -x. (exercise 29, p. 88) The dual of a Boolean function F represented by a Boolean expression is the function represented by the dual of this expression. This dual function, denoted by F d, does not depend on the particular Boolean expression used to represent F. (exercise 3, page 88 [6 th ed. p.756]) 9 Nov 25 CS

6 9 Nov 25 Duality Therefore, an identity between functions represented by Boolean expressions remains valid when the duals of both sides of the identity are taken. We can use this fact, called the duality principle, to derive new identities. For example, consider the absorption law x(x + y) = x. By taking the duals of both sides of this identity, we obtain the equation x + xy = x, which is also an identity (and also called an absorption law). Definition of a Boolean Algebra All the properties of Boolean functions and expressions that we have discovered also apply to other mathematical structures such as propositions and sets and the operations defined on them. If we can show that a particular structure is a Boolean algebra, then we know that all results established about Boolean algebras apply to this structure. For this purpose, we need an abstract definition of a Boolean algebra. 9 Nov 25 CS Nov 25 CS Definition of a Boolean Algebra Definition: A Boolean algebra is a set B with two binary operations and, elements and, and a unary operation such that the following properties hold for all x, y, and z in B: x = x and x = x (identity laws) x (-x) = and x (-x) = (domination laws) (x y) z = x (y z) and (x y) z = x (y z) and (associative laws) x y = y x and x y = y x (commutative laws) x (y z) = (x y) (x z) and x (y z) = (x y) (x z) (distributive laws) 9 Nov 25 CS Boolean Algebras Examples of Boolean Algebras are:. The algebra of all subsets of a set U, with + =, =, - = complement, =, = U. 2. The algebra of propositions with symbols p, p 2,,p n, with + =, =, - =, = F, = T. 3. If B,, B n are Boolean Algebras, so is B.. B n, with operations defined coordinatewise. 9 Nov 25 CS

### 24 Nov Boolean Operations. Boolean Algebra. Boolean Functions and Expressions. Boolean Functions and Expressions

24 Nov 25 Boolean Algebra Boolean algebra provides the operations and the rules for working with the set {, }. These are the rules that underlie electronic circuits, and the methods we will discuss are

### CS February 17

Discrete Mathematics CS 26 February 7 Equal Boolean Functions Two Boolean functions F and G of degree n are equal iff for all (x n,..x n ) B, F (x,..x n ) = G (x,..x n ) Example: F(x,y,z) = x(y+z), G(x,y,z)

### Circuit analysis summary

Boolean Algebra Circuit analysis summary After finding the circuit inputs and outputs, you can come up with either an expression or a truth table to describe what the circuit does. You can easily convert

### Standard Forms of Expression. Minterms and Maxterms

Standard Forms of Expression Minterms and Maxterms Standard forms of expressions We can write expressions in many ways, but some ways are more useful than others A sum of products (SOP) expression contains:

### Unit-IV Boolean Algebra

Unit-IV Boolean Algebra Boolean Algebra Chapter: 08 Truth table: Truth table is a table, which represents all the possible values of logical variables/statements along with all the possible results of

### Introduction to Boolean Algebra

Introduction to Boolean Algebra Boolean algebra which deals with two-valued (true / false or and ) variables and functions find its use in modern digital computers since they too use two-level systems

### Boolean algebra. June 17, Howard Huang 1

Boolean algebra Yesterday we talked about how analog voltages can represent the logical values true and false. We introduced the basic Boolean operations AND, OR and NOT, which can be implemented in hardware

### Introduction to Boolean Algebra

Introduction to Boolean Algebra Boolean algebra which deals with two-valued (true / false or and ) variables and functions find its use in modern digital computers since they too use two-level systems

### Introduction to Boolean logic and Logical Gates

Introduction to Boolean logic and Logical Gates Institute of Statistics Fall 2014 We saw the importance of the binary number system for data representation in a computer system. We ll see that the construction

### UNIT-4 BOOLEAN LOGIC. NOT Operator Operates on single variable. It gives the complement value of variable.

UNIT-4 BOOLEAN LOGIC Boolean algebra is an algebra that deals with Boolean values((true and FALSE). Everyday we have to make logic decisions: Should I carry the book or not?, Should I watch TV or not?

### Variable, Complement, and Literal are terms used in Boolean Algebra.

We have met gate logic and combination of gates. Another way of representing gate logic is through Boolean algebra, a way of algebraically representing logic gates. You should have already covered the

### Binary logic. Dr.Abu-Arqoub

Binary logic Binary logic deals with variables like (a, b, c,, x, y) that take on two discrete values (, ) and with operations that assume logic meaning ( AND, OR, NOT) Truth table is a table of all possible

### UNIT 2 BOOLEAN ALGEBRA

UNIT 2 BOOLEN LGEBR Spring 2 2 Contents Introduction Basic operations Boolean expressions and truth tables Theorems and laws Basic theorems Commutative, associative, and distributive laws Simplification

### Boolean Algebra. P1. The OR operation is closed for all x, y B x + y B

Boolean Algebra A Boolean Algebra is a mathematical system consisting of a set of elements B, two binary operations OR (+) and AND ( ), a unary operation NOT ('), an equality sign (=) to indicate equivalence

### Menu. Algebraic Simplification - Boolean Algebra EEL3701 EEL3701. MSOP, MPOS, Simplification

Menu Minterms & Maxterms SOP & POS MSOP & MPOS Simplification using the theorems/laws/axioms Look into my... 1 Definitions (Review) Algebraic Simplification - Boolean Algebra Minterms (written as m i ):

### 2.6 BOOLEAN FUNCTIONS

2.6 BOOLEAN FUNCTIONS Binary variables have two values, either 0 or 1. A Boolean function is an expression formed with binary variables, the two binary operators AND and OR, one unary operator NOT, parentheses

### Review: Standard forms of expressions

Karnaugh maps Last time we saw applications of Boolean logic to circuit design. The basic Boolean operations are AND, OR and NOT. These operations can be combined to form complex expressions, which can

### TA: Jade Cheng ICS 241 Recitation Lecture Notes #12 November 13, 2009

TA: Jade Cheng ICS 241 Recitation Lecture Notes #12 November 13, 2009 Recitation #12 Question: Use Prim s algorithm to find a minimum spanning tree for the given weighted graph. Step 1. Start from the

### 3. According to universal addressing, what is the address of vertex d? 4. According to universal addressing, what is the address of vertex f?

1. Prove: A full m-ary tree with i internal vertices contains n = mi + 1 vertices. 2. For a full m-ary tree with n vertices, i internal vertices, and l leaves, prove: (i) i = (n 1)/m and l = [(m 1)n +

### X Y Z F=X+Y+Z

This circuit is used to obtain the compliment of a value. If X = 0, then X = 1. The truth table for NOT gate is : X X 0 1 1 0 2. OR gate : The OR gate has two or more input signals but only one output

### Definitions. 03 Logic networks Boolean algebra. Boolean set: B 0,

3. Boolean algebra 3 Logic networks 3. Boolean algebra Definitions Boolean functions Properties Canonical forms Synthesis and minimization alessandro bogliolo isti information science and technology institute

### Chapter 2. Boolean Expressions:

Chapter 2 Boolean Expressions: A Boolean expression or a function is an expression which consists of binary variables joined by the Boolean connectives AND and OR along with NOT operation. Any Boolean

### Computer Science. Unit-4: Introduction to Boolean Algebra

Unit-4: Introduction to Boolean Algebra Learning Objective At the end of the chapter students will: Learn Fundamental concepts and basic laws of Boolean algebra. Learn about Boolean expression and will

### Combinatorial Algorithms. Unate Covering Binate Covering Graph Coloring Maximum Clique

Combinatorial Algorithms Unate Covering Binate Covering Graph Coloring Maximum Clique Example As an Example, let s consider the formula: F(x,y,z) = x y z + x yz + x yz + xyz + xy z The complete sum of

### Gate Level Minimization

Gate Level Minimization By Dr. M. Hebaishy Digital Logic Design Ch- Simplifying Boolean Equations Example : Y = AB + AB Example 2: = B (A + A) T8 = B () T5 = B T Y = A(AB + ABC) = A (AB ( + C ) ) T8 =

### Boolean Algebra and Logic Gates

Boolean Algebra and Logic Gates Binary logic is used in all of today's digital computers and devices Cost of the circuits is an important factor Finding simpler and cheaper but equivalent circuits can

### Boolean Algebra. BME208 Logic Circuits Yalçın İŞLER

Boolean Algebra BME28 Logic Circuits Yalçın İŞLER islerya@yahoo.com http://me.islerya.com 5 Boolean Algebra /2 A set of elements B There exist at least two elements x, y B s. t. x y Binary operators: +

### [Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics

400 lecture note #4 [Ch 6] Set Theory 1. Basic Concepts and Definitions 1) Basics Element: ; A is a set consisting of elements x which is in a/another set S such that P(x) is true. Empty set: notated {

### Chapter 2 Boolean algebra and Logic Gates

Chapter 2 Boolean algebra and Logic Gates 2. Introduction In working with logic relations in digital form, we need a set of rules for symbolic manipulation which will enable us to simplify complex expressions

### 2.2 Set Operations. Introduction DEFINITION 1. EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is, EXAMPLE 2

2.2 Set Operations 127 2.2 Set Operations Introduction Two, or more, sets can be combined in many different ways. For instance, starting with the set of mathematics majors at your school and the set of

### BOOLEAN ALGEBRA. 1. State & Verify Laws by using :

BOOLEAN ALGEBRA. State & Verify Laws by using :. State and algebraically verify Absorption Laws. (2) Absorption law states that (i) X + XY = X and (ii) X(X + Y) = X (i) X + XY = X LHS = X + XY = X( + Y)

### 2.1 Binary Logic and Gates

1 EED2003 Digital Design Presentation 2: Boolean Algebra Asst. Prof.Dr. Ahmet ÖZKURT Asst. Prof.Dr Hakkı T. YALAZAN Based on the Lecture Notes by Jaeyoung Choi choi@comp.ssu.ac.kr Fall 2000 2.1 Binary

### ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian محرم 1439 ه Winter

### Spring 2010 CPE231 Digital Logic Section 1 Quiz 1-A. Convert the following numbers from the given base to the other three bases listed in the table:

Section 1 Quiz 1-A Convert the following numbers from the given base to the other three bases listed in the table: Decimal Binary Hexadecimal 1377.140625 10101100001.001001 561.24 454.3125 111000110.0101

### Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University

Logic Design First Stage Lecture No.6 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Outlines Boolean Operations Laws of Boolean Algebra Rules of

### CS8803: Advanced Digital Design for Embedded Hardware

CS883: Advanced Digital Design for Embedded Hardware Lecture 2: Boolean Algebra, Gate Network, and Combinational Blocks Instructor: Sung Kyu Lim (limsk@ece.gatech.edu) Website: http://users.ece.gatech.edu/limsk/course/cs883

### Chapter 2 Combinational Logic Circuits

Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Overview Part Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra Standard

### BOOLEAN ALGEBRA AND CIRCUITS

UNIT 3 Structure BOOLEAN ALGEBRA AND CIRCUITS Boolean Algebra and 3. Introduction 3. Objectives 3.2 Boolean Algebras 3.3 Logic 3.4 Boolean Functions 3.5 Summary 3.6 Solutions/ Answers 3. INTRODUCTION This

### Combinational Logic & Circuits

Week-I Combinational Logic & Circuits Spring' 232 - Logic Design Page Overview Binary logic operations and gates Switching algebra Algebraic Minimization Standard forms Karnaugh Map Minimization Other

### Gate Level Minimization Map Method

Gate Level Minimization Map Method Complexity of hardware implementation is directly related to the complexity of the algebraic expression Truth table representation of a function is unique Algebraically

### Software Engineering 2DA4. Slides 2: Introduction to Logic Circuits

Software Engineering 2DA4 Slides 2: Introduction to Logic Circuits Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on S. Brown and Z. Vranesic, Fundamentals of Digital

### Chapter 3 Simplification of Boolean functions

3.1 Introduction Chapter 3 Simplification of Boolean functions In this chapter, we are going to discuss several methods for simplifying the Boolean function. What is the need for simplifying the Boolean

### Synthesis of 2-level Logic Heuristic Method. Two Approaches

Synthesis of 2-level Logic Heuristic Method Lecture 8 Exact Two Approaches Find all primes Find a complete sum Find a minimum cover (covering problem) Heuristic Take an initial cover of cubes Repeat Expand

### Simplification of Boolean Functions

Simplification of Boolean Functions Contents: Why simplification? The Map Method Two, Three, Four and Five variable Maps. Simplification of two, three, four and five variable Boolean function by Map method.

### Propositional Calculus: Boolean Algebra and Simplification. CS 270: Mathematical Foundations of Computer Science Jeremy Johnson

Propositional Calculus: Boolean Algebra and Simplification CS 270: Mathematical Foundations of Computer Science Jeremy Johnson Propositional Calculus Topics Motivation: Simplifying Conditional Expressions

### A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial.

2301-670 Graph theory 1.1 What is a graph? 1 st semester 2550 1 1.1. What is a graph? 1.1.2. Definition. A graph G is a triple (V(G), E(G), ψ G ) consisting of V(G) of vertices, a set E(G), disjoint from

28 The McGraw-Hill Companies, Inc. All rights reserved. 28 The McGraw-Hill Companies, Inc. All rights reserved. All or Nothing Gate Boolean Expression: A B = Y Truth Table (ee next slide) or AB = Y 28

### Philadelphia University Faculty of Information Technology Department of Computer Science. Computer Logic Design. By Dareen Hamoudeh.

Philadelphia University Faculty of Information Technology Department of Computer Science Computer Logic Design By Dareen Hamoudeh Dareen Hamoudeh 1 Canonical Forms (Standard Forms of Expression) Minterms

### 01 Introduction to Digital Logic. ENGR 3410 Computer Architecture Mark L. Chang Fall 2006

Introduction to Digital Logic ENGR 34 Computer Architecture Mark L. Chang Fall 26 Acknowledgements Patterson & Hennessy: Book & Lecture Notes Patterson s 997 course notes (U.C. Berkeley CS 52, 997) Tom

### 60-265: Winter ANSWERS Exercise 4 Combinational Circuit Design

60-265: Winter 2010 Computer Architecture I: Digital Design ANSWERS Exercise 4 Combinational Circuit Design Question 1. One-bit Comparator [ 1 mark ] Consider two 1-bit inputs, A and B. If we assume that

### ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian ذو الحجة 1438 ه Winter

### Experiment 3: Logic Simplification

Module: Logic Design Name:... University no:.. Group no:. Lab Partner Name: Mr. Mohamed El-Saied Experiment : Logic Simplification Objective: How to implement and verify the operation of the logical functions

### Boolean Functions (10.1) Representing Boolean Functions (10.2) Logic Gates (10.3)

Chapter (Part ): Boolean Algebra Boolean Functions (.) Representing Boolean Functions (.2) Logic Gates (.3) It has started from the book titled The laws of thought written b George Boole in 854 Claude

### Euclidean Space. Definition 1 (Euclidean Space) A Euclidean space is a finite-dimensional vector space over the reals R, with an inner product,.

Definition 1 () A Euclidean space is a finite-dimensional vector space over the reals R, with an inner product,. 1 Inner Product Definition 2 (Inner Product) An inner product, on a real vector space X

### Logic Design: Part 2

Orange Coast College Business Division Computer Science Department CS 6- Computer Architecture Logic Design: Part 2 Where are we? Number systems Decimal Binary (and related Octal and Hexadecimal) Binary

### S1 Teknik Telekomunikasi Fakultas Teknik Elektro FEH2H3 2016/2017

S1 Teknik Telekomunikasi Fakultas Teknik Elektro FEH2H3 2016/2017 Karnaugh Map Karnaugh maps Last time we saw applications of Boolean logic to circuit design. The basic Boolean operations are AND, OR and

### QUESTION BANK FOR TEST

CSCI 2121 Computer Organization and Assembly Language PRACTICE QUESTION BANK FOR TEST 1 Note: This represents a sample set. Please study all the topics from the lecture notes. Question 1. Multiple Choice

### Lecture 5. Chapter 2: Sections 4-7

Lecture 5 Chapter 2: Sections 4-7 Outline Boolean Functions What are Canonical Forms? Minterms and Maxterms Index Representation of Minterms and Maxterms Sum-of-Minterm (SOM) Representations Product-of-Maxterm

### Digital Logic Lecture 7 Gate Level Minimization

Digital Logic Lecture 7 Gate Level Minimization By Ghada Al-Mashaqbeh The Hashemite University Computer Engineering Department Outline Introduction. K-map principles. Simplification using K-maps. Don t-care

### 01 Introduction to Digital Logic. ENGR 3410 Computer Architecture Mark L. Chang Fall 2008

Introduction to Digital Logic ENGR 34 Computer Architecture Mark L. Chang Fall 28 Acknowledgements Patterson & Hennessy: Book & Lecture Notes Patterson s 997 course notes (U.C. Berkeley CS 52, 997) Tom

### R.M.D. ENGINEERING COLLEGE R.S.M. Nagar, Kavaraipettai

L T P C R.M.D. ENGINEERING COLLEGE R.S.M. Nagar, Kavaraipettai- 601206 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC8392 UNIT - I 3 0 0 3 OBJECTIVES: To present the Digital fundamentals, Boolean

### CDA 3103 Computer Organization Exam 1 (Sep. 22th, 2014)

CDA 3103 Computer Organization Exam 1 (Sep. 22th, 2014) Name: USF ID: Problem Points Score 1 10 2 10 3 15 4 15 5 10 6 20 otal 80 Exam Rules Use the back of the exam paper as necessary. But indicate clearly

### IT 201 Digital System Design Module II Notes

IT 201 Digital System Design Module II Notes BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.

### Hypercubes. (Chapter Nine)

Hypercubes (Chapter Nine) Mesh Shortcomings: Due to its simplicity and regular structure, the mesh is attractive, both theoretically and practically. A problem with the mesh is that movement of data is

### To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions):

CS 70 Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 7 This lecture returns to the topic of propositional logic. Whereas in Lecture Notes 1 we studied this topic as a way of understanding

### Computer Organization

Computer Organization (Logic circuits design and minimization) KR Chowdhary Professor & Head Email: kr.chowdhary@gmail.com webpage: krchowdhary.com Department of Computer Science and Engineering MBM Engineering

### Lecture (05) Boolean Algebra and Logic Gates

Lecture (05) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee ١ Minterms and Maxterms consider two binary variables x and y combined with an AND operation. Since eachv ariable may appear in either

### CSC Discrete Math I, Spring Sets

CSC 125 - Discrete Math I, Spring 2017 Sets Sets A set is well-defined, unordered collection of objects The objects in a set are called the elements, or members, of the set A set is said to contain its

### A B AB CD Objectives:

Objectives:. Four variables maps. 2. Simplification using prime implicants. 3. "on t care" conditions. 4. Summary.. Four variables Karnaugh maps Minterms A A m m m3 m2 A B C m4 C A B C m2 m8 C C m5 C m3

### Basic circuit analysis and design. Circuit analysis. Write algebraic expressions or make a truth table

Basic circuit analysis and design Circuit analysis Circuit analysis involves figuring out what some circuit does. Every circuit computes some function, which can be described with Boolean expressions or

### Announcements. Chapter 2 - Part 1 1

Announcements If you haven t shown the grader your proof of prerequisite, please do so by 11:59 pm on 09/05/2018 (Wednesday). I will drop students that do not show us the prerequisite proof after this

### CMPSCI 250: Introduction to Computation. Lecture #7: Quantifiers and Languages 6 February 2012

CMPSCI 250: Introduction to Computation Lecture #7: Quantifiers and Languages 6 February 2012 Quantifiers and Languages Quantifier Definitions Translating Quantifiers Types and the Universe of Discourse

### DSAS Laboratory no 4. Laboratory 4. Logic forms

Laboratory 4 Logic forms 4.1 Laboratory work goals Going from Boolean functions to Boolean forms. Logic forms equivalence. Boolean forms simplification. Shannon s theorems. Representation in NAND and NOR

### Module -7. Karnaugh Maps

1 Module -7 Karnaugh Maps 1. Introduction 2. Canonical and Standard forms 2.1 Minterms 2.2 Maxterms 2.3 Canonical Sum of Product or Sum-of-Minterms (SOM) 2.4 Canonical product of sum or Product-of-Maxterms(POM)

### COMPUTER ARCHITECTURE AND DIGITAL DESIGN

SPECIAL MAKEUP - FINAL EXAMINATION COMPUTER ARCHITECTURE AND DIGITAL DESIGN 03-60-265-01 S C H O O L O F C O M P U T E R S C I E N C E - U N I V E R S I T Y O F W I N D S O R Fall 2008 Last Name: First

### Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits J.J. Shann (Slightly trimmed by C.P. Chung) Chapter Overview 2-1 Binary Logic and Gates 2-2 Boolean Algebra 2-3 Standard Forms 2-4 Two-Level Circuit Optimization

### REGULAR GRAPHS OF GIVEN GIRTH. Contents

REGULAR GRAPHS OF GIVEN GIRTH BROOKE ULLERY Contents 1. Introduction This paper gives an introduction to the area of graph theory dealing with properties of regular graphs of given girth. A large portion

### Subset Groupoids. W. B. Vasantha Kandasamy Florentin Smarandache

Subset Groupoids W. B. Vasantha Kandasamy Florentin Smarandache Educational Publisher Inc. Ohio 2013 This book can be ordered from: Education Publisher Inc. 1313 Chesapeake Ave. Columbus, Ohio 43212, USA

### Information Science 1

Information Science Boolean Expressions Week College of Information Science and Engineering Ritsumeikan University Topics covered l Terms and concepts from Week 9 l Binary (Boolean) logic History Boolean

### Propositional Calculus. CS 270: Mathematical Foundations of Computer Science Jeremy Johnson

Propositional Calculus CS 270: Mathematical Foundations of Computer Science Jeremy Johnson Propositional Calculus Objective: To provide students with the concepts and techniques from propositional calculus

### Computer Engineering Chapter 3 Boolean Algebra

Computer Engineering Chapter 3 Boolean Algebra Hiroaki Kobayashi 5/30/2011 Ver. 06102011 5/30/2011 Computer Engineering 1 Agenda in Chapter 3 What is Boolean Algebra Basic Boolean/Logical Operations (Operators)

### Code No: R Set No. 1

Code No: R059210504 Set No. 1 II B.Tech I Semester Supplementary Examinations, February 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science

### Hw 4 Due Feb 22. D(fg) x y z (

Hw 4 Due Feb 22 2.2 Exercise 7,8,10,12,15,18,28,35,36,46 2.3 Exercise 3,11,39,40,47(b) 2.4 Exercise 6,7 Use both the direct method and product rule to calculate where f(x, y, z) = 3x, g(x, y, z) = ( 1

### Data Analytics and Boolean Algebras

Data Analytics and Boolean Algebras Hans van Thiel November 28, 2012 c Muitovar 2012 KvK Amsterdam 34350608 Passeerdersstraat 76 1016 XZ Amsterdam The Netherlands T: + 31 20 6247137 E: hthiel@muitovar.com

### L3: Representations of functions

L3: Representations of functions Representations of Boolean functions Boolean expression Two level sum of product form, factorized form Truth tables Karnaugh maps Cubes (MIN,MAX) notation positional cube

### Math 485, Graph Theory: Homework #3

Math 485, Graph Theory: Homework #3 Stephen G Simpson Due Monday, October 26, 2009 The assignment consists of Exercises 2129, 2135, 2137, 2218, 238, 2310, 2313, 2314, 2315 in the West textbook, plus the

### SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : STLD(16EC402) Year & Sem: II-B.Tech & I-Sem Course & Branch: B.Tech

### Discrete Mathematics Lecture 4. Harper Langston New York University

Discrete Mathematics Lecture 4 Harper Langston New York University Sequences Sequence is a set of (usually infinite number of) ordered elements: a 1, a 2,, a n, Each individual element a k is called a

### Gate-Level Minimization. BME208 Logic Circuits Yalçın İŞLER

Gate-Level Minimization BME28 Logic Circuits Yalçın İŞLER islerya@yahoo.com http://me.islerya.com Complexity of Digital Circuits Directly related to the complexity of the algebraic expression we use to

### Chapter 3. Boolean Algebra and Digital Logic

Chapter 3 Boolean Algebra and Digital Logic Chapter 3 Objectives Understand the relationship between Boolean logic and digital computer circuits. Learn how to design simple logic circuits. Understand how

### Logic Synthesis and Verification

Logic Synthesis and Verification Jie-Hong Roland Jiang 江介宏 Department of Electrical Engineering National Taiwan University Fall 2012 1 SOPs and Incompletely Specified Functions Reading: Logic Synthesis

### Objectives: 1- Bolean Algebra. Eng. Ayman Metwali

Objectives: Chapter 3 : 1- Boolean Algebra Boolean Expressions Boolean Identities Simplification of Boolean Expressions Complements Representing Boolean Functions 2- Logic gates 3- Digital Components 4-

### Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions

Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions 1. Convert the following SOP expression to an equivalent POS expression. 2. Determine the values of A, B, C, and D that make

### Gate-Level Minimization

MEC520 디지털공학 Gate-Level Minimization Jee-Hwan Ryu School of Mechanical Engineering Gate-Level Minimization-The Map Method Truth table is unique Many different algebraic expression Boolean expressions may

### 2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y.

2 Second Derivatives As we have seen, a function f (x, y) of two variables has four different partial derivatives: (x, y), (x, y), f yx (x, y), (x, y) It is convenient to gather all four of these into

### ENGINEERS ACADEMY. 7. Given Boolean theorem. (a) A B A C B C A B A C. (b) AB AC BC AB BC. (c) AB AC BC A B A C B C.

Digital Electronics Boolean Function QUESTION BANK. The Boolean equation Y = C + C + C can be simplified to (a) (c) A (B + C) (b) AC (d) C. The Boolean equation Y = (A + B) (A + B) can be simplified to

### Experiment 4 Boolean Functions Implementation

Experiment 4 Boolean Functions Implementation Introduction: Generally you will find that the basic logic functions AND, OR, NAND, NOR, and NOT are not sufficient to implement complex digital logic functions.

### Lecture (04) Boolean Algebra and Logic Gates

Lecture (4) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee ١ Dr. Ahmed ElShafee, ACU : Spring 26, Logic Design Boolean algebra properties basic assumptions and properties: Closure law A set S is